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Abstract 
Similar to the role of carriers in classical communications as a medium for transmitting messages, entangled states can also be 

considered a medium that plays the role of the information carrier. In this way, we can define protocols with entangled carriers for 

quantum communications which can also be used for quantum secret-sharing. The outspread of quantum secret-sharing for many 

users is the substructure of a quantum internet, so it is essential to study such protocols in terms of their practical implementations. 

Since protocols are performed in noisy environments without interruption, it is necessary to investigate the performance of protocols 

under continuous noise. This paper studies the stability of these protocols against dephasing and depolarizing noise. It shows that 

despite the constant effect of noise, the carrier remains in two types of spaces with the entangled basis, which forms complete spaces 

for the carrier’s qubits. These spaces are compatible with the protocol performance; therefore, the protocol is stable under the noise 

effect. 
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1. Introduction 
Entanglement is used as a quantum source in most 

quantum information processes [1-3], such as quantum 

teleportation and quantum key distribution. In quantum 

secret sharing schemes [4-8], strong non-classical 

correlations in entangled states shared between 

legitimate parties allow them to generate a random key. 

Of course, there are other cryptographic protocols that 

do not use entanglement [9-17]. Alice, Bob, and Charlie 

are the legal parties in these protocols. Alice and Bob 

want to distribute a secret key between themselves in the 

quantum key distribution protocol by sharing maximally 

entangled states and performing specific measurements. 

Despite eavesdropping, they exchange messages through 

a communication channel and eventually access an 

identical and secure key. These keys distributed between 

Alice and Bob are safe and identical due to the unique 

features in maximally entangled states. 

In addition to the quantum key distribution protocol, 

we can refer to the secret-sharing protocol, in which 

Alice wants to send a secret message to Bob and Charlie 

that they can only read with their contribution. This 

article explains the secret-sharing protocol in which 

entanglement is used as a secure carrier of information to 

send a message. Using entangled states between two 

distant points as a secure and reusable information 

carrier was first proposed in 2001 [18], and then 

expanded to the issue of secret-sharing in 2003 [19]. 

This idea is, in fact, a quantum extension of the concept 

that exists in today's classical communications network. 

The sender uploads the message to the carrier, and at the 

destination, the recipients download the message and 

leave the carrier intact for reuse. Carrier's security means 

that the state of the message during the transmission is 

hidden from the eavesdropper’s point of view. (We call 

eavesdropper Eve). In this protocol, the message can be 

classical or quantum. Classical messages are the classical 

bits encoded in the standard basis {|0⟩,|1⟩}, and the 

quantum messages are the states encoded in the 

superposition of these basis:  

0 1 =  + .                                                          (1) 

This paper examines the effect of two important 

types of noise, called dephasing and depolarizing, which 

continuously affect a secret-sharing protocol. In the 

article [20], we assumed that before running the 

protocol, the carrier was disturbed once with noise, and 

the protocol  execution time is such that  the added  noise  
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Figure 1. Classical secret-sharing protocol. 

 

can be ignored. In this paper, we will discuss that even if 

we consider the noise effect not just once but 

continuously, the carrier remains in two specific spaces 

with entangled basis that are complete spaces for the 

carrier qubits and are compatible with the protocol 

performance. After this introduction, In the second part, 

we will introduce a classical and quantum secret-sharing 

protocol. In the third section, we will study a secret-

sharing protocol, which considers a different role for the 

entangled states as the carrier of information. The fourth 

section will discuss about quantum channels. The fifth 

section will investigate the effect of dephasing and 

depolarizing noise on the secret-sharing protocol. In the 

sixth section, we will see the continuous noise effect on 

the secret-sharing protocol. Eventually, in the seventh 

section, we will conclude. 

 

2. Secret-Sharing  
2. 1. Classical secret-sharing protocol 

In the classical secret-sharing protocol, Alice wants to 

distribute a classical secret S to Bob and Charlie by 

sending a portion of the secret to Bob and another to 

Charlie (S is a bit, S∊{0,1}). Alice sends the bit b to Bob 

and the bit c to Charlie (figure 1) so that neither of them 

can recover the secret on their own. Bob does not know 

S even though he has b, and Charlie does not know S 

even though he has c. We call this protocol secret-

sharing because Bob and Charlie can recover the secret S 

only by exchanging their shares.  

For this purpose, Alice randomly chooses a bit 

b∊{0,1}R. (R index emphasizes the randomness). Alice 

adds the secret S with the bit b in mud 2, and calls it the 

bit c: 

b ⊕ s = c.                                                        (2) 

Whatever S is, due to the randomness of b, the bit  c 

will also be random. From the outside observer's point of 

view, both bits are random and uniform. When Bob and 

Charlie add their shares in mud 2, the secret S will be 

recovered: 

( )b c b b s s =   = .                                           (3)  

 

 
Figure 2. Quantum secret-sharing protocol  

 

In the classical secret-sharing protocol, one bit is 

shared by two 1-bit shares, but we can do better by using 

quantum states.  

 

2. 2. Quantum secret-sharing protocol 

In the quantum secret-sharing protocol, Alice wants to 

share a classical two-bit secret S∊{00,01,10,11} using 

Bell entangled states (figure 2). Bell entangled states are 

the basis for two-qubit four-dimensional space: 

( )

( )

( )

( )

00 BC

01 BC

10 BC

11 BC

1
00 11 ,

2
1

01 10 ,
2

1
01 10 ,

2
1

00 11 .
2

 = +

 = +

 = −

 = −

                                         (4) 

Alice encodes the secret S into Bell states  |𝜙S⟩BC and 

by sending qubit B to Bob and qubit C to Charlie, she 

shares the entangled Bell states between them. Bell 

states are locally indistinguishable; the reduced density 

matrix of Bob and Charlie's qubits are in maximally 

mixed states and therefore does not contain any 

information about the secret S: 

S S
B C

I
.

2
 =  =                                                                 (5) 

The role of quantum mechanics in the secret-sharing 

problem is that a maximally entangled state has 

maximally mixed subspaces; all the information is in the 

correlation between two qubits, and each qubit alone has 

no information. 

The quantum state |𝜙S⟩BC should recover the secret S 

with a probability of 1. So there must be a measurement 

that measures |𝜙S⟩BC and retrieves S. ( |𝜙S⟩BC states 

should be perpendicular for different S, which they are!). 

Since Bell states form a perpendicular basis, they are 

distinguishable. If Bob sends his qubit to Charlie, he can 

measure his and Bob's qubit in the Bell basis and retrieve 

the classical bits. So with the help of entanglement, we 

managed to recover two classical bits by sending one 

qubit. This quantum protocol is twice as efficient as the 

classical protocol. 
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3. Quantum secret-sharing with entangled states 
In this section, entangled states have a different role than 

the last section. In the last section, the message was 

encoded into the entangled state, but here the message is 

uploaded to the entangled state. In this new role, 

entangled states are a medium for conveying the 

message (figure 3). 

To begin the discussion, first, we introduce the 

CNOT control operator. CNOT operates on a two-qubit 

state; one is the control qubit and the other the target. If 

the control qubit were  |0⟩, the effect of the CNOT on the 

target qubit would be the same as the effect of the unit 

operator. (Does nothing). If the control qubit were |1⟩, 
the effect of CNOT on the target qubit would be similar 

to that of the Pauli X operator. (Bit-flip operator). 

Using entangled states as a secure information carrier 

between two points is such that Alice wants to send the 

message q to Bob using the state |𝜙⟩AB=( |00⟩+|11⟩ )/√2 

that is shared as a carrier between Alice and Bob. Alice 

encodes the message q into state |q⟩1 (qubit 1 

corresponds to message state). She then affects the 

operator CA,1 on the carrier and message state. (CA,1 is a 

CNOT control operator, which control qubit is A, and its 

target qubit is 1). This is how the message q gets 

entangled with the carrier: 

(6) 
( )

( )

A,1 1AB

AB,1

1
C 00 11 q

2
1

00q 11q .
2

 
+ 

 

= +

 

(q̅ is q flipped: 0 1= =1 , = 0). Alice sends qubit 1 to Bob. 

In the above equation, if one takes a partial trace with 

respect to A and B, one will see that qubit 1 is in a 

maximally mixed state during the transfer; that is, from 

Eve's point of view, the message is uniform and 

completely random : 

(7) ( )1
1 I

q q q q
2 2

 = + = , 

At the destination, Bob receives qubit 1 and affects 

operator CB,1: 

(8) 

( )

( )

( )

B,1 AB,1

AB,1

1AB

1
C 00q 00q

2
1

00q 11q
2
1

00 11 q .
2

 
 
 

= +

= +

 

As one can see, the message has been separated from the 

carrier, and Bob has received Alice's message correctly. 

The carrier is also left intact for reuse. 

In secret-sharing schemes, Alice sends a secret 

message to Bob and Charlie that they can only read the 

message with their cooperation. We introduce a protocol 

that uses an entangled state as a carrier between Alice, 

Bob, and Charlie to send a message. The role of 

entangled states as a carrier is that Alice can hide the 

message state from Eve's view by entangling the 

message with the carrier while transmitting it to Bob and 

Charlie. It is assumed that Bob and Charlie are in the 

same place at the destination so that they can read the 

message together. Before examining how the protocol is 

implemented, we will first mention conventions. 

The even parity and the odd parity for two qubits are 

as follows: 

(9) 
( )

( )

1
0 00 11 ,

2
1

1 01 10 .
2

= +

= +

 

(10) 

which are summarized as follows: 

( )
1

q 0,q 1, q .
2

= +  

Sometimes we skip normalization coefficients. For 

example, when we write ( |000⟩+|111⟩ ) we mean the 

normalized state ( |000⟩+|111⟩ )/√2. The even parity 

and the odd parity for three qubits are written as follows: 

(11) 

A AABC BC BC

A AABC BC BC

0 0 0 1 1

000 011 101 110 .

1 0 1 1 0

001 010 100 111 .

= +

= + + +

= +

= + + +

 

We start the protocol execution with even rounds 

(0, 2, 4, …) in these rounds, Alice, Bob, and Charlie share 

the entangled state  |GHZ⟩=( |000⟩+|111⟩ )ABC/√2  as a 

carrier. Qubits A, B, and C are respectively the share 

qubits of Alice, Bob, and Charlie from the carrier. In 

even rounds, Alice encodes the message  |q⟩ into the 

product state |q,q⟩1,2 and entangles it to the carrier with 

operator CA,1 CA,2: 

(12) 
( ) ( )
( )
A,1 A,2 1,2ABC

ABC,1,2

C C 000 111 q,q

000 q,q 111 q, q

 +
 

= +
 

Alice sends qubit 1 to Bob and qubit 2 to Charlie. 

These qubits are in a maximally mixed state during 

transfer; they are completely random and uniform from 

Eve's point of view. At the destination, with affecting 

operator CB,1, Bob can independently detach |q⟩1 from 

the carrier and read the message sent by Alice: 

(13) 

( )
( )
( )

B,1 ABC,1,2

ABC,1,2

1ABC,2

C 000 q,q 111 q, q

000 q,q 111 q, q

000 q 111 q q .

+

= +

= +

 

Charlie can also affect operator CC,2, and detach |q⟩2 

from the carrier and read the message independently: 

(14) 
( )

( )
C,2 ABC,2

2ABC

C 000 q 111 q

000 111 q .

+

= +
 

At the end of even rounds, Alice, Bob, and Charlie 

each individually affect the Hadamard operator H on 

their shares of carrier and turn it from state |GHZ⟩ABC to 

state |0 ̃⟩ABC: 

(15) ( )A B C ABC ABC
H H H GHZ 0  =  

To get the above equation, we used our conventions 

and the following: 
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(16) 
( )

( )

H 0 , H 1 .
1

0 1 .
2
1

0 1 .
2

= + = −

+ = +

− = −

 

The carrier of odd rounds (1, 3, 5, …) is an entangled 

state |0 ̃⟩ABC Alice encodes the message |q⟩, in an 

entangled state |q̃⟩1,2, and entangles it with operator CA,1 

or CA,2 to the carrier. (It does not matter which operator 

Alice chooses): 

(17) 
A,1 1,2ABC

A 1,2 A 1,2BC BC

C 0 q

0 0 q 1 1 q

 
 

= +
 

Alice sends qubit 1 to Bob and qubit 2 to Charlie. 

qubit 1 and qubit 2 are individually in a maximally 

mixed state during the transfer. At the destination, Bob 

and Charlie, after receiving qubits 1 and 2, collaborate to 

affect the operator CB,1CC,2 and separate the message 

from the carrier: 

(18) 
( ),1 ,2 1,2 1,2

1,2

0 0 1 1

0

B C A ABC BC

ABC

C C q q

q

 +
 

=

 

In the above equation, the control space of CNOT 

operators is on qubits B and C. The target space is on 

qubits 1 and 2. Since |0̃⟩BC is an even parity of two 

qubits, and |1 ̃⟩BC is an odd parity of two qubits, |q̃⟩1,2 

does not change when |0̃⟩BC is 0 in control, but |q̅⟩̃1,2 is 

flipped and transformed in |q̃⟩1,2 when |1 ̃⟩BC is in control. 

Because H2 =I, at the end of odd rounds, Alice, Bob, and 

Charlie return the carrier’s state from |0 ̃⟩ABC to 

|GHZ⟩ABC, by acting Hadamard on their carrier’s share. 

Since Bob and Charlie can read the message 

independently in even rounds, Alice sends extra qubits 

that do not contain important information in these 

rounds. Instead, she sends secret messages only in odd 

rounds where Bob and Charlie collaborate to read the 

message. The question may be asked, why do we not use 

only odd rounds? The answer is that the presence of the 

Hadamard operator, which converts the carrier between 

rounds, makes Eve separated from the carrier if she 

wants to entangle herself with it. To prove, suppose that 

Eve has entangled herself with the carrier of even and 

odd rounds as follows: 

 (19) 
ABC 000 111

ABC

000 011 101 110

GHZ ,E 000 111

0 ,E

000 011 101 110 .

=  + 

=  +  +  + 

 

At the end of even rounds, when Alice, Bob, and 

Charlie apply Hadamard operators, the carrier becomes 

as follows: 

(20) ( ) ( )
( ) ( )

3

000 111

000 111ABC ABC ABC ABC

000 111 000 111ABC ABC

H GHZ,E

0 1 0 1

0 1 .



= + + +  + − − − 

= +  + − 

=  +  +  −

 

 
Figure 3. The secret-sharing protocol using the entangled 

carriers. 

 

After applying the Hadamard operators, even rounds 

carrier must be turned into |0 ̃⟩ABC. So we should have, 

𝜂000 = 𝜂111 which causes Eave to get separated from the 

carrier in the even rounds. For equality of equations (14) 

and (15), it must be 𝜉000 = 𝜉011 = 𝜉101 = 𝜉110, in which case 

Eve also get separated from the odd rounds carrier. 

We saw how Alice could send the standard basis 

(classical message) to Bob and Charlie. Any 

superposition of basis states is a quantum message 

|𝜙⟩=𝛼 |0⟩+𝛽|1⟩. Due to the linearity of this process, 

Alice can send the quantum messages as 

|𝜙'⟩=𝛼 |00⟩+𝛽|11⟩ in even and as |𝜙''⟩=𝛼 |0 ̃⟩+𝛽|1 ̃⟩ in 

odd rounds. 

 

4. Noise 
4. 1. Quantum channels 
Suppose we have a quantum system in an arbitrary state 

ρ. The state ρ may change due to a physical process. 

There are different dynamics for quantum systems. The 

simplest dynamic assumes that the system does not 

interact with the external environment. Or in other 

words, the system is closed. According to the principles 

of quantum mechanics, the dynamics of a closed system 

is characterized by unitary operators: 

U U .+→                                                               (21) 

Now the question is, if the system is not closed and 

interacts with its surroundings, what is the dynamic of 

the system state. Another point is that the change 

induced by measurement on a quantum system can also 

be Considered a quantum dynamic. It is also possible for 

a quantum dynamic to be a combination of unitary 

transformation and measurement. Depending on the 

conditions of the problem, a quantum dynamic is called a 

quantum map or quantum channel.  The effect of the 

surrounding environment on a quantum system is called 

noise.  In quantum information, noise is considered a 

channel that affects the quantum state. The most general 

evolution of the quantum system ρ is written as follows: 

e e
e

V V .+→                                                            (22) 
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In the above equation, Ve is called the Kraus operator, 

which applies in the following condition: 

e e
e

I V V .+=                                                                (23) 

4. 2. Dephasing channel 

For examining the dephasing noise, consider a qubit in a 

pure state |𝜓⟩=𝛼 |0⟩+𝛽|1⟩. In this linear combination, 

basis states ( |0⟩ , |1⟩ ) are in a relative phase. The 

dephasing channel gradually eliminates the relative 

phase of these two states and eventually creates a mixed 

state. To model this noise, we assume that an operation 

RZ(𝜃) makes phase difference 𝜃 on the states  |0⟩,|1⟩ . It 
irregularly affects the initial state with a Gaussian 

distribution and converts it as follows: 

(24) ( ) ( ) ( )Z Zp R R d+  →        

 

4.3. Depolarizing channel 

The depolarizing channel maintains the initial quantum 

state ρ with probability (1‒ P), and erases all the 

information with the error probability P; converts the 

state into a maximally mixed state, which is an entirely 

random and uniform state: 

(25) 
I

(1 p) p
2

→ − +  

The above equation is written for a qubit channel, which 

the maximally mixed state is I / 2. The equation gets 

arranged using the following relation: 

(26) 2I X X Y Y Z Z= +  +  +   
X, Y, and Z are Pauli operators. Therefore, the 

depolarizing channel transforms a qubit state as follows: 

(27) 
1 3P P P P

X X Y Y Z Z
4 4 4 4

−
→ +  +  +   

The above equation shows that X, Y, and Z errors occur 

with equal probability in a depolarizing channel. 

 

5. Secret-sharing protocol with noisy carriers 
5. 1. The effect of dephasing noise 

Consider a pure state  |GHZ⟩=( |000⟩+|111⟩ )/√2; a 

linear combination of two basis states ( |000⟩,|111⟩ ) 

with a certain relative phase. The dephasing noise acts 

on the qubits as random phase kicks, gradually vanishing 

the relative phase and eventually creating a mixed state. 

Suppose that irregular phase kicks on the qubit j cause a 

phase difference 𝜃j: 

(28) 
j j

j j

i Z i

i Z i

Z 0 0 e 0 e 0 ,

Z 1 1 e 1 e 1 .

 

 − 

= → =

= − → =  
The effect of phase kicks on three qubits is as 

follows: 

(29) 
( )

( )

31 2

1 2 3

31 2

1 2 3

i Zi Z i Z

i i

i Zi Z i Z

i i

e e e 000

e 000 e 000 .

e e e 111

e 111 e 111 .

 

 + + 

 

−  + + − 

= =

= =

 

The effect of the dephasing noise on the state 

 |GHZ⟩〈GHZ| is obtained as follows : 

(30) ( )
2i

2i

1 000 000 e 000 111
p d

2 e 111 000 000 000



− 

 +
  

+ +  
  

In the above equation, we assume that the phase kicks 

are symmetric around zero, and the probability 

distribution function is even. We set the integral of this 

function equal to the value ( )1 2P− : 

(31) 
( )

( )' '

1 2P GHZ GHZ

P GHZ GHZ GHZ GHZ

−

+ +
 

In the above equation, we defined the state 

 |GHZ'⟩=( |000⟩‒|111⟩ )/√2. Due to the dephasing noise, 

with the probability (1‒ P), the  |GHZ⟩ state does not 

change, but with the probability of an error P, it changes 

into the  |GHZ'⟩ state: 

(32) ( )
ABC

ABC

ABC

GHZ GHZ

1 P GHZ GHZ

P GHZ GHZ

→

−

 +

 

Therefore, the noisy even rounds carrier is written as 

follows: 

(33) 
( )even

ABC

ABC

1 P GHZ GHZ

P GHZ GHZ .

 = −

 +
 

How does the noisy carrier work in even rounds? 

 |GHZ⟩ part of a carrier works as well as before, but we 

have to check the performance of  |GHZ'⟩ part. In even 

rounds, the message is encoded in the product state 

|q , q⟩1,2 (figure 4) and the CNOT operators used by 

Alice, Bob, and Charlie to upload and download the 

message are Ωeven = CB,2 CB,1 CA,2 CA,1. In delivering the 

message  |GHZ'⟩ works as follows: 

(34) 
( )

( )

even
1,2ABC

1,2ABC

000 111 q,q

000 111 q,q

 −

= −
 

 |GHZ'⟩ is acting as well as  |GHZ⟩, because at the end of 

the round, the message is correctly separated from the 

carrier. Alice, Bob, and Charlie apply the Hadamard 

operators on the carrier, turning it into the carrier of the 

odd rounds. We know that  H⊗3|GHZ⟩ABC = |0 ̃⟩ABC, but we 

should check the effect of Hadamard operators on 

 |GHZ'⟩: 

(35) 

( )( )
( )
( )

A B C ABC

ABC

ABC

A ABC BC ABC

H H H 000 111

001 010 100 111

0 1 1 0 1 .

  −

= + + + − − − −

= + + +

= + =
 

Therefore, the odd rounds noisy carrier is as follows: 

(36) ( )odd

ABC ABC
1 P 0 0 P 1 1 . = − +  

In odd rounds (figure 4), the message is encoded in 

an entangled state |q̃⟩1,2. How does the noisy carrier 

deliver the message? We already know that |0̃⟩ABC part 

of the carrier is working well, but we have to check the 
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performance of |1 ̃⟩ABC part. Alice uploads the message to 

the carrier by operator CA,1 or CA,2 : 

 (37) 

( )
( )( )

( )

( )
1,2

1,2

A,1 1,2ABC

A,1 A A 1,2BC BC

A 1,2BC

q

A 1,2BC

q

C 1 q

C 0 1 1 0 0,q 1, q

0 1 0,q 1, q

1 0 1,q 0, q .

 = + +
  

= +

+ +

 

Alice sends qubit 1 to Bob and qubit 2 to Charlie. The 

above equation shows that these qubits are in a 

maximally mixed state during transmission. At the 

destination, Bob and Charlie have to contribute to 

download the message from the carrier:  

(38) 

( )

( )
ABC

B,1 C,2 A 1,2 A 1,2BC BC

A A1,2 1,2BC BC

A A 1,2BC BC

1

C C 0 1 q 1 0 q

0 1 q 1 0 q

0 1 1 0 q .

 +
  

= +

= +

 

In the above equation, the message is separated from 

the carrier but delivered in a flipped form. The total 

CNOT operators in odd rounds are Ωodd = CB,1 CC,2 CA,1. 

So the performance of |1̃⟩ABC in the delivery of the 

message is as follows:   

(39) 
odd

1,2 1,2ABC ABC
1 q 1 q . =  

The dephasing noise effect on the secret-sharing 

protocol can be summarized as follows: In even rounds 

in which the message q is encoded in a product state 

|q , q⟩1,2, the carrier |GHZ⟩ get mixed with state |GHZ'⟩ 
which works as well as |GHZ⟩ state in delivering the 

message. In odd rounds, message q is encoded in an 

entangled state |q̃⟩1,2, and the carrier |0 ̃⟩ABC get mixed 

with |1 ̃⟩ABC state which flips the message. The message 

is received correctly with probability (1‒ P) and is 

flipped with the probability of error P. 

 

 

Figure 4. The effect of dephasing noise on the secret-sharing 

protocol with entangled carriers 

 

5.2. The effect of depolarizing noise 

Due to the depolarizing noise, the carrier |GHZ⟩ABC does 

not change with probability (1‒ P), but each of its qubits 

happens into a maximally mixed state with the error 

probability P: 

(40) ( )

ABC

CA B
ABC

GHZ GHZ

II I
1 P GHZ GHZ P .

2 2 2

→

 
− +   

 

 

Three qubits are in an eight-dimensional space. We 

can consider the following entangled states as the basis 

of eight-dimensional space: 

(41) 

( )

( )

( )

( )

( )

( )

( )

( )

1 ABC

1 ABC

2 ABC

2 ABC

3 ABC

3 ABC

4 ABC

4 ABC

1
GHZ 000 111 .

2
1

GHZ 000 111 .
2

1
GHZ 110 001 .

2
1

GHZ 110 001 .
2

1
GHZ 101 010 .

2
1

GHZ 101 010 .
2

1
GHZ 011 100 .

2
1

GHZ 011 100 .
2

= +

 = −

= +

 = −

= +

 = −

= +

 = −

 

The above states form a complete space for the carrier's 

qubits: 

(42) 
4

ABC i i i iABC ABC
i 1

I GHZ GHZ GHZ GHZ .

=

 = +  

Note that |GHZ1⟩ is indeed |GHZ⟩ state. Therefore, the 

even rounds noisy carrier is written as follows: 

,(43) 
( )even

1 1 ABC
4

i i i iABC ABC
i 1

1 P GHZ GHZ

P
GHZ GHZ GHZ GHZ

8
=

 = −

 + +
 

|GHZi⟩ and |GHZ'i⟩ are the components of the noisy 

carrier in even rounds (figure 5). To evaluate the carrier 

performance, we must examine the performance of each 

these components in delivering the message: 

(44) 

even
1 1ABC 1,2 ABC 1,2

even
1 1ABC 1,2 ABC 1,2

even
2 2ABC 1,2 ABC 1,2

even
2 2ABC 1,2 ABC 1,2

even
3 31,2 1,2ABC ABC

even
3 31,2ABC ABC

GHZ q,q GHZ q,q .

GHZ q,q GHZ q,q .

GHZ q,q GHZ q, q .

GHZ q,q GHZ q, q .

GHZ q,q GHZ q,q .

GHZ q,q GHZ q,q

 =

  =

 =

  =

 =

  =
1,2

even
4 4ABC 1,2 ABC 1,2

even
4 4ABC 1,2 ABC 1,2

.

GHZ q,q GHZ q, q .

GHZ q,q GHZ q, q .

 =

  =

 

In the above equation, in all cases, at the end of the 

round, the message is separated from the carrier. The 

state |q , q⟩1,2 is delivered correctly with the probability 

1‒3P/4, but one or both of its qubits get flipped with the 

error probability 3P/4. (Remember that no secret 

message is sent in even rounds). At the end of rounds, 



IJPR Vol. 22, No. 3 Stability of entangled carriers against continuous noise 139 

 

 

due to the Hadamard operators, |GHZi⟩ABC states turn into 

|0̃i⟩ABC states, and |GHZ'i⟩ABC states turn into |1 ̃i⟩ABC 

states: 

(45) 

1 ABC

1 ABC

2 ABC

2 ABC

3 ABC

3 ABC

4 ABC

4 ABC

0 000 011 101 110 .

1 111 100 010 001 .

0 000 011 101 110 .

1 111 100 010 001 .

0 000 011 101 110 .

1 111 100 010 001 .

0 000 011 101 110 .

1 111 100 010 001 .

= + + +

= + + +

= − − +

= − − +

= − + −

= − + −

= + − −

= + − −

 

The above entangled states also form a complete space 

for the three qubits carrier. (The space basis can be 

converted with unitary operators, Here, the Hadamard 

operators that parties apply at the end of the rounds play 

this role): 

(46) 
4

ABC i i i iABC ABC
i 1

I 0 0 1 1 .

=

= +  

Therefore, the noisy carrier of the odd rounds is as 

follows: 

(47) 
( )odd

1 1 ABC
4

i i i iABC ABC
i 1

1 P 0 0

P
0 0 1 1 .

8
=

 = −

+ +
 

Notice that |0̃1⟩ABC is the same as |0̃⟩ABC state, and 

|1 ̃1⟩ABC is also the same as |1 ̃⟩ABC state. To examine the 

noisy carrier performance in odd rounds (figure 5), we 

should analyze the performance of its components, 

which include |0̃i⟩ABC and |1 ̃i⟩ABC states: 

(48)

 

 

odd
1 11,2 1,2ABC ABC

odd
1 11,2 1,2ABC ABC

odd
2 21,2 1,2ABC ABC

odd
2 21,2 1,2ABC ABC

odd
3 31,2 1,2ABC ABC

odd
3 31,2 1,2ABC ABC

odd
4 41,2 1,2ABC ABC

odd

0 q 0 q .

1 q 1 q .

0 q 0 q .

1 q 1 q .

0 q 0 q .

1 q 1 q .

0 q 0 q .

 =

 =

 =

 =

 =

 =

 =

 4 41,2 1,2ABC ABC
1 q 1 q .=

 

In the above equation, in all cases, at the end of the 

round, the message gets detached from the carrier. In 

cases |0̃i⟩ABC (three qubits even parity), the message is 

received correctly, and in cases |1 ̃i⟩ABC (three qubits odd 

parity), the message is delivered in a flipped form. In 

odd rounds, with the probability (1‒ P/2) the message is 

delivered correctly, and with the error probability P, the 

message is received as a flipped form. 

   

 

Figure 5. The effect of depolarizing noise on the secret-sharing 

protocol with entangled carriers. 

 

6. Secret-sharing with continuous noise  
6. 1. The effect of continuous dephasing noise 

To investigate the effect of dephasing noise 

uninterruptedly, we assume that it is round 1, and the 

noise has been applied once, so the carrier is written in 

the form of equation (36). (We can also start from the 

equation (33), it does not affect the discussion). If the 

dephasing noise is to enter the carrier continuously, we 

must calculate its effect on all possible parts of the 

carrier. According to the calculations detailed in section 

5.1, we will have:  

(49) 
i i i i j j

j i

i i i i j j
j i

P
0 0 (1 P) 0 0 0 0

3

P
1 1 (1 P) 1 1 1 1

3





 
 → − +
  

 
 → − +
  





 

According to the above equation, the effect of 

continuous dephasing noise on each |0̃i⟩ABC is such that it 

is maintained in its type with probability (1‒ P), and 

becomes the linear combination of the other three types 

with the error probability P/ 3. (The same argument 

applies to |1̃i⟩ABC). The noise does not remove the carrier 

from the |0̃i⟩ABC and |1 ̃i⟩ABC space, no matter how many 

times it is applied. Since the performance of the protocol 

is compatible with this space, the added noise does not 

remove the protocol from its defined function. To enter 

the next round, parties affect Hadamard operators, the 

carrier becomes a linear combination of |GHZi⟩ABC and 

|GHZ'i⟩ABC. Therefore, we should calculate the dephasing 

noise for |GHZi⟩ABC and |GHZ'i⟩ABC in the same way 

described in section 5.1:  

(50) 

i i
' '

i i i i

' '
i i

' '
i i i i

GHZ GHZ

(1 P) GHZ GHZ P GHZ GHZ .

GHZ GHZ

(1 P) GHZ GHZ P GHZ GHZ .

→

− +

→

− +
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Due to the continuous dephasing noise, |GHZi⟩ABC 

states are preserved with probability (1‒P), and turned 

into |GHZ'i⟩ABC states with the error probability P. (A 

Similar argument applies to |GHZ'i⟩ABC states). Since the 

noise does not remove the carrier from |GHZi⟩ABC and 

|GHZ'i⟩ABC space, as many times as it acts, and since the 

protocol performance is compatible with this space, the 

added noise does not remove the protocol from its 

defined function. 

 

6. 2. The effect of continuous depolarizing noise 

The depolarizing channel effect is such that it preserves 

the original state with probability (1‒ P), and destroys all 

the information; turning it into a uniform and completely 

random state with the error probability P. To study the 

continuous effect of depolarizing noise, each time we 

want to apply the noise, we have to consider the linear 

combination of the carrier state and the maximally mixed 

state. (Because the carrier consists of three qubits, we 

should consider the maximally mixed state for three 

qubits: I /8). When the carrier is in |GHZi⟩ABC and 

|GHZ'i⟩ABC space, we have to expand I as an equation 

(42). But when the carrier state is in |0̃i⟩ABC and |1̃i⟩ABC 

space, we must expand I according to equation (46). 

With this account, the noisy carrier remains in |GHZi⟩ABC 

and |GHZ'i⟩ABC or |0̃i⟩ABC and |1 ̃i⟩ABC spaces. Since these 

spaces are compatible with the protocol performance, the 

continuous depolarizing noise does not remove the 

structure of the protocol. 

 

7. Conclusions 

This paper investigates the stability of the secret-sharing 

protocols with entangled carriers against the continuous 

dephasing and depolarizing noises. In this protocol, 

entangled states are shared as information carrier 

between the sender and receivers. It acts as a medium to 

which the sender uploads the message on one side, and 

the recipients download the message from which on the 

other side. The message is in a maximally mixed state 

during the transmission; It is hidden from the 

eavesdropper. We showed that despite the continuous 

noise, the carrier does not leave its space. Instead, it 

remains in two distinct spaces with the entangled basis 

that forms complete spaces for the carrier qubits. Since 

this protocol uses the entangled states as a medium of 

conveying the message, it seems that the strong 

correlations in entangled states, which are here the 

texture of the protocol, preserve it against noise. 
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