نویسندگان

پژوهشکده پلاسما و دانشکده فیزیک دانشگاه خوارزمی، تهران

چکیده

در این مقاله ناپایداری رشته‌ای برخوردی در یک دستگاه باریکه الکترونی- پلاسمای یونیده ضعیف با در نظر گرفتن اثرات میدان مغناطیسی پلاسمای زمینه، به روش شاره‌ای مورد بررسی قرار گرفته است. با توصیف تعادل اولیه پیکربندی باریکه گرم- پلاسمای سرد در حضور برخورد ذرات باردار با اتم‌های خنثی و استفاده از تقریب موضعی، رابطه پاشندگی مد ناپایدار (ناپایداری رشته‌ای) و نتایج حاصل از اثرات دو عامل پایدار‌کننده برخورد و میدان مغناطیسی و یک عامل ناپایدارکننده جریان و میزان نقش هر کدام در افزایش و کاهش ناپایداری بررسی شده است. نتایج نشان‌دهنده یک بردار موج بحرانی و یک آستانه مغناطیسی برای ناپایداری رشته‌ای در یک دستگاه برخوردی مغناطیده بوده به گونه‌ای که برای اعداد موج بزرگ‌تر از این مقدار بحرانی و میدان‌های مغناطیسی بزرگ‌تر از این آستانه قطع مغناطیسی، ناپایداری در دستگاه‌ قابل مشاهده نیست. بررسی‌ها نشان می‌دهد که مقدار عدد موج بحرانی و آستانه قطع مغناطیسی با افزایش چگالی جریان باریکه الکترونی افزایش می‌یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Fluid description of collisional current filamentation instability of a weakly ionized plasma in the presence of magnetic field

نویسندگان [English]

  • K Hajisharifi
  • S Tajik-Nezhad
  • H Mehdian

چکیده [English]

In this paper, the collisional filamentation instability of an electron beam-weakly magnetized and ionized plasma has been investigated in the presence of background plasma, using the fluid description. By describing the equilibrium configuration in the presence of binary collision terms between charged and neutral particles and using the local approximation method, the dispersion relation (DR) of instable mode (filamentation instability) has been obtained and the effect of collision and magnetic field driven-destabilization and current-driven stabilization on the growth rate of instability has been studied. The results show the cut-off wave number and the magnetic threshold for the filamentation instability in the collisional magnetized plasma in which the instability will disappear for the larger wave number and larger magnetic fields. Studies show that the value of cut-off wave number and magnetic threshold are raised by increasing the electron beam current density.
 

کلیدواژه‌ها [English]

  • current filamentation instability
  • wealky ionized plasma
  • magnetic field
  • fluid equations
  • collision

1. K Molvig, Phys. Rev. Lett. 35 (1975) 1504. 2. A Bret and M E Dieckmann, Phys. Plasmas 15 (2008) 062102. 3. A Bret, Phys. Plasmas 15 (2008) 022109. 4. A Bret, L Gremillet, and M E Dieckmann, Phys. Plasmas 17 (2010) 120501. 5. B B Godfrey, W R Shanahan, and L E Thode, Phys. Fluids 18 (1975) 346. 6. D Bohm and E P Gross, Phys. Rev. 75 (1949) 1851. 7. B D Fried, Phys. Fluids 2 (1959) 337. 8. A Bret, M C Firpo, and C Deutsch, Phys. Rev. E 70 (2004) 046401. 9. M Tabak et.al., Phys. Plasmas 1 (1994) 1626. 10. M V Medvedev and A Loeb, The Astrophysical Journal 526 (1999) 697. 11. M Lazar, R Schlickeiser, R Wielebinski, and S Poedts, The Astrophysical Journal. 693 (2009) 1133. 12. H Mehdian, K Hajisharifi, and A Hasanbeigi, The Astrophysical Journal. 801 (2015) 89. 13. F Califano, R Prandi, F Pegoraro, and S V Bulanov, Phys. Rev. E 58 (1998) 7837. 14. M Honda, Phys. Rev. E 69 (2004) 016401. 15. A Bret, M C Firpo, and C Deutsch, Phys. Rev. E 72 (2005) 016403. 16. B Hao, Z M Sheng, and J Zhang, Phys. Plasmas 15 (2008) 082112. 17. A Hasanbeigi, N Saberi and H Mehdian, Phys. Plasmas 19 (2012) 042112. 18. H Mehdian, A Hasanbeigi, and K Hajisharifi, Astrophys. Space Sci. 346 (2013) 2. 19. H Mehdian, K Hajisharifi, and A Hasanbeigi, Physics Letters A 377 (2013) 34. 20. H Mehdian, K Hajisharifi, and A Hasanbeigi, Phys. Plasmas 21 (2014) 072106. 21. H Mehdian, K Hajisharifi, and A Hasanbeigi, American Institute of Physics Advances 5 (2015) 117236. 22. S Mohammadi and S M Jazayeri, Iranian Journal of Physics Research 10, 3 (2010) 265. 23. J R Cary, L E Thode, D S Lemons, M E Jones, and M A Mostrom, Phys. Fluids 24 (1981) 1818. 24. A Parvazian and A Javani, Iranian Journal of Physics Research 10, 3 (2010) 249. 25. L O Silva, R A Fonseca, J W Tonge, W B Mori, and J M Dawson, Phys. Plasmas 9 (2002) 2458. 26. A Karmakar, N Kumar, G Shvets, O Polomarov, and A Pukhov, Phys. Rev. Lett. 101 (2008) 255001. 27. B Hao, Z M Sheng, J Zhang, and Y T Li, Laser Part. Beams 32 (2014) 79. 28. M Alimohamadi and K Hajisharifi, Eur. Phys. J. Plus 132 (2017) 232. 29. K Hajisharifi, S Tajik-nezhad, and H Mehdian, Phys. Plasmas 24 (2017) 032120. 30. B P Pandey, J Vranjes, and S V Vladimirov, Phys. Plasmas 19 (2012) 093701. 31. S Atzeni, A Schiavi, and J R Davies, Plasma Phys. Control. Fusion 51 (2009) 015016. 32. M Karlický, D Alexander, J C Brown, and A L MacKinnon, Sol. Phys. 129 (1990) 325. 33. E M Epperlein, Plasma Phys. Controlled Fusion 27 (1985) 1027. 34. R Aghevli and J E Rowe, Phys. Fluids 16 (1973) 686. 35. S I Braginskii, Rev. Plasma Phys. 1 (1965) 205. 36. A Bret and E Perez Alvaro, Phys. Plasmas 18 (2011) 080706. 37. D Le Queau, R Pellat, and A Saint Marc, Phys. Rev. A 24 (1981) 448.

تحت نظارت وف بومی