نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک دانشگاه صنعتی شیراز، شیراز ‏

چکیده

در این مطالعه، مسیر حرکت نانوذرۀ مغناطیسی در مویرگ مستقیم را در حضور آهنربای استوانه‌ای مورد بررسی قرار می‌دهیم. با استفاده از معادلۀ حرکت ذره در حضور نیروهای مغناطیسی و شناوری، مسیر حرکت نانوذرۀ مغناطیسی در یک مویرگ مورد بررسی قرار می‌گیرد. نتایج عددی نشان می‌دهد که احتمال به‌دام افتادن نانوذرۀ مغناطیسی در مویرگ تابعی قوی از شدت میدان مغناطیسی، شعاع ذره، مغناطش ذره و قطر مویرگ می‌باشد. در این مطالعه مسیر حرکت ذره در داخل مویرگ برای مقادیر متفاوت اندازۀ ذره، مغناطش آهنربا، مغناطش اشباع ذره، قطر مویرگ و وشکسانی ذره با پذیرفتاری مغناطیسی وابسته به میدان بررسی شده است. نتایج نشان می‌دهد که با افزایش شعاع ذره، مغناطش آهنربا، مغناطش اشباع ذره و همچنین با کاهش شعاع رگ، احتمال به‌دام افتادن ذرۀ شناور در کانال افزایش می‌یابد.

کلیدواژه‌ها

عنوان مقاله [English]

The dynamics of magnetic nanoparticle motion in a straight microvessel

نویسندگان [English]

  • E Kadivar
  • Z Keshavarz

Department of Physics, Shiraz University of Technology, Shiraz, Iran

چکیده [English]

In this study, we investigate the trajectory of magnetic nanoparticle flowing through a microvessel in the presence of cylindrical magnet. By using the equation of motion of particle in the presence of magnetic and fluidic forces, the motion trajectory of magnetic particle in the microvessel is calculated. Our numerical results show that the probability of trapping magnetic particles in the straight microvessel is a function of the intensity of the magnetic field, particle radius, particle magnetization, and diameter of vessel. In this study, we investigate the effect of particle radius, magnet magnetization, particle saturation magnetization and vessel radius on the trajectory of magnetic nanoparticle flowing through the straight vessel. The results show that with increasing particle radius, magnet magnetization, particle saturation magnetization and also with decreasing vessel radius, the probability of trapping a floating particle in the channel increases

کلیدواژه‌ها [English]

  • microvessel
  • cylindrical magnet
  • magnetic nanoparticle
  • trajectory of particle
  • magnetic susceptibility
  1.  
    1. ‎ S E Ong, S Zhang, H Du, and Y Fu, Biosci. 13, 7 (2008) 2757.
    2. L Y Yeo, H C Chang, P P Chan and J R Friend, Small 7, 1(2011)12.
    3. G M Whitesides, Nature 442 7101 (2006) 368.
    4. E Kadivar and A Alizadeh, Phys. J. E 40, 3 (2017) 31.
    5. M Hashimoto, P Garstecki, H A Stone, and G M Whitesides, Soft Matter 4 (2008) 1403.
    6. E Kadivar, EPL (Europhysics Letters) 106, 2 (2014) 24003.
    7. A Khan, X D, Niu, Y Li, M F Wen, D C Li, and H Yamaguchi, J. Numer. Methods Fluids, 92, 11 (2020) 1584.
    8. R S Molday, S P S Yen, and A Rembaum, Nature 268, 5619 (1977) 437
    9. A Thiel, A Scheffold, and A Radbruch, Immunotechnology 4 2 (1998) 89.
    10. N Pamme, Lab on a Chip 6, 1 (2006) 24.
    11. E P Furlani and K C Ng, Rev. E. 73, 6 (2006) 061919.
    12. J Kim, M Massoudi, J F Antaki, and A Gandini, Applied Mathematics and Computation 218, 12 (2012) 6841.
    13. B D Plouffe, S K Murthy, and L H Lewis, Prog. Phys. 78, 1 (2014) 016601.
    14. R Zhou, Q Yang, F Bai, J A Werner, H Shi, Y Ma, and C Wang, Nanofluidics 20, 7 (2016) 110.
    15. V F Cardoso, D Miranda, G Botelho, G Minas, and S Lanceros-Méndez, Actuators B Chem. 255, (2018) 2384.
    16. H Cho, J Kim, H Song, K Y Sohn, M Jeon, and K H Han, Analyst 143, 13 (2018) 2936.
    17. E P Furlani, Y Sahoo, K C Ng, J C Wortman, and T E Monk, Microdevices 9, 4 (2007) 451.
    18. B N Zhao, Journal of Electromagnetic Analysis and Applications 11, 02 (2019) 17.
    19. Y Zhu, B Zhang, J Gu, and S Li, Magn. Magn. Mater. 501 (2020) 166485.
    20. J Gómez-Pastora, I H Karampelas, E Bringas, E P Furlani, and I Ortiz, Rep. 9, 1 (2019) 1.
    21. Z Wang, C Liu, W Wei, International Journal of Applied Electromagnetics and Mechanics 60, 2 (2019)
    22. R Gerber, M Takayasu, and F J Friedlaender. IEEE Transactions on Magnetics 19 5 (1983) 2115.
    23. T H Boyer, J. Phys. 56 (1988) 688.
    24. T P Jones, “Electromechanic of particles”, Cambridge University Press, Cambridge, UK, (1985).
    25. G K Batchelor, “An Introduction in Fluid Dynamics”, Cambridge University Press, Cambridge, UK (1970).
    26. A R Pries, T W Secomb, and P Gaehtgens, Res. 32 (1996) 654.
    27. R F Haynes, J. Physiol. 198 (1960) 1193.
    28. A R Pries, T W Secomb, and P. Gaehtgens. Cardiovascular research 32,4 (1996) 654.
    29. R Chebbi, Journal Biol. Phys. 41 (2015) 313.