نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک. دانشکده علوم پایه. دانشگاه گیلان. رشت ایران

2 دانشگاه گیلان

3 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت

چکیده

ناپایداری رشته­ای، موجی الکترومغناطیسی است که در مسیر عمود بر باریکۀ افروزندۀ پروتونی در افروزش سریع منتشر می­شود و می­تواند با کشش عمودی، بر بدنۀ باریکه پروتونی، کیفیت آن را کاهش دهد و یا قبل از آن که باریکۀ پروتونی به قلب سوخت چگال نفوذ کند، موجب پخش شدگی آن در طول مسیرش شود. از طرف دیگر، تولید سوختی پیش فشرده با همسانگردی دمایی در این فرایند تقریبا ناممکن است. از این‌رو احتمال دارد ناپایداری ویبل نیز با ناپایداری رشته­ای باریکه همراه شود و آهنگ رشد نهایی نسبت به حالت همسانگرد دمایی افزایش و یا کاهش یابد. در این پژوهش، ابتدا در مدل سرد سیال، آهنگ رشد ناپایداری رشته­ای در اثر تغییرات چگالی نسبی باریکه به پلاسما و انرژی باریکه بررسی شده است. سپس با کمک یک تقریب نقطۀ زینی از تابع توزیع جوتنر و تانسور پلاسمای حاصل از معادلۀ ولاسف، معادلۀ پاشندگی سامانۀ باریکه-پلاسما استخراج شد و در نهایت، با حل عددی آن به بررسی آهنگ رشد این ناپایداری در محیطی با ناهمسانگردی دمایی پرداخته شده است. نتایج نشان می­دهند، هنگامی که مؤلفۀ موازی دمای محیط در مسیر باریکه  (∥T) نسبت به مؤلفه عمودی آن (⊥T) بزرگ‌تر باشد (ناهمسانگردی دمایی مثبت)، آنگاه ناپایداری نسبت به حالت همسانگرد دمایی افزایش و در حالت عکس آن یعنی ناهمسانگردی دمایی منفی، ناپایداری نسبت به حالت همسانگرد کاهش می­یابد. در باریکۀ پروتونی با چگالی نسبی 0/1، آهنگ رشد در حالت ناهمسانگردی %50+ به اندازۀ 2/59 برابر افزایش و در حالت ناهمسانگردی %50-، به نصف آهنگ رشد در حالت همسانگرد کاهش می­یابد. به علاوه، اثرات ناهمسانگردی دمایی محیط بر آهنگ رشد در باریکه ­های رقیق که چگالی نسبی کمتری دارند، بیشتر قابل مشاهده است و در چگالی نسبی کمتر از 0/1، این ناپایداری می­تواند خاموش شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Filamentation instability fluctuations of proton fast ignitor due to temperature anisotropy in pre-compressed fuel

نویسندگان [English]

  • Sam Yaghoubi 1
  • Abbas Ghasemizad 2
  • S Khoshbinfar 3

1 Physics department, Faculty of Science, University of Guilan, Rasht, Iran.

2 University of Guilan

3 1. Department of Physics, Faculty of Science, University of Guilan, Iran

چکیده [English]

Filamentation instability is an electromagnetic wave that grows normal to the proton-driven direction in fast ignition scenario that can reduce beam quality or dissipate it due to pinching force before this beam reaches the dense core. On the other hand, producing an isotropic pre-compressed fuel is almost impossible in this process. Therefore, Weibel instability may cumulate with filamentation instability. Consequently, the instability growth rate can increase or decrease. In this study, first, the growth rate of this instability is obtained due to variations of beam density and energy in the cold model. Then the dispersion equation of this system is derived with saddle-point approximation of Maxwell-Jüttner distribution and Vlasov equation. Numerical results show that if the parallel temperature (T) is selected more than the perpendicular temperature (T) of the background (positive anisotropy), the cumulative effect can increase the instability growth rate compared to isotropic fuel. In addition, instability decreases in negative anisotropy. For instance, if medium temperature anisotropy is selected 50%, the growth rate increases 2.59 times relative to the isotropic state for a proton beam with a density ratio of 0.1. Also, the growth rate can be reduced by half in -50% anisotropy for this medium. Furthermore, fluctuations in the growth rate due to temperature anisotropy are severe for dilute beams. However, this instability may quench for density ratios less than 0.1 

کلیدواژه‌ها [English]

  • filamentation instability
  • dispersion equation
  • temperature anisotropy
  • proton fast ignition
  • instability growth rate
  1. M H Key, et al., Fusion Science and Technology 49, 3 (2006) 440.
  2. E Nakar, A Bret, and M Milosavljević, The Astrophysical Journal 738, 1 (2011) 93.
  3. M Roth, et al., Physical Review Letters 86, 3 (2001) 436.
  4. S Atzeni and J Meyer-ter-Vehn, “The Physics of Inertial Fusion: Beam Plasma Interaction”, Clarendon press Oxford (2004).
  5. M Tabak, et al., Physics of Plasmas 1 (1994) 1626.
  6. A Bret and C Deutsch, Physics of Plasmas 12, 8 (2005) 082704.
  7. A Bret, Physics of Plasmas 16, 9 (2009) 094505.
  8. C Deutsch, Laser and Particle Beams 21 (2003) 33.
  9. C Deutsch, Laser and Particle Beams 22, 2 (2004) 115.
  10. R B Miller, “An Introduction to the Physics of Intense Charged Particle Beams“, New York & London Plenum (1982).
  11. A Bret, M C Firpo, and C Deutsch, Physical Review E 70, 4 (2001) 046401.
  12. N P Dover and Z Najmudin, High Energy Density Physics 8, 2 (2012) 170.
  13. M Roth and M Schollmeier, Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration 1 (2016).
  14. L Yinc, et al., Physics of Plasmas 14, 5 (2007) 056706.
  15. A Petrin, “Wave Propagation in Materials for Modern Applications”, BoD Books on Demand (2010).
  16. A Stockem, M Lazar, and A Smolyakov, Journal of Plasma Physics 75, 4 (2009) 529.
  17. A Bret and C Deutsch, Physics of Plasmas 13, 2 (2006) 022110.
  18. Q Jia, et al., Physics of Plasmas 20, 3 (2013) 032113.
  19. L A Cottrill, et al., Physics of Plasmas 15, 8 (2008) 082108.
  20. M Lazar, et al., Journal of Plasma Physics 75, 1 (2009) 19.
  21. L O Silva and R A Fonseca, Physics of Plasmas 9, 6 (2002) 2458.

تحت نظارت وف ایرانی