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Abstract 
On one hand a two-level atom is utilized as a qubit in quantum information technology and on the other hand the light in quantum 
optics is usually in the squeezed state. These reasons motivated us to explore the dynamic of a two-level atom which is driven by a 
field in the squeezed state. To this goal, the atom operators and the Heisenberg-Langevin equation have been employed. The master 
equation which reveals the dynamic of the atom has been derived using some features of the squeezed state and doing some algebra. 
Finally, the dynamic of the two-level atom which is driven by squeezed state field has been simulated by the derived master 
equation. Also, the effect of atom parameters on the dynamic has been investigated. 
 
Keywords: master equation, two-level atom, squeezed state, SLH framework 

 
1. Introduction  
In recent years, developing quantum technology makes 
researchers and scientists pay more attention to the 
control of quantum systems. The ability of not only 
observing but also manipulating quantum physical 
processes would be a demand result of the quantum 
control [1]. Because of non-classical characteristics of 
quantum regime, modeling and control of quantum 
systems are more challenging. A comprehensive model, 
which describes the dynamic of the system under control 
and its interactions with the environment, is a 
preliminary to control theory. The modeling of a 
quantum system interacting with the environment is 
discussed in the open quantum system framework [2]. 
However, the interaction of a quantum system with 
different fields, which are considered as the 
environment, has been investigated, including field in 
vacuum [3, 4], Gaussian [5], single-photon, and 
superposition of coherent states [3, 6].  

Technology has been developed in decades on the 
basis of binary numeral system which has just two states 
zero and one. The basic unit of information in the binary 
systems is called bit. In quantum technology, a quantum 
bit (Qubit) has been seen as an analogy for the bit. A 
Qubit, like spin of electron, has two base states which 

can play the role of information carrier [7, 8]. So, a two-
level quantum system is a fundamental component to 
develop quantum technologies such as quantum 
computers and its interaction with different fields is 
interested. 

The pure state of a quantum system is denoted by the 
ket | ψ  in the corresponding Hilbert space  . Yet, a 

generalized state is represented by the density matrix ρ  

which in the pure case is | | ρ ψ ψ . Here |ψ  is 
†| |  ψ ψ . Any physical measurement of the system is 

expressed by acting a Hermitian operator X  on the 
system state as tr[ ]ρX  where tr  denotes the trace. The 

quantum expectation of time evolution of a quantum 
system is given by a differential equation, which is 
named the master equation (ME), for the ρ  or operator 

X . The former and the later representations have been 
called the Schrodinger and the Heisenberg picture, 
respectively [9]. The behavior of a two-level atom which 
is driven by the superposition of coherent state, single 
photon, and vacuum state have been studied by utilizing 
the master equation [10]. 

The light in the quantum optics is frequently 
considered as a field in the squeezed state [11]. Also, the 

 



152 A Daeichian, H Bagheri, and M Mirzaee IJPR Vol. 21, No. 3 
 

 

Figure 1. Vacuum state, coherent state, and squeezed states of light. 
 
squeezed state not only plays a significant role in 
quantum noise theory [12] but also is using in the 
detection of gravitational waves [13]. The squeezed field 
has been employed as a control source in [14]. Also, the 
filtering of a quantum system driven by filed in a 
squeezed state has been derived in [15]. The inversion of 
an atom initially in the ground state is given by 
Cummings in [16]. The squeezed state is considered a 
superposition of number states which are weighted 
according to a distribution. A vector representation of 
the Cumming’s solution is represented in [17], where the 
interaction of a two-level atom with squeezed light has 
been investigated. Also, the collapse time dependence on 
the direction of squeezing has been discussed. How the 
presence of a single two-level atom inside an oscillator 
affects the degree of squeezing of the light has been 
studied in [18]. 

This paper concerns the dynamic of a two-level atom 
driven by the field in squeezed state. The interaction has 
been studied in the SLH representation. Thus, first, the 
Pauli matrices have been selected as the operators of the 
two-level atom. Second, the Heisenberg-Langevin 
equation has been employed to derive the ME by 
quantum expectation over the field. Some simplification 
has been done by using the characteristics of squeezed 
state to finally derive the master equation for a two-level 
quantum system which is driven by the squeezed state 
field. At the end, the behavior of the atom under 
foregoing circumstances has been simulated and the 
effect of parameters has been discussed. 
After this brief introduction, section II represents the 
squeezed field and its features. Time evolution of a 
quantum system and the Heisenberg-Langevin equation 
are introduced in section III. The fourth one is devoted to 
derive the ME for the two-level atom driven by light in 
the squeezed state. Simulating the derived ME and 
investigating the effect of different parameters on the 
dynamic of the system are given in V. At the end, the 
paper is concluded in VI. 
 
2. Squeezed state field 
The area where fundamental physical processes occur at 
the absolute zero temperature and there is no matter in it, 
is called the quantum vacuum, Any noise or movement 
is not expected in the vacuum state but some fluctuations 
can be seen, which is one of the features of the quantum 
vacuum state nature [19]. Interestingly, the noise of 
electric field for the light in squeezed state is lower than 
the vacuum state at the certain phases. That is to say 
when the squeezed light is turned on, we see less noise 
than no light. This paradoxical feature of light cannot be 

explained by classical rules and is the quantum nature of 
light [20].  

A squeezed field is a photon that one of its canonical 
observables has less uncertainty than the other. The 
uncertainty in the measurement of an observable X  is 
the mean variance ΔX . Assuming the state of light is 
represented by the end point of a complex phasors, then 
a classical light is a point in the complex plane. But, 
respecting the Heisenberg’s Uncertainty Principle in 
quantum optics, there is a quantum uncertainty where 
any measurement of the light field delivers different 
values within an uncertainty region. Figure.1 shows 
different squeezed lights.  

If | ψ  be an eigenstate of X , i.e., | |  X ψ x ψ , 

then the mean variance is zero. But, two non-commuting 
observables X  and Y  that  ,   X Y XY YX iZ  do 

not have any common eigenstate. As a result, they 
cannot be determined precisely according to uncertainty 
principle [21]: 

1
| |

2
    X  Y Z  (1) 

Apparently, ΔX  and ΔY  are not required to be equal. If 

1
| |

2
   X Z , the state | ψ  is called squeezed with 

respect to the observable X . It worth to note that the 
squeezing is not possible without increasing of 
fluctuations in the conjugate observable. The squeezed 
states of light are yielded in non-linear processes in a 
classical electromagnetic field impelled forward in non-
linear environment. The productive Hamiltonian for a 
nonlinear optical process would be [21]: 

† 2 2( ) ,  *H a a   (2) 

where   is the amplitude of classical electromagnetic 

field. a  and †a  are the annihilation and creation 

operators satisfy † †[ , ] ;[ , ] 0;[ , ] 0  a a I  a  I  a  I . The 

operator H  explains how the frequency of input field is 
converted to the half of the driving harmonic [21]. 
Defining the squeezing parameter / ,  ξ i t  the time 
evolution of the single-mode radiation 

  exp( / )  U t iHt , can be written as [20, 21]: 

 
 2† 2

exp ,
2 2

 
 

  
 
 

*
a a

S ξ ξ ξ  (3) 

Generally,  iξ re  where   is a real number and 

 ln .r R  0R  is named the squeezing factor. Thus, 
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considering that the electromagnetic mode is initially in 
the vacuum state  | ( ) | 0ξ t S t , which is commonly 

known as the squeezed vacuum state. This state could be 
expressed in the Fock basis as [21]: 

 
 

  2
0

2 !1
| tanh | 2 ,

cosh 2 !

i
n

n

n
ξ e r n

r n





   (4) 

where | n  is the eigenstate of number operator 
†N a a . 

The Bogoliubov transformation on the operators   and 
†a  give the annihilation operator b  [21]: 

       
     

† †

† † † †
cosh sinh ,

cosh sinh( )



 
  
 

i

i
b S ξ aS ξ a r a e r

b S ξ a S ξ a r ae r
 (5) 

The eigen-decomposition of the annihilation operator b  
results in eigenstate and eigenvalues as the squeezed 
vacuum state | ξ  and zero, respectively. That is to say, 

the squeezed vacuum state of the operator a  is 
equivalent to the ground state of the transformed 

oscillator b . It worth to note that defining †  n a a  

and 2  m a  for a quantum Gaussian states, we have 
2| | ( 1) m n n  [22]. The vacuum state is specified by 

the choice 0n  and 0m . 
 
3. System evolution 
In the SLH method, any quantum component has been 
explained by ( , , )G S L H  which displays the 

interaction of the internal degrees of freedom with the 
input field. H  is the Hamiltonian, L  represents how the 
system is coupled with the external field, and S  
indicates the scattering of the input/output channels. The 
time evolution of such system is given by a quantum 
stochastic differential equation (QSDE), which is known 
as Hudson-Parthasarathy equation, as [12, 15]: 

   
 

 
†

† Λ

      
    

iH K dt LdA
dU t U t

L SdA S I d
 (6) 

With (0) U I , where the operator K  is given by 

 
† † † † † 2

2† †
1 ( )

.
2

      

dAdA L L dA dALL dAdA L
K

dA dA L
 (7) 

The scattering process ( )dΛ t  is an increment in the 

field’s number operator. ( )dA t  and † ( )dA t , the 

annihilation and creation processes, have been defined as 
the increments of time-integrated quantities of the input 
field 

    † †, ( ) ( )
t dt t dt

t t

dA t a s ds   dA t a s ds,
 

    (8) 

which satisfy    †, ( )     
dA t dA t δ t t dtˊ ˊ  where δ  is 

the Kronecker function. We note that operators ( )a t  and 
† ( )a t  are the annihilation and creation operators of the 

input field which satisfy      †, .     
a t a t δ t tˊ ˊ  

Considering the quantum Ito table for squeezed field 
as 

 † †

† † †
1 , ,

, ,

  
 

dAdA n dt       dA dA ndt

dAdA mdt                dA dA m dt
 (9) 

then, the operator K  in Eq. (6) becomes 

   2† † † † 21
1 .

2

 
     

 
sqK n L L nLL m L m L  Also, 

considering a squeezed state which has no scattering, 
that is to say the squeezed field radiates totally to the 
system and do not scatter to the bath ( S I ), we have 

    † †{ } ( )    sqdU t iH K dt LdA L dA U t  [15]. 

Considering the joint system field  state, the time 

evolution for a given system operator X  is 

      † . tj X U t X I U t   Applying the Ito 

differentiating rule, 

    ( ) ( )( )  d AB dA B A dB dA dB , using the Ito table 

(9), and doing some simplification leads to: 

    
    † †

,

, , ,

  
    

t t

t t

dj X j i X H X dt

j X L dA j L X dA


 (10) 

where  

    
 

      

† †
† †

† †

† † † †

, ,1
, ,

2 2 , ,

, , , , .
2 2

                

         

*

L X L L X Ln
X L X L L X L

L X L L X L

m m
L X L L X L L X L L X L



Now, the dynamic of the observation X  could be 
written down by tracing (Expectation E) over the field 
on eq. (10). For Gaussian states inputs we have 

  ( )dA α t dtE . So, the master equation would be 

    
 

        

 

 

   

† †

†

† †

† †

† †

,
1 1

, ,
2 2

, ,

, ,
2 2

, ,
2 2

, ,
2 2

,
2 2

  
       

     
             
             
          
      
      

 t t

t

*
t t

t t

t t

* *

t t

t t

X i X H

L X L   L X L

X L α t L X α t

n n
L X L L X L

n n
L X L L X L

m m
L X L L X L

m m
L X L L† †, .

     
X L

 (10) 

where ( )t X  denotes the average of an observable X  

of the system at time t . 
 
4. Tow-level atom driven by squeezed state: master 
equation 
The SLH model of a two-level atom is [10]:  

( , , ),
2 z
ω

G I γσ σ  (11) 
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Figure 2. A two-level atom driven by squeezed light. 
 

 

Figure 3. Average time evolution of the atom. 
 

where 
1

( )
2  x yσ σ iσ  and , ,x y zσ  are the Pauli 

matrices. The excited | e  and the ground | g  states are 

two base states of a two-level quantum system. Assume 
an atom is driven by the field in the squeezed state, see 
figure.2. The dynamic of the atom in this situation can be 
investigated by deriving the master equations for the xσ , 

yσ , and zσ  operators as follow. 

Assume a two-level atom represented in SLH 
framework by Eq. (12) which is driven by the field in the 
squeezed state. Then, the dynamic of the atom is: 

          
     

        

   

        
      
    

0.5 1 2

0.5 2 ,

1
2 ,

2

2 1 .

       

    

   

      
 

    

  

   







* *
t x t z

*
t x t y

*
t y t z

t y t x

*
t z t x

*
t y

t z t z

σ γ α t α t σ γ n m m

σ γm γm ω σ

σ  i γ α t α t σ

γ n σ ω σ

σ γ α t α t σ

i γ α t α t σ  

γn σ γ σ

 (12) 
These equations can be derived by substituting the system 
parameters eq. (12) and the Pauli matrix xσ , yσ , and zσ  

into (11). For instance, considering xσ  results in 

   

     
         

     
     

  
     

2

, ,
2 2

, ,

, ,
2 2

, ,
2 2

, ([ , ] )
2 2

, ,
2 2

   

 

   

   

   

   

    

   

   

   

   

   

   

 t x t x z z x

t x t x

*
t x t x

t x t x

t x t x

* *

t x t x

t x t x

ω
   σ i σ σ σ σ

γ γ
σ σ σ σ σ σ

γα t σ σ γα t σ σ
γn γn

σ σ σ σ σ σ

γn γn
  σ σ σ σ σ σ

γm γm
σ σ σ σ σ σ

γm γm
σ σ σ σ σ σ

 (13) 

The operators can be represented in the base states as 

 | | , | | ,
| | , , . 

   
   

z y

x

σ ee gg  σ i ge eg
 σ ge eg  σ ge  σ eg

 

Substituting these values into eq.(14) and doing some 
simple algebra using | | 1     e e g g  and 

| | 0     e g g e  results in eq.(13). The equations of yσ  

and zσ  can be derived in the same way as xσ . 

 
5. Simulation results 
Let 1, 0.5, 2, 1.   ω  γ  n  m  Assuming that the atom 

is initially in the excited state, that is to say 0xσ , 

0yσ  and 1zσ . In addition, three fictitious field 

shapes have been considered: 

        1 1 5    tα t e u t u t  (14) 

     1 7   α t u t u t  (14) 

   
    

3cos 2 2 2cos 1
2

1 10

         
  

  

π
α t t π t

u t u t
 (15) 

The behavior of two-level atom has been depicted in 
figure.3-(a), (b), and (c) by simulating the ME (13) in 
time interval 0 to 15 considering field shapes as Eqs. 
(15), (16), and (17), respectively. It can be seen that the 
atom dissipates its energy and goes from the excited 
state to the ground state. At the time interval that the 
input field radiates to the atom ([1-5], [1-7]), and [1, 10] 
for (15), (16), and (17), respectively) the reduction rate 
varies which make sense due to absorbing energy from 
the field. It can be seen in Figure.3-(a) that the 
dissipation rate decreases when the field radiates to the 
atom. Figure.3-(b) shows that the atom converges to a 
steady value as a steady field emitted to the atom.  
Furthermore, where the field has a sinusoidal form in 
Figure.3-(c), the atom state has some fluctuations which 
is the behavior that has also been seen in [17]. The state 
has been shown in Bloch sphere in Figure. (4) as well.  

In order to reveal the effect of   on the behavior of 
the atom, the ME has been simulated for different values  
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Figure 4. The atom state in Bloch sphere. 
 

 

Figure 5. State trajectories for 0.5γ  and different values of ω . (a) xσ ; (b) zσ ; (c) in Bloch sphere. 

 

 

Figure 6. State trajectories for ω = 1 and different values of γ . (a) xσ ; (b) zσ ; (c) in Bloch sphere. 

 
of ω  considering 0.5γ  and the field shape of Eq. 

(16). The results have been shown in Figure. 5. The 
variation of ω  has no significant effect on the zσ  

(Figure.5-(b)) but increases the oscillation frequency of 

xσ  and yσ  (Figure.5-(a)). This means that the state 

rotates faster in a smaller area, which is shown in Figure. 
5- (c), yet the rate of energy dissipation does not change. 

The effect of γ  on the behavior of the atom is 

explored by plotting the ME for 1ω  and different 
values of γ . The results which have been plotted in 

Figure. 6 show that the higher the coupling γ , the faster 

the dissipation to the ground state which can be seen in 
Figure.6-(b). The faster movement of the trajectories 
which are depicted in Figure.6-(c) confirms this effect. 
Also, it 

demonstrates that the atom absorbs energy from the field 
in time interval 1t     to 7 which the squeezed field 
radiates to the atom. Figure.6-(a) shows that the change 
of γ  has no meaningful effect on xσ  or yσ . 

 
6. Conclusion 
The behavior of a two-level atom which is driven by 
field in squeezed state was explored in this paper. The 
ME of the Pauli matrices (as atom’s operators), which 
represent the dynamic of the atom, was derived. The 
simulation of the derived ME showed that the atom 
dissipates its energy into the bath while absorbing energy 
when the squeezed field radiates to it. In addition, the 
coupling constant γ  determines the rate of dissipation 

and absorption. 
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