Document Type : Original Article


1 1. Department of Physics, Faculty of Science, Fasa University, Fasa, Iran

2 2. Department of Photonics, Faculty of Sciences and New Technologies, Graduate University of Advanced Technology, Kerman, Iran


One of the long-term objectives in the development of high gain free electron lasers (FEL) is to reduce the necessary electron beam voltage for a strong FEL interaction at a given frequency. FEL oscillators (FELOs) play the main role to this end. In this paper, the simulation of one dimensional FELO with planar wiggler is done at the applicable Tera-hertz regime. The effect of pre-bunched electron beam on the gain improvement or on the laser length is investigated. To study the evolution of system, a set of self-consistent nonlinear differential equations are solved numerically by the Runge-Kutta method and the averaging of electron beam is done by the Simpson method.


  1. 1.   P Emma, et al. Nat. Photonics 4 (2010) 641.

    T Ishikawa, et al., Nat. Photonics6 (2012) 540.

    1. K J Kim, Phys. Rev. Lett. 57 (1986) 1871.

    4. A Raghavi, H Shfeghat, and M Benam, Iran. J. Phys. Res.19, 3 (2019) 545.

    1. L H Yu, Phys. Rev. A 44 (1991) 5178.
    2. K J Kim, Y Shvyd’ko, and S Reiche, Phys. Rev. Lett. 100 (2008) 244802.
    3. C Feng, H Deng, D Wang, and Z Zhao, New J. Phys. 16 (2014) 043021.
    4. J Amann, et al., Nat. Photonics 6 (2012) 693.
    5. G Geloni, V Kocharyan, and E Saldin,J. Mod. Opt. 58 (2011) 1391.
    6. D A G Deacon, L R Elias, J M J Madey, G J Ramian, H A Schwettman, and T I Smith, Phys. Rev. Lett. 38 (1977) 892.
    7. P G O’SHEA, “2nd ICFA Advanced Accelerator Workshop on the Physics of High Brightness Beam”, Los Angeles (2000) 17.
    8. M Q Song, Q M Zhang, Y H Guo, K Li, and H X Deng, Chin. Phys. C 40 (2016) 048101.
    9. D Oepts, A Van der Meer, and P Van Amersfoort,Infrared Phys. Technol. 36(1995) 297.
    10. J Yan, H Hao, J Li, S Mikhailov, V Popov, N Vinokurov, S Huang, J Wu, S Günster, and Y Wu, Phys.Rev. Accel. Beams 19 (2016) 070701.
    11. B Qin, P Tan, L Yang, and X L Liu, Nuc. Instrum. Method. Phys. Res. Sect. A 727 (2013) 90.

    16. M Akbari Alashti and T Mohsenpour, Iran. J. Phys. Res.18, 2 (2018) 301.

    1. H T Li, Q K Jia, S C Zhang, L Wang, and Y L Yang, Chin. Phys. C 41 (2016) 0181.
    2.  V Kulish, A V Lysenko, I I Volk, and O Rybalko, “41st International Conference on IRMMW-THz”, Denmark (2016) 1.
    3. M Shiho, A Watanabe, T Koarai, S Maebara, H Ishizuka, K Takayama, J Kishiro, K Horioka, M Ogawa, and S Kawasaki, Nuc. Instrum. Method. Phys. Res. Sect. A 393 (1997) 289.
    4. V Beniwal, S C Sharma, and M K Sharma, Phys. Plasmas 11 (2004) 5716.
    5. H P Freund, P G O’Sheab, and J. Neumann, J. Nuc. Instrum. Method. Phys. Res. Sect. A 507 (2003) 400.
    6. A Bhasina and S C Sharma, Phys. Plasmas 14 (2007) 073102.
    7. C Leibovitch, K Xu, and G Bekefi, IEEE J. QuantumElectron. 24 (1988) 1825.
    8. J S Wurtele, G Bekefi, R Chu, and K Xu, Phys. Fluids B 2 (1990) 401.
    9. I V Konoplev and A D R Phelps, Phys. Plasmas 7 (2000) 4280.
    10. G Stupakov, Phys. Rev. Lett. 102 (2009) 074801.
    11. F Bazouband and B Maraghechi Phys. Plasmas 19 (2012) 113106
    12. H P. Freund and T M Antonsen, “Principles of Free-Electron Lasers”, Chapman and Hall (1992) Ch. 5.


تحت نظارت وف بومی