نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک و علوم مواد، دانشگاه ایالتی کوارا، مالت، نیجریه

چکیده

محاسبه واپاشی آلفای نیم‌عمر ایزوتوپ‌های Pt۱۶۶-۱۹۰ با استفاده از مدل گاموف- گونه (MGLM) و مدل پتانسیل وودز- ساکسون انجام شد. برای مشاهده اثر پتانسیل هسته‌ای تغییر یافته بر نیم‌عمرهای واپاشی-  ایزوتوپ‌های پلاتین، پتانسیل وودز- ساکسون نیز به کار برده شد. با مقایسه با داده‌های تجربی، همه این مدل‌ها توصیف بسیار خوبی از نیمه ‌عمرهای تجربی به دست می‌دهند.این مقایسه همچنین پیشنهاد می‌کند که نیم‌ عمرهای محاسبه شده با در نظر گرفتن دگرگونی نسبت به نتایح به دست آمده با پیکربندی کروی، تطابق بهتری با داده‌های تجربی نشان می‌دهد. مقادیر کمیت جدید به دست آمده با مدل MGLM (نشان داده شده با MGLM2) به دست آمده است. مدل MGLM2 توصیف بهتری از نیم ‌عمرها در مقایسه با MGML1 نشان می‌دهد

کلیدواژه‌ها

عنوان مقاله [English]

Theoretical calculations of the alpha decay half-lives of 166−190Pt

نویسنده [English]

  • W A Yahya

Department of Physics and Materials Science, Kwara State University, Malete, Nigeria

چکیده [English]

Calculations of the α-decay half-lives of Pt isotopes have been carried out using the modified Gamow-like model (MGLM) and deformed Woods-Saxon potential model. In order to see the effect of using deformed nuclear potential on the α-decay half-lives of the Platinum isotopes, the spherical Woods-Saxon potential has also been employed in the computation. When compared with experimental data, all the models
give very good descriptions of the experimental half-lives. The comparison also suggests that the calculated half-lives considering deformation give better agreement with the experimental data than the results using spherical configuration. New parameter values were obtained for the MGLM model (termed MGLM2). The MGLM2 model gives better descriptions of the half-lives than the MGLM1 model.

کلیدواژه‌ها [English]

  • spontaneous nucleation method
  • KTP crystals
  • energy gap
  • transmission spectrum
  • flux method
  1. E Shin, Y Lim, C H Hyun, and Y Oh, Physical Review C 94 (2016) 024320.
  2. A Zdeb, M Warda, and K Pomorski, Physical Review C 87 (2013) 024308.
  3. J-H Cheng et al., Nuclear Physics A 987 (2019) 350.
  4. K P Santhosh, D T Akrawy, H Hassanabadi, A H Ahmed, and T A Jose, Physical Review C 101 (2020) 064610.
  5. N A M Alsaif, S Radiman, and S M S Ahmed, International Journal of Modern Physics E 26 (2017) 1750008.
  6. J-G Deng, J-C Zhao, P-C Chu, and X-H Li, Physical Review C 97 (2018) 044322.
  7. S M S Ahmed, R Yahaya, and S Radiman, Romanian Reports in Physics 65 (2013) 1281.
  8. D Deng, Z Ren, D Ni, and Y Qian, Journal of Physics G: Nuclear and Particle Physics 42 (2015) 075106.
  9. S M S Ahmed, R Yahaya, S Radiman, and M S Yasir, Journal of Physics G: Nuclear and Particle Physics 40 (2013) 065105.
  10. D Deng and Z Ren, Physical Review C 93 (2016) 044326.
  11. S M S Ahmed, Nuclear Physics A 962 (2017) 103.
  12. G Royer and R Moustabchir, Nuclear Physics A 683 (2001) 182.
  13. B Xiaojun, H Zhang, H Zhang, G Royer, and J Li, Nuclear Physics A 921 (2014) 85.
  14. G Royer and H F Zhang, Physical Review C 77 (2008) 037602.
  15. K P Santhosh, C Nithya, H Hassanabadi, and D T Akrawy, Physical Review C 98 (2018) 024625.
  16. K P Santhosh and T A Jose, Nuclear Physics A 992 (2019) 121626.
  17. Y J Wang, H F Zhang, W Zuo, and J Q Li, Chinese Physics Letter 27 (2010) 062103.
  18. J P Cui, Y L Zhang, S Zhang, and Y Z Wang, Physical Review C 97 (2018) 014316.
  19. R K Gupta and W Greiner, International Journal of Modern Physics E 3 (1994) 335.
  20. B B Singh, S K Patra, and R K Gupta, Physical Review C 82 (2010) 014607.
  21. C Qi et al., Physical Review C 80 (2009) 044326.
  22. C Qi, F R Xu, R J Liotta, and R Wyss, Physical Review Letters 103 (2009) 072501.
  23. M Horoi, Journal of Physics G: Nuclear and Particle Physics 30 (2004) .
  24. G Royer, Journal of Physics G: Nuclear and Particle Physics 26 (2000) 1149.
  25. G Royer, Nuclear Physics A 848 (2010) 279.
  26. G Royer, C Schreiber, and H Saulnier, International Journal of Modern Physics E 20 (2011) 1030.
  27. D T Akrawy and A H Ahmed, International Journal of Modern Physics E 27 (2018) 1850068.
  28. Ren, C. Xu, and Z. Wang, Physical Review C 70, 034304 (2004).
  29. D T Akrawy, H Hassanabadi, Y Qian, and K P Santhosh, Nuclear Physics A 983 (2019) 310.
  30. V Viola and G Seaborg, Journal of Inorganic and Nuclear Chemistry 28 (1966) 741.
  31. W A Yahya, Journal of the Nigerian Society of Physical Sciences 2 (2020) 250.
  32. N Ashok and A Joseph, International Journal of Modern Physics E 27 (2018) 1850098.
  33. O A P Tavares and E L Medeiros, Physica Scripta 84 (2011) 045202.
  34. S S Hosseini, H Hassanabadi, and H Sobhani, International Journal of Modern Physics E 26 (2017) 1750069.
  35. M Pahlavani and S Rahimi Shamami, Chinese Journal of Physics 66 (2020) 733.
  36. J Dudek and T Werner, Phys. G: Nucl. Part. Phys. 4 (1986) 1543.
  37. F Saidi, M R Oudih, M Fellah, and N H Allal, Phys. Lett. A 30 (2015) 1550150.
  38. N Wang and W Scheid, Rev. C 78 (2008) 014607.
  39. S K Arun, R K Gupta, B B Singh, S Kanwar, and M K Sharma, Rev. C 79 (2009) 064616.
  40. G Sawhney, M K Sharma, and R K Gupta, Rev. C 83 (2011) 064610.
  41. V Y Denisov and A A Khudenko, Rev. C 80 (2009) 034603.
  42. G Audi, F G Kondev, M Wang, W Huang, and S Naimi, Chinese Physics C 41 (2017) 030001.
  43. M Wang et al., Chinese Physics C 41 (2017) 030003.
  44. W J Huang et al., Chinese Physics C 41 (2017) 030002.
  45. K Santhosh, I Sukumaran, and B Priyanka, Nuclear Physics A 935 (2015) 28.
  46. V Y Denisov and H Ikezoe, Physical Review C 72 (2005) 064613.
  47. K N Huang, M Aoyagi, M H Chen, B Crasemann, and H Mark, Atomic Data and Nuclear Data Tables 18 (1976) 243.
  48. C Qi, D Delion, R Liotta, and R Wyss, Physical Review C 92 (2015) 014602.
  49. V Denisov, O Davidovskaya, and I Sedykh, Physical Review C 85 (2012) 011303.