نوع مقاله : مقاله مروری

نویسنده

دانشگاه ترابری ایالتی تاشکند، تاشکند، ازبکستان

چکیده

بر اساس براوردهای بسیاری از نویسندگان، بازار جهانی محصولات فناوری نانو در 10-15 سال آینده به حدود 1 تریلیون دلار خواهد رسید. در این بین نانومواد سهم بسیار قابل ملاحظه­ای در حدود 340 میلیارد دلار دارند. بنابراین تحقیق و مطالعۀ خواص نانومواد به یکی از مهم­ترین وظایف علم مواد نانوساختار تبدیل شده است. در این راستا، گسترش تحقیقات در مورد تأثیر اندازه و پایداری حرارتی به عنوان مشکلات رایج برای عمده نانومواد امری ضروری خواهد بود. این مقاله مروری به محبوب‌ترین موضوعات این حوزه یعنی نانومواد، نانوساختارها، تاریخچه، ویژگی‌های آنها ، طبقه‌بندی و وضعیت مقالات علمی منتشر شده در سال‌های اخیر، می‌پردازد. این مطالعه بر روی طیف وسیعی از موضوعات مرتبط با توسعه، تحقیق و کاربردهای ساخت نانومواد و فناوری نانو تمرکز دارد. مسائل و چالش هایی وجود دارد که دانشمندان روی آنها تحقیق می کنند. به عنوان مثال: تفاوت­های اصلی بین خواص فصل مشترک نانومواد (از جمله مواد هیبریدی) با ویژگی­های حالت­های توده­ای معمولی چیست؟ با در نظر گرفتن خطاهای احتمالی نصب، تا چه حد می­توان تکنیک خودآرایی عناصر دستگاه­های نانومقیاس را توسعه داد؟

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Current status and trends in the physicochemical properties of nanomaterials and nanotechnology researches

نویسنده [English]

  • Abdusalam Umarov

Tashkent State Transport University, Tashkent, Uzbekistan

چکیده [English]

According to the estimates of many authors, in 10-15 years, the world market for nanotechnology products will amount to about 1 trillion $. The share of nanomaterials, in this case, is very large (about 340 billion). Therefore, research on nanomaterials properties becomes one of the most important tasks of the science of nanostructured materials. In this regard, it will be essential to expand research on the influence of size and thermal stability; as two common problems for almost all types of nanomaterials. This review article will discuss the most popular topics on nanomaterials, nanostructures, their history, characteristics and classification as well as status of their scientific articles published in recent years. This study focuses on a range of topics related to the development, research and manufacturing applications of nanomaterials and nanotechnology. There are many problems and challenges that scientists are investigating on them. For example: what are the main differences between the properties of interfaces of nanomaterials (including hybrid ones) from the characteristics of ordinary bulk states? How widely can the self-assembly technique of nanoscale devices elements be developed, considering possible installation errors?

کلیدواژه‌ها [English]

  • nanomaterials
  • nanotechnology
  • particle size
  • filler
  • composition
  • structure
  • classification
  1. B V Deryagin, “Theory of stability of colloids and thin films” Moscow Nauka (1986).
  2. N Singer, et al., Microchimica Acta 187, 4 (2020) 1.
  3. W Han, et al., Chemical Engineering Journal 358 (2019) 1022.
  4. R A Andrievskiy, Perspektivniye Materiali 6 (2001) 5.
  5. R A Andrievskiy, UFN 184 (2014) 1017.
  6. W D Münz, et al., Surface Engineering 17, 1 (2001) 15.
  7. H Gleiter, 2nd RISO Symposium on Metallurgy and Materials Science, Riso National Laboratory (1981).
  8. R Birringer, et al., Metallkunde 102 (1984) 365
  9. R Birringer, U Herr, and H Gleiter, Transactions of the Japan Institute of Metals 27 (1986) 43.
  10. S Sergeenkov, et al., Journal of Physics and Chemistry of Solids 98 (2016) 38.
  11. Y S Nechaev, Physics Uspekhi 49, 6 (2006) 563.
  12. R A Andrievski, Physics Uspekhi 50, 7 (2007) 691.
  13. A Kamińska, et al., Polish Journal of Chemical Technology 16, 2 (2014) 77.
  14. A D Pogrebnjak and A P Shpak, Uspekhi Fizicheskikh Nauk 179, 1 (2009) 35.
  15. A D Pogrebnjak and V M Beresnev, Nanocomposites New Trends and Developments (2012) 123.
  16. R A Andrievski and A M Glezer, Uspekhi Fizicheskikh Nauk 179, 4 (2009)
  17. R A Andrievski, Uspekhi Fizicheskikh Nauk 183, 3 (2013)
  18. M T Perez Prado and M E Kassner,” Fundamentals of Creep in Metals and Alloys” Butterworth Heinemann (2015).
  19. K K Sankaran and R S Mishra, “Metallurgy and design of alloys with hierarchical microstructures” Elsevier (2017).
  20. Z Ma and R S Mishra, ”Friction stir superplasticity for unitized structures: a volume in the friction stir welding and processing book series” Butterworth Heinemann (2014).
  21. S McFadden, A Sergueeva, and A K Mukherjee, Materials Science Forum 357 (2001) 499.
  22. G N Makarov, Uspekhi Fizicheskikh Nauk 183, 7 (2013) 673.
  23. A Khomenko, O Yushchenko, and A Badalian, Symmetry 12, 11 (2020) 1914.
  24. S V Rao, S Hamad, and G K Podagatlapalli, “Semiconductor Nanocrystals and Metal Nanoparticles: Physical Properties and Device Applications” CRC Press (2016).
  25. G V Kozlov, Uspekhi Fizicheskikh Nauk 185, 1 (2015) 35.
  26. B A Lyukshin, et al., “ Disperse-Filled Polymer Composites for Engineering and Medicine”, Siberian Branch of Russian Academy of Sciences, Novosibirsk (2017).
  27. S A Othman and N F Fadzil, International Journal of Advanced Research in Technology and Innovation 3, 2 (2021) 19.
  28. M Tyagi and D Tyagi, International Journal of Electronic and Electrical Engineering 7, 6 (2014) 603.
  29. A V Eletski, Uspekhi Fizicheskikh Nauk 174, 11 (2004) 1191.
  30. S V Boroznin, I V Zaporotskova, and N P Polikarpova, Nanosystems: Physics, Chemistry, Mathematics 7, 1 (2016) 93.
  31. K Sonia and I Nazmul, Organic & Medicinal Chemistry International Journal 7, 1 (2018) 555705.
  32. G A Malygin, Uspekhi Fizicheskikh Nauk 181, 11 (2011) 1129.
  33. E Husser, C Soyarslan, and S Bargmann, Extreme Mechanics Letters 13 (2017) 36.
  34. H Zhenga, et al., Acta Materialia, 186 (2020) 40.
  35. B M Baloyan, et al., “ Klassifikasiya, osobennosti svoystv, primeneniye I texnologii polucheniya. М.: Mejdunarodniy universitet prirodi, obsestva I chelovekaa” Dubna University (2007) (in Russian).
  36. N Taniguchi, Proceedings of the International Conference on Production Engineering, Tokyo (1974).
  37. ShBegum and M S J Hashmi, “Encyclopedia of Renewable and Sustainable Materials” Elsevier (2020).
  38. N Dubey, C S Kushwaha, and S K Shukla, International Journal of Polymeric Materials and Polymeric Biomaterials 69, 11 (2020) 709.
  39. T Gheiratmand and H R M Hosseini, Journal of Magnetism and Magnetic Materials 408 (2016) 177.
  40. H Gleiter, Acta Materialia 48 (2000) 1.
  41. M I Alimov, “Mehanicheskiye svoystva nanokristallicheskix materialov” (2004). (in Russian)
  42. M I Alimov and V A Zelenskiy, Metodi polucheniya I fiziko-mexanicheskiye svoystva ob`yomnix nanokristallicheskix materialov. - М.: MIFI, 2005. – 52 p. (in Russian).
  43. Noviye materiali. pod red. Yu.S. Karabasova – М.: MISIS, 2002 – 736 p. (in Russian)
  44. R A Andreevskiy, khim. j. XLVI , 5 (2002) 50. (in Russian)
  45. J I Alferov, P S Kop`ev, and R A Suris, Nano i Mikrosistemnaya Texnika 8 (2003) 3. (in Russian)
  46. M V Basilevsky, et al., Structural Chemistry 22 (2011) 427.
  47. J Aldana, Y A Wang, and X Peng, Journal of the American Chemical Society 123, 36 (2001) 8844.
  48. H Fan, et al., Nanotechnology 15, 1 (2003) 37.
  49. B P Zhang, et al., Nanotechnology 15 (2004) 382.
  50. Z Wang, et al., Nanotechnology 14, 1 (2002) 11.
  51. S K Kulkarni, et al., Applied Surface Science 169 (2001) 438.
  52. S J Im, et al., Materials Research Bulletin 41, 4 (2006) 899.
  53. Osnovi politiki Rossiyskoy Federasii v oblasti nauki I texnologiiy na period do 2020 I dalneyshuyu perspektivi // Poisk. 2002. № 16. (in Russian)
  54. A A Vikarchuk, et al, Materials Letters 273 (2020) 127917.
  55. A M Glezer, et al., Journal of Alloys and Compounds 866 (2021) 1.
  56. V Yamakov, et al., Philosophical Magazine Letters 83 (2003) 385.
  57. M Hasanzadeh, et al., TrAC Trends in Analytical Chemistry 53 (2014) 137.
  58. O Kalkan, et al., Applied Thermal Engineering 191 (2021) 116885.
  59. T Ye, et al., Advanced Functional Materials 29, 36 (2019) 1902128.
  60. X Fu, et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects 233, 1-3 (2004) 189.
  61. J Y Kima, et al., Journal of Industrial and Engineering Chemistry 15, 1 (2009) 103.
  62. V Renda, et al., Progress in Organic Coatings 141 (2020) 105515.
  63. M N Kalasad, et al., Semiconductor Science and Technology 23, 4 (2008) 045009.
  64. H Gleiter, Metallkunde 86 (1995) 78.
  65. R Z Valiyev and I V Aleksandrov, Nanostrukturniye materiali, polucheniye intensivnoy plasticheskoy deformasiye. – М.: Logos, 2000. – 272 p. (in Russian).
  66. I Khan, K Saeed, and I Khan, Arabian Journal of Chemistry 12 (2019) 908.
  67. H Farzana, Journal of Composite Materials 40, 17 (2006) 1511.
  68. C Stancu et al., The 8th International Symposium On Advanced Topics In Electrical Engineering, Bucharest Romania (2013).
  69. M M Rahman, et al., Sensors 15, 2 (2015) 3801.
  70. M L Clingerman, et al., Journal of Applied Polymer Science 83, 6 (2002) 1341.
  71. C G Psarras, Composites Part A: Applied Science and Manufacturing 37, 10 (2006) 1545.
  72. Y P Mamunya, et al., European Polymer Journal 38 (2002) 1887.
  73. D Hui et al., Science and Engineering of Composite Materials 11, 1 (2004) 19.
  74. A Rahman, et al., Nano 6, 3 (2011) 185.
  75. I Krupa, I Novák and I Chodák, Synthetic metals 145, 2-3 (2004) 245.
  76. T Hanemann and D V Szabó, Materials 3, 6 (2010) 3468.
  77. S Yuan, et al., Progress in Polymer Science 91 (2019) 141.
  78. S Christensen, T J L Mustard, and M D Halls, Schrödinger (2017) 1.
  79. T Trindade, M C Neves, and A M V Barros, Scripta Materialia 43, 6 (2000) 567.
  80. D Mohapatra, et al., Materials Letters 183, 15 (2016) 56.
  81. M Tamborra, et al., Nanotechnology 15, 4 (2004) 240.
  82. R L N Chandrakanthi and M A Careem, Thin Solid Films 417, 1-2 (2002) 51.
  83. N M Ushakov, et al., Radiotexnika 10 (2005) 105.
  84. Ushakov N.М., Zapsis К.V., Kosobudskiy I.D. Elektrifizicheskiye I dielektricheskiye svoystva jelezosoderjashix nanokompozitov // pisma v JTF,2003, v.29, N 22, p. 29-32. (in Russian).
  85. Kuznesova I.E., Ulzutuev А.N., Zaysev B.D., Ushakov N.М., Kosobudskiy I.N. Akusticheskiye xarakteristiki polimernix nanokompozitnix plenok //Trudi XVIII sessii RАО, 11-15 sentyabr2006 y., g.Taganrog. (in Russian).
  86. W U Huynh, et al., Advanced Functional Materials 13 (2003) 201.
  87. A F G Monte, et al., Brazilian Journal of Physics 36 (2006) 427.
  88. P K Khanna, et al., Material Chemistry and Physics 94 (2005) 454.
  89. P K Khanna, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, 5 (2008) 409.
  90. S M Reda, Acta Materialia 56, 2 (2008) 259.
  91. L Yang, et al., Journal of Materials Chemistry 15, 12 (2005) 1238.
  92. D I Kamalova, et al., Nternational Scientific Review of The Problems of Natural Sciences and Medicine” Boston USA (2019).
  93. S Yuan, et al., Progress in Polymer Science 91 (2019) 141.
  94. A A Aljaafari, S S Ibrahim, and T A El-Brolossy, Composites Part A: Applied Science and Manufacturing 42, 4 (2011) 394.
  95. A V Umarov, et al., Tashkent 4 (2017) 59. (in Russian)
  96. D I Kamalova, et al., Tashkent 4 (2018) 49. (in Russian).
  97. S Umarov, et al., International Journal Advanced Research in Science, Engineering and Technology 5, 9 (2018) 6963.
  98. S S Negmatov, A V Umarov, and D I Kamalova, Rossiya 5, 50 (2018) 56. (in Russian)
  99. D I Kamalova, et al., Tashkent 4 (2018) 35. (in Russian)
  100. D I Kamalova, A Umarov, and S Negmatov, International Journal Advanced Research in Science, Engineering and Technology 6, 5 (2019) 9364.
  101. A V Umarov, et al., Tashkent 3 (2019) 42. (in Russian).
  102. D I Kamalova, Tashkent 4 (2019) 113. (in Russian).
  103. A V Umarov and D I Kamalova, Journal of Chemistry 5, 1 (2020)1.
  104. D I Kamalova, A V Umarov, and S S Negmatov, VII international scientific and practical conference, Osaka Japan (2020).
  105. D I Kamalova and A V Umarov, and S S Negmatov, EPR spektroskopicheskiye issledovaniye strukturi polivinildenftorida +saji, «Rezultati sovremennix nauchnix issledovaniy I razrabotok – 2020» Mejdunarodnaya nauchno-teoreticheskaya onlayn-konferensiya. Part 3. Naberejniye chelni, Tataristan. 27-28 aprel, 2020. 32-35 p. (in Russian).
  106. A V Umarov and U Abdurakhmanov, “ Razrabotka I texnologiya rezistivnix kompozisionnix materialov” Namangan (2015).
  107. F T Baimuratov, et al., IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE) 7, 2 (2020) 1.
  108. U Abdurakhmanov, Y Rakhimova, and I Balberg, Uzbek Journal of Physics 21, 4 (2019) 208.
  109. U Abdurakhmanov, et al., Journal of Communications Technology and Electronics 55, 2 (2011) 221.
  110. B Ensor, et al., Journal of Nuclear Materials 496 (2017) 301.
  111. A T Motta, A Couet, and R J Comstock, The Annual Review of Materials Research 45, 1 (2015)
  112. M Nuthalapati, et al., Journal of Alloys and Compounds 689 (2016) 908.
  113. T Wiss, et al., Radiochimica Acta 105, 11 (2017) 893.
  114. J S Beaumont, et al., Nature Communications 6, 1 (2015) 1.
  115. G Saji, Nuclear Engineering and Design 307 (2016) 64.
  116. A Couet, AT Motta, and A Ambard, Corrosion Science 100 (2015) 73.
  117. C Tang, et al., Corrosion Reviews 35, 3 (2017) 141.
  118. D L Jin, et al., Surface and Coatings Technology 287 (2016) 55.
  119. W Zhong, et al., Journal of Nuclear Materials 470 (2016) 327.
  120. I Kratochvilova, et al., The Journal of Physical Chemistry C 118, 43 (2014) 25245.
  121. J Skarohlid, et al., Scientific Reports 7, 1 (2017) 1.
  122. P Ashcheulov, et al., Applied Surface Science 359 (2015) 621.
  123. I Kratochvilova, et al., Journal of Materials Processing Technology 214, 11 (2014) 2600.
  124. B Bhatt, et al., Journal of Materials Engineering and Performance 26, 10 (2017) 5043.
  125. R Ctvrtlik, M Al-Haik, and V Kulikovsky, Journal of Materials Science 50, 4 (2015) 1553.
  126. P Ashcheulov, et al., Recent Patents on Nanotechnology 10,1 (2016) 59.
  127. A V Umarov, et al., Journal Zeitschrift für Naturforschung A 74, 3 (2019) 183.
  128. A V Umarov, H E Khamzaev, and B A Mirsalikhov, American Journal of Mechanical and Industrial Engineering 5, 1 (2020) 1.
  129. A V Umarov and D Kamalova, AIP Conference Proceedings, AIP Publishing LLC (2020).
  130. J C Fielding,C Chen, and J Borges, “Vacuum infusion process for nanomodified aerospace epoxy resins” SAMPE symposium & exhibition (2004).
  131. F Hussain, et al., Journal of Advanced Materials 37, 1 (2004) 16.
  132. A Haque, et al., Journal of Advanced Materials 37 (2005) 16.
  133. A Haque, et al., Journal of Composites Materials 37, 20 (2003) 1821.
  134. F H Chowdhury, M V Hosur, and S Jeelani, Materials Science and Engineering: A 421, 1-2 (2006) 298.
  135. S Roy, et al., 6th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Texas (2005).
  136. S Roy, et al., “Manufacturing, mechanical characterization, and modeling of a pultruded thermoplastic nanocomposite”, CRC Taylor & Francis USA (2006).
  137. Through the Courtesy of M. Verbrugge, General Motors. 2010.
  138. R A Vaia, H Ishii, and E P Giannelis, Chemistry of Materials 5, 12 (1993) 1694.
  139. H R Dennis, et al., Polymer 42, 23 (2001) 9513.
  140. R V Kurahatti, et al., International Journal of Earth Sciences and Engineering 4, 6 (2011) 1140.
  141. M Salavati Niasari, F Davar, and N Mir Polyhedron, Polyhedron 27, 17 (2008) 3514.
  142. P Vivek, Nanotech Insights 2 (2011) 17.
  143. S Yuan, et al., Composites Part A 105 (2018) 203.
  144. L Deng, et al., Bioresource Technology 208 (2016) 87.
  145. W S Tan, et al., Virtual and Physical Prototyping 11, 3 (2016) 151.
  146. W S Tan, et al., Journal of Membrane Science 537 (2017) 283.
  147. A J Capel, et al., Lab on a Chip 13, 23 (2013) 4583.
  148. L Gurreri, et al., Journal of Membrane Science 497 (2016) 300.
  149. F Li, et al. Journal of Membrane Science 253, 1-2 (2005) 1.
  150. Y Dong, et al., Scientific Reports 5, 1 (2015) 1.
  151. M C Roco, R S Williams and P Alivisatos, “Nanotechnology research directions” Springer Science & Business Media (2002).

 

 

تحت نظارت وف ایرانی