نویسندگان
دانشکده فیزیک، دانشگاه صنعتی شریف، تهران
چکیده
در این مقاله تلاش میکنیم معرفی و مرور مقدماتی بکنیم از برخی از موضوعها، یافتهها، و نیز چالشهای حوزه ترمودینامیک کوانتومی، تا پژوهشگران علاقهمند بتوانند با آن آشنایی آغازین پیدا کنند. این مرور شامل معرفی مفاهیم بنیادی ترمودینامیک کوانتومی نظیر کار و گرما، آنتروپی و تعادل گرمایی، اعتبار قانون دوم ترمودینامیک، پیوند ترمودینامیک و نظریه اطلاعات، و چگونگی بهرهگیری از ویژگیهای کوانتومی مانند درهمتنیدگی و همبستگی کوانتومی در ماشینهای گرمایی است.
کلیدواژهها
عنوان مقاله [English]
A review of quantum thermodynamics
نویسندگان [English]
- S Shahidani
- A Rezakhani
چکیده [English]
In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of how quantum effects such as entanglement and correlations affect performance of quantum heat engines.
کلیدواژهها [English]
- quantum thermodynamics
- energy
- heat
- entropy
- correlation
- information
1. H B Callen, “Thermodynamics and an Introduction to Thermostatistics”, John Wiley & Sons, New York, (1985). 2. R Moussavi and H Rafii-Tabar. Iranian J. Phys. Res. 5, 4 (2005) 163. 3. J Gemmer, M Michel, and G Mahler, “Quantum Thermodynamics”, Springer, Berlin (2009); J Goold, M Huber, A Riera, L del Rio, and P Skrzypczyk, J. Phys. A: Math. Theor. 49 (2016) 143001; S Vinjanampathy and J Anders, Contemp. Phys. 57 (2016) 545. 4. F Binder, L A Correa, C Gogolin, J Anders, and G Adesso (Eds.), “Thermodynamics in the Quantum Regime - Fundamental Aspects and New Directions”, Springer, Cham. (2018). 5. S Alipour, F Benatti, F Bakhshinezhad, M Afsary, S Marcantoni, and A T Rezakhani, Sci. Rep. 6 (2016) 35568. 6. T Sagawa and M Ueda, Phys. Rev. Lett. 100 (2008) 080403. 7. L-H Ren and H Fan, Phys. Rev. A 96 (2017) 042304. 8. E Chitambar and G Gour, Rev. Mod. Phys. 91 (2019) 025001. 9. M Horodecki and J Oppenheim, Nature Commun. 4 (2013) 3059. 10. F Brandaõ, M Horodecki, N Ng, J Oppenheim, and S Wehner, Proc. Natl. Acad. Sci. USA 112 (2015) 3275. 11. C H Bennett, Int. J. Theor. Phys. 21 (1982) 905. 12. R Landauer, IBM J. Res. Dev. 5 (1961) 183. 13. D Reeb and M M Wolf, New. J. Phys. 16 (2014) 103011. 14. L del Rio, J Aberg, R Renner, O Dahlsten, and V Vedral, Nature 474 (2011) 61. 15. M Scully, Phys. Rev. Lett. 87 (2001) 220601. 16. Y Guryanova, S Popescu, A J Short, R Silva, and P Skrzypczyk, Nature Commun. 7 (2016) 12049. 17. N Y Halpern, P Faist, J Oppenheim, and A Winter, Nature Commun. 7 (2016) 12051. 18. E T Jaynes, Phys. Rev. 106 (1957) 620. 19. S Popescu, A J Short, and A Winter, Nature Phys. 2 (2006) 754. 20. N Linden, S Popescu, A J Short, and A Winter, Phys. Rev. E 79 (2009) 061103. 21. J Von Neumann, Z. Phys. 57 (1929) 30. 22. S Goldstein, J L Lebowitz, R Tumulka, and N Zanghì, Eur. Phys. J. H 35 (2010) 173. 23. P Asadi, F Bakhshinezhad, and A T Rezakhani, J. Phys. A: Math. Theor. 49 (2015) 055301. 24. M Srednicki, J. Phys. A 32 (1999) 1163. 25. J M Deutsch, Rep. Prog. Phys. 81 (2018) 082001. 26. M Rigol, V Dunjko, and M Olshanii, Nature 452 (2008) 854. 27. C Gogolin and J Eisert, Rep. Prog. Phys. 79 (2016) 056001. 28. V Balzani, M Clemente-Leon, A Credi, B Ferrer, M Venturi, A H Flood, and J F Stoddart, Proc. Natl. Acad. Sci. USA 103 (2006) 1178. 29. J Roßnagel, S T Dawkins, K N Tolazzi, O Abah, E Lutz, F Schmidt-Kaler, and K A Singer, Science 352 (2016) 325. 30. M O Scully, M S Zubairy, G S Agarwal, and H Walther, Science 299 (2003) 862. 31. B Gardas and S Deffner, Phys. Rev. E 92 (2015) 042126. 32. W Niedenzu, V Mukherjee, A Ghosh, A G Kofman, and G Kurizki, Nature Commun. 9 (2018) 165. 33. M S Salehi Kadijani, “An Overview of the Effect of Interaction, Correlation, and Speed of Transmission of Information on the Performance of Quantum Mechanical Machines”, PhD Thesis, Sharif University of Technology (2019). 34. M Perarnau-Llobet, H Wilming, A Riera, R Gallego, and J Eisert, Phys. Rev. Lett. 120 (2018) 120602. 35. M Ramezani, S Marcantoni, F Benatti, R Floreanini, F Petiziol, A T Rezakhani, and M Golshani, Eur. Phys. J. D 73 (2019) 144. 36. H-P Breuer and F Petruccione, “The Theory of Open Quantum Systems”, Oxford University Press, Oxford (2002). 37. I A Martínez, É Roldán, L Dinis, D Petrov, J M R Parrondo, and R A Rica, Nature Phys. 12 (2016) 67. 38. R Alicki, J. Phys. A: Math. Gen. 12 (1979) L103. 39. R Kosloff and A Levy, Annu. Rev. Phys. Chem. 65 (2014) 365. 40. G De Chiara, G Landi, A Hewgill, B Reid, A Ferraro, A J Roncaglia, and M Antezza, New J. Phys. 20 (2018) 113024. 41. M Ramezani, M Golshani, and A T Rezakhani, Phys. Rev. E 97 (2018) 042101. 42. M Ramezani, F Benatti, R Floreanini, S Marcantoni, M Golshani, and A T Rezakhani, Phys. Rev. E 98 (2018) 052104. 43. S Zare, Z Ebadi, and B Mirza, Iranian J. Phys. Res. 9, 2 (2009) 149. URL: http://ijpr.iut.ac.ir/article-1-422-en.html 44. P Talkner, E Lutz, and P Hänggi, Phys. Rev. E 75 (2007) 050102. 45. J P Dowling and G Milburn, arXiv:quant-ph/0206091. 46. J P Pekola and I M Khaymovich, Annu. Rev. Condes. Matter Phys. 10 (2019) 193