نویسندگان

1 پژوهشکده مواد پیشرفته و انرژی‌های نو، سازمان پژوهش‌های علمی و صنعتی ایران، تهران

2 گروه فیزیک، دانشگاه الزهرا، تهران

چکیده

این مقاله به بررسی خواص ساختاری، اپتیکی و آشکارسازی نوری فرابنفش نانومیله‌های روتایل دی‌اکسید تیتانیوم می‌پردازد. آرایه منظم از نانومیله‌های نسبتاً عمود دی‌اکسیدتیتانیوم طی یک مرحله به روش هیدروترمال بر سطح پوشش رسانای شفاف دی‌اکسید قلع آلاییده با فلوئور بر زیرلایه شیشه رشد داده شده‌است. بررسی ریخت‌شناسی و ساختار بلوری به ترتیب بوسیله میکروسکوپ الکترونی روبشی و پراش پرتو ایکس انجام شده است. اندازه‌گیری طیف نورتابی و طیف‌های عبور و انعکاس پخشی دو روش تجربی مورد استفاده برای تخمین انرژی نوار ممنوع نانوساختارها می‌باشند. طیف‌های نورتابی در دمای اتاق، با دو انرژی برانگیختگی 4/13 و 3/82 الکترون ولت اندازه‌گیری شده است. براین اساس انرژی نوار ممنوع نمونه تقریباً برابر 3/04 الکترون ولت می‌باشد و هنگامی مشاهده می‌شود که نمونه با انرژی 4/13 الکترون ولت برانگیخته می‌شود. مقایسه روش‌های موجود گزارش شده برای تعیین انرژی نوار ممنوع با استفاده از طیف‌های عبور و انعکاس پخشی به روش کوبلکا مونک نشان می‌دهد که بیشترین همخوانی با مقدار حاصل از طیف نورتابی هنگامی وجود دارد که از رابطه  F(R)hv]= B(hv-Eg)n] استفاده می‌شود. در پایان عملکرد آشکارسازی نوری فرابنفش نانومیله‌های دی‌اکسید تیتانیوم در ساختار /Au2TiO Au/ تحت تابش nm365 با اندازه‌گیری کمیت‌های ضریب پاسخ، حساسیت، ثابت‌های زمانی افزایش و کاهش جریان ارزیابی و تحلیل شده است.  

کلیدواژه‌ها

عنوان مقاله [English]

Band gap energy determination of TiO2 nanorod array by Kubelka - Munk method and investigation of the UV photodetection of Au/TiO2/Au

نویسندگان [English]

  • M Rajabi 1
  • S simorgh 2

چکیده [English]

This paper studies the structural, optical and ultraviolet photodetection of rutile titanium dioxide nanorods (TiO2). A regular array of relatively vertically aligned TiO2 nanorods has been grown on fluorine doped tin oxide (FTO) coated glass substrate by using one step hydrothermal synthesis method. The morphology and crystal structure were studied by scanning electron microscopy and X- ray diffraction, respectively. Photoluminescence (PL) and diffuse reflectance spectroscopy were used as experimental methods for band gap energy estimation of nanostructures. The room temperature Photoluminescence spectra were measured under two different excitation energies of 4.13 and 3.82 eV. The results indicate the dependence of the PL spectrum to excitation energy. Thus, the band gap energy of nanorods is approximately equal to 3.04 eV and observed in the PL spectrum under 4.13 eV excitation energy. Comparing the applied reported methods for calculating the band gap energy by using diffuse reflectance spectra and Kubelka- Munk method shows that the most relevance to PL data exist with application of  equation. The ultraviolet photodetection performance of TiO2 nanorods in  Au/TiO2/Au device structure under 365 nm illumination is evaluated by determining resposivity, sensivity and rise and decay tims. 

کلیدواژه‌ها [English]

  • titanium dioxide
  • photoluminescence
  • Kubelka- Munk method
  • photodetector

1. V Augugliaro, V Loddo, M Pagliaro, G Palmisano, and L Palmisano, “Clean by light Irradiation: Practical Applications of Supported TiO2” Royal Society of Chemistry Publishing (2010). 2. X Zhang, Z Bao, X Tao, H Sun, Wen Chen, and X Zhou, R. Soc. Chem. Adv. 4 (2014) 64001. 3. H Huang, Y Xie, Z Zhang, F Zhang, Q Xu, and Z Wu, Applied Surface Science 293 (2014) 248. 4. H Wang, P Qin, G Yi, X Zu, L Zhang, W Hong, and X Chen, Materials Chemistry and Physics 194 (2017) 42. 5. D Chen, L Wei, L Meng, D Wang, Y Chen, Y Tian, S Yan, L Mei, and J Jiao, Nanoscale Research Letters 13 (2018) 92. 6. C G Granqvist, “Handbook of Inorganic Electrochromic Materials”, Elsevier Science (1995). 7. S Perkowitz, “Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy”, Academic Press (1993). 8. M A Green, “Solar Cells: Operating Principles, Technology and System Applications”, Prentice-Hall (1982). 9. A B Murphy, Solar Energy Materials & Solar Cells 91, 14 (2007) 1326. 10. R Lopez and R Gomez, J Sol-Gel Sci. Technol. 61 (2012) 1. 11. R Kumari, A Sahai, and N Goswami, Progress in Natural Science: Materials International 25 (2015) 300. 12. A Sanez-Trevizo, P Amezaga-Madrid, P Piza-Ruiz, W Antunez-Flores, and M Miki-Youshida, Materials Research 19 (2016) 33. 13. P Kubelka and F Munk, Zeitschrift für Technische Physik 12 (1931) 593. 14. J I Pankove, “Optical Processes in Semiconfuctors” Dover Publications, New Jersey (2010). 15. A E Morales, E Sanchez Mora, and U Pal, Revista Mexicana De F'Isica S 53, 5 (2007) 18. 16. H Ali, N Ismail, M Mekewi, and A C Hengazy, J. Solid State Electrochem 19 (2015) 3019. 17. A Sahai, Y Kumar, V Agarwal, S F Olive-Mendez, and N Goswami, Journal of Applied Physics 116 (2014) 164315. 18. L Sang, M Liao, and M Sumiya, Sensors 13 (2013) 10482. 19. A Welte, C Waldauf, C Brabec, and P Wellmann, Thin Solid Films 516 (2008) 7256. 20. C Chen, M Ye, M Lv, C Gong, W Guo, and C Lin, Electrochimica Acta 121 (2014) 175. 21. J Nowotny, “Oxide Semiconductor for Solar Energy Conversion Titaniume Dioxide”, CRC Press (2012). 22. S A Sherif, D Yogi Goswami, E K Stefanakos, and A Steinfeld (Eds), “Handbook of Hydrogen Energy”, CRC Press (2014). 23. N Nasiri, D Jin, and A Tricoli, Adv. Optical Mater. 7 (2019) 1800580. 24. Z Wang, H Wang, B Liu, W Qui, J Zhang, S Ran, H Huang, J Xu, H Han, D Chen, and G Shen, American Chemical Society, Nano 5, 10 (2011) 8412. 25. T Y Tsai, S J Chang, W Y Weng, C L Hsu, S H Wang, C J Chiu, T J Hsueh, and S P Chang, Journal of Electrochemical Society 159, 4 (2012) J132. 26. O Guller, E Peksu, and H Karaagac, Phys. Status Solidi A 215 (2018) 1700404. 27. D Chen, L Wei, L Meng, D Wang, Y Chen, Y Tian, S Yan, L Mei, and J Jiao, Journal of Alloys and Compounds 751 (2018) 56. 28. P Deb and J Chandra Dhar, Institute of Electrical and Electronics Photonics Technology Letters 31, 8 (2019) 571. 29. H Huang, L Pan, C K Lim, H Gong, J Guo, M S Tse, and O K Tan, Small 9, 18 (2013) 3153. 30. J Wu, S Lo, K Song, B K Vijayan, W Li, K A Gray, and V P Dravid, J. Mater. Res. 26 (2011) 1646. 31. N Daude, C Gout, and C Jouanin, Physical Review B 15 (1977) 3229. 32. N D Abazovic, M I Comor, M D Dramicanin, D J Jovanovic, S P Ahrenkiel, and J M Nedeljkovic, J. Phys. Chem. B 110 (2006) 25366. 33. Z Y Banyamin, P J Kelly, G West, and J Boardman, Coatings 4 (2014) 732. 34. S Abdullah, A U Moreh, B Hamza, U Sadiya, Z Abdullahi, M A Wara, H Kamaluddeen, M A Kebbe, and U F Monsurat, International Journal of Innovation and Applied Studies 9, 2 (2014) 947. 35. Z Yang, M Wang, X Song, G Yan, Y Ding, and J Bai, J. Mater. Chem. C 2 (2014) 4312. 36. D Caliskan, B Butun, and E Ozbay, J. Vac. Sci. Technol. B 31, 2 (2013) 020606. 37. A M Selman and Z Hassan, Materials Research Bulletin 73 (2016) 29

تحت نظارت وف بومی