نوع مقاله : مقاله پژوهشی
نویسندگان
گروه فیزیک، دانشکدة علوم پایه، دانشگاه کردستان، سنندج
چکیده
اخیراً تکنیک میکروسکوپی تولید هماهنگ دوم حساس به قطبش (pSHG) به دلیل داشتن مزایایی همچون تفکیکپذیری ذاتی بالا، ایجاد تباین ذاتی، عدم آسیب رسانی به نمونه و قابلیت عکسبرداری از عمقهای زیاد در نمونه به ابزار توانمندی برای مطالعه و بررسی ساختارهای زیستی فاقد مرکز تقارن تبدیل شده است. یکی از معایب تکنیک pSHG این است که فرایند عکسبرداری در آن، برای مطالعة بافتهای زنده و یا بررسی دینامیک بافت به اندازة کافی سریع نیست و این موضوع امکان مطالعة بافتهای زنده را با محدودیتهایی مواجه میکند. خوشبختانه اخیراً تکنیک میکروسکوپی تولید هماهنگ دوم حساس به قطبش تک اسکن (SS-pSHG) به عنوان جایگزین سریعی برای تکنیک pSHG معرفی شده است. در این مقاله نتایج حاصل از تکنیکهای میکروسکوپی pSHG و SS-pSHG در راستای عبوری روی نمونههای استخراج شدة نشاسته، قرنیة انسان و زردپی حیوان به صورت پیکسل به پیکسل با هم مقایسه شدهاند. با وجود این که نمونههای استفاده شده در این پژوهش زنده نیستند، همخوانی نتایج نویدبخش پتانسیل بالای تکنیکهای تولید هماهنگ دوم حساس به قطبش برای مطالعة نمونههای زیستی بدون آسیب رسانی به آنها است، که این امر به ویژه در حالتی که نمونههای مورد مطالعه موجودات زنده باشند، اهمیت بالایی دارد.
کلیدواژهها
عنوان مقاله [English]
Comparison of polarization sensitive second harmonic generation microscopy techniques for the study of biological tissues
نویسندگان [English]
- M Alizadeh
- M Ghotbi
Department of Physics, University of Kurdistan, Sanandaj, Iran
چکیده [English]
Recently, polarization sensitive Second Harmonic Generation (pSHG) microscopy has become a powerful tool for the study of the noncenterosymmetric biological structures. This is due to the fact that pSHG has some intrinsically benefits such as high resolution and contrast, and it can also penetrate deeply inside the sample in a noninvasive manner. One drawback for the pSHG technique is that the imaging procedure is not fast enough to study in vivo samples or to monitor the dynamics of different tissues. This issue imposes some limitations on using the pSHG technique to study in vivo samples. Fortunately, recently Single Scan polarization sensitive Second Harmonic Generation (SS-pSHG) technique has been introduced as a fast alternative for the conventional pSHG technique. In this article, the results obtained from ex vivo biological samples of starch, human cornea and animal tendon have been compared in a pixel-to-pixel manner using pSHG and SS-pSHG techniques in forward direction. Even though the samples used here are ex vivo, the results of this study promise that the polarization sensitive SHG microscopy techniques have a great potential to study biological tissues in a noninvasive procedure. This issue is more important especially in the cases that samples are in vivo.
کلیدواژهها [English]
- medical and biological imaging
- nonlinear microscopy
- polarization
- second harmonic generation
- tissue
- W R Zipfel, R M Williams, and W W Webb, Nature Biotechnology 2, 1(2003) 1369.
- S W Chu, S Y Chen, G W Chern, T H. Tsai, Y C Chen, B L Lin, and C K Sun, Biophysical journal 86 (2004) 3914.
- S Psilodimitrakopoulos, S I Santos, I Amat-Roldan, A K Thayil, D Artigas, and P Loza-Alvarez, Journal of biomedical optics 14 (2008) 014001.
- S V Plotnikov, A C Millard, P J Campagnola, and W A. Mohler, Biophysical Journal 90 (2006) 693.
- S Psilodimitrakopoulos, I Amat-Roldan, P Loza-Alvarez, and D Artigas, Biomedical Optics Express 3 (2012) 2681.
- I Amat-Roldan, S Psilodimitrakopoulos, P Loza-Alvarez, and D Artigas, Optics express 18 (2010) 17209.
- S Psilodimitrakopoulos, V Petegnief, N de Vera, O Hernandez, D Artigas, A M Planas, and P Loza-Alvarez, Biophysical Journal 104 (2013) 968.
- M Alizadeh, D Merino, G Lombardo, M Lombardo, R Mencucci, M Ghotbi, and P Loza-Alvarez, Biomedical Optics Express 10 (2019) 3875.
- M Lombardo, D Merino, P Loza-Alvarez, and G Lombardo, Biomedical Optics Express 6 (2015) 2803.
10. S Psilodimitrakopoulos, I Amat-Roldan, P Loza-Alvarez, and D Artigas, Journal of Optics 12 (2010) 084007.
11. M Alizadeh, M Ghotbi, P Loza-Alvarez, and D Merino, Methods and Protocols 2 (2019) 49.
12. S Psilodimitrakopoulos, P Loza-Alvarez, and D Artigas, Biomedical optics express 5 (2014) 4362.
13. X Chen, O Nadiarynkh, S Plotnikov, and P J Campagnola, Nature Protocols 7 (2012) 654.
14. N Mazumder, J Qiu, M R Foreman, C M Romero, P Török, and F J Kao, Biomedical Optics Express 4 (2013) 538.
15. F Tiaho, G Recher, and D Rouède, Optics express 15 (2007) 12286.
16. S Psilodimitrakopoulos, D Artigas, G Soria, I Amat-Roldan, A M Planas, and P Loza-Alvarez, Optics express 17 (2009) 10168.
17. S Psilodimitrakopoulos, V Petegnief, G Soria, I Amat-Roldan, D Artigas, A M Planas, and P Loza-Alvarez, Optics express 17 (2009) 14418.
18. F S Pavone, P J Campagnola, and P J Campagnola, Second Harmonic Generation Imaging, CRC Press, (2016).
19. S W Chu, I H Chen, T M Liu, C K Sun, S P Lee, B L Lin, P C Cheng, M X Kuo, D J Lin, and H L Liu, J Microsc 208 (2002) 190.
20. G Cox, N Moreno, and J Feijó, Journal of Biomedical Optics 10 (2005) 024013.
21. G Mizutani, Y Sonoda, H Sano, M Sakamoto, T Takahashi, and S Ushioda, Journal of Luminescence 87–89 (2000) 824.
22. R Cisek, L Spencer, N Prent, D Zigmantas, G S Espie, and V Barzda, Photosynthesis Research 102 (2009) 111.
23. Z Y Zhuo, C S Liao, C H Huang, J Y Yu, Y Y Tzeng, W Lo, C Y Dong, H C Chui, Y C Huang, and H M Lai, Journal of Structural Biology 171 (2010) 88.
24. K M Meek and C Knupp, Progress in Retinal and Eye Research 49 (2015) 1.
25. D M Maurice, The Journal of Physiology 136 (1957) 263.
26. S Brasselet, Adv. Opt. Photon. 3 (2011) 205.
27. J M Bueno, E J Gualda, and P Artal, J Biomed. Opt. 15 (2010) 066004.
28. G J Van Blokland and S C Verhelst, J. Opt. Soc. Am. A 4 (1987) 82.
29. O del Barco and J M Bueno, J. Biomed. Opt. 17 (2012) 045005.
30. M Strupler, A M Pena, M Hernest, P L Tharaux, J L Martin, E Beaurepaire, and M C Schanne-Klein, Opt. Express 15 (2007) 4054.
31. M Yildirim, K P Quinn, J B Kobler, S M Zeitels, I Georgakoudi, and A Ben-Yakar, Scanning 38 (2016) 684.