Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran

2 Department of Physics, Faculty of Science, Qom University of Technology, Qom, Iran

Abstract

In this work, we investigate the interacting electrons on a square lattice in the presence of Rashba spin-orbit coupling. We first obtain the effective spin model from the Rashba-Hubbard model in the strongly correlated limit using the second perturbation theory. The effective spin model includes isotropic Heisenberg terms, nearest- and next-nearest-neighbor interactions, as well as the anisotropic ones as Kane-Mele and Dzyaloshinski-Moriya interactions. We proceed to study the influence of Rashba spin-orbit coupling on the stability of the magnetic phases of isotropic Heisenberg using Luttinger-Tisza and variational minimization classical methods. Our classical calculations show that the anisotropic terms leads to the instability of the Neel, classical degenerate and collinear phases of the isotropic Heisenberg model on the square lattice into an incommensurate planar phase. The spiral magnetic order in the two-dimensional frustrated magnets can be disordered by considering the quantum fluctuations. In a heterostructure including a noncollinear magnet and a singlet superconductor, singlet Cooper pairs can be converted to triplet pairings due to the broken spin rotational symmetry. Therefore, we can engineer a topological superconductor using noncollinear magnet in a heterostructure system.
 

Keywords

  1. P Fazekas, “Lecture note on electron correlation and magnetism”, London, World Scientific (1999).

  2. L Balents, Nature 464 (2010) 199.

  3. P W Anderson, Science, 235 (1987) 1196.

  4. P A Lee, N Nagaosa, X -G Wen, Rev. Mod. Phys. 78 (2006) 17.

  5. H C Jiang, Z Wang, and L Balents, Nature Phys. 8 (2012) 902.

  6. AY Kitaev, Annals of Phys. 303 (2003) 2.

  7. A Y Kitaev, Annals of Phys. 321 (2006) 2.

  8. M Sasaki, K Hukushima, H Yoshino, and H Takayama, Phys. Rev. Lett. 99 (2007) 137202.

  9. Y Li and et. al., Sci. Rep. 5 (2015) 16419.

  10. Y Singh and P Gegenwart, Phys. Rev. B 82 (2010) 064412.

  11. J A Sears and et. al., Phys. Rev. B 91 (2015) 144420.

  12. A Biffin and et. al., Phys. Rev. B 90 (2014) 205116.

  13. N Reyre and et. al., Science 317 (2007) 1169.

  14. C Chang Tsuei, arXiv:cond-mat/1306.0652.

  15. J M Luttinger and L Tisza, Phys. Rev. B 70 (1946) 954.

  16. D H Lyons, and T A Kaplan, Phys. Rev. 120 (1960) 1580.

  17. B Doucot, D L Kovrizhin, and R Moessner, Annals of Phys. 399 (2018) 239.

  18. O I Utesov, AV Sizanov, and AV Syromyatnikov, Phys. Rev. B 92 (2015) 125110.

  19. R S Keizer, and et al., Nature 439 (2006) 825.

  20. T S Khaire and et. al,. Phys. Rev. Letter. 104 (2010) 137002.

  21. J W A Robinson, J Witt, and M Blamire. Sience. 329 (2010) 59.

  22. A F Volkov, A Anishchanka, and K B Efetov, Phys. Rev. B 73 (2015) 104412.

  23. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4 (2013) 113.

  24. A Greco, and A P Schnyder, Phys. Rev. Letter. 120 (2018) 177002.

  25. R Ghadimi, M Kargarian, and S A Jafari, Phys. Rev. B99 (2019) 115122.

  26. X Lu, and D Senechal, Phys. Rev. B98 (2018) 245118.


A Greco, M Bejas, and A P Schnyder, arXiv:cond-mat/1910.14621.

تحت نظارت وف ایرانی