نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک ، دانشکده علوم پایه، واحد نراق، دانشگاه آزاد اسلامی

چکیده

مقادیر انرژی جنبشی کل (TKE) پاره­های شکافت برای شکافت برخی اکتنیدهای سنگین با کمک مدل نقطۀ جدایی بررسی و محاسبه شده ­اند. در ابتدا با تطابق مقادیر تجربی و نظری انرژی جنبشی کل پاره­های شکافت، مقادیر پارامتر تغییر شکل (β) پاره­های شکافت واکنش­ها به دست آمده­اند. سپس به بررسی تغییرات پارامتر تغییر شکل پاره­های شکافت و همچنین رفتار و شکل تغییرات انرژی جنبشی کل اکتنیدهای سنگین پرداخته شده است. این بررسی نشان می­دهد که مقادیر میانگین انرژی جنبشی کل برای اکتنیدهای سنگین­تر از کالیفرنیوم با مدل یوسانگ بهتر از مدل یونیک قابل پیش­بینی هستند. همچنین می­توان مقدار ‏TKE‏ را  با جمع انرژی کولنی و هسته­ای پاره­های شکافت برای اکتنید های سبک تقریب زد. البته این تقریب برای اکتنید های خیلی سنگین مانند فرمیوم صادق نیست؛ به این دلیل که ‏مقدار انرژی جنبشی قبل از نقطۀ جدایی این اکتنیدها با مقدار انرژی هسته­ای آنها اختلاف ‏زیادی دارد. در انتها مقادیر انرژی جنبشی کل پاره­های شکافت برای شکافت خودبه‌خودی  ‏‎242Am، ‏‎244Am، ‏‎244Cm، ‏‎246Cm، ‏‎248Cm،‎250Cf ‎‏ و ‏‎254Cf‏ با کمک مدل ارائه شده محاسبه ‏شده اند.‏

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Total kinetic energy of fission fragments in heavy actinide fission

نویسنده [English]

  • Payam Mehdipour Kaldiani

Department of Sciences, Naragh Branch, Islamic Azad University, Naragh, Iran

چکیده [English]

The total kinetic energy (TKE) of fission fragments for some heavy actinides fission is investigated and calculated using the scission point model. First, the deformation parameters of fission fragments are obtained by fitting the calculated results to the available experimental data. Then, the deformation parameters of fission fragments and the behavior of TKE distribution are investigated for heavy actinides fission. This indicates that the Usang model can better explaine the TKE distribution for actinides heavier than californium than the Unik model. Also, the TKE value can be approximated by the sum of the Coulomb and nuclear energies of the fission fragments for light actinides, but this approximation is not correct for very heavy actinides such as fermium. Because the values of pre-scission kinetic energy are very different from the nuclear potential energy in the heavy actinides region. Finally, the distributions of TKE for spontaneous fission of 242Am, 244Am, 244Cm, 246Cm, 248Cm, 250Cf,  and  254Cf are evaluated using the scission point model.

کلیدواژه‌ها [English]

  • total kinetic energy
  • neutron and spontaneous fission
  • fragments energy distribution
  • scission point model
  • heavy actinides
  1. P Möller and J Randrup, Rev. C 91 (2015) 044316.
  2. K Pomorski, et al., EPJ Web of Conferences 169 (2018) 00016.
  3. M R Pahlavani and S M Mirfathi, Rev. C 92 (2015) 024622.
  4. V Karpov, et al., Phys. G: Nucl. Part. Phys. 29 (2003) 2365.
  5. A Bulgac, et al., Phys. Rev. Let. 116 (2016) 122504.
  6. U Brosa, S Grossmann, and A Muller, s Rep. 197 (1990) 167.
  7. A Ruben, H Märten, and D Seeliger. Phys. A Hadrons Nucl. 338, 1 (1991) 67.
  8. P Mehdipour, of Atom. Nucl. 82 (2019) 450.
  9. B D Wilkins, E P Steinberg, and R R Chasman, Rev. C 14 (1976) 1832.
  10. J Moreau, K Heyde, and M Waroquier, Rev. C 28 (1983) 1640.
  11. M D Usang, et al., Sci. Rep. 9 (2019) 1525.
  12. J P Unik, et al., Proceedings of the third International IAEA Symposium on the Physics and Chemistry of Fission, Rochester (1973).
  13. Naik, H., et al., Phys. J. A 56, 9 (2020) 1.
  14. S S Belyshev, et al., Phys. Rev. C 91, 3 (2015) 034603.
  15. S I Mulgin, et al., Nucl. Phys. A 824, 1-4 (2009), 1.
  16. M Albertsson, et al., Phys. Rev. C 104, 6 (2021) 064616.
  17. P Mehdipour Kaldiani, Scr. 95, 7 (2020) 075306.
  18. P Mehdipour Kadiani, Phys (2021) 26.
  19. P Mehdipour Kaldiani, and M R. Pahlavani, J. Phys. 71 (2021) 651.
  20. A V Andreev, G G Adamian, and N V Antonenko. Rev. C 86, 4 (2012) 044315.
  21. V Y Denisov and I Y Sedykh, Phys. J. A 57, 129 (2021).
  22. P Mehdipour Kaldiani, Theor. Phys. 73, 7 (2021) 075303.
  23. H Paşca, et al., Nucl. Phys. A 969 (2018) 226.
  24. P Mehdipour Kaldiani,  Phys.45, 2 (2021) 024110.
  25. P Mehdipour Kaldian, Rev. C 102 (2020) 044612.
  26. P Mehdipour Kaldian, Atom. Nucl. 84, 1 (2021) 11.
  27. M Asghar, et al.,  Phys. A 334, 2 (1980) 327.
  28. F Pleasonton, et al., Rev. 8 (1973) 1018.
  29. H C Britt, et al.,  Rev. C 30 (1984) 559.
  30. R Hentzschel, et al., Phys. 571, 3 (1994) 427.
  31. D C Hoffman, et al., Physical Review C 41 (1990) 631.
  32. J E Gindler, et al., Rev. C 16 (1977) 4.
  33. A Ramaswami, et al., Rev. C 16 (1977) 716.
  34. A Gook, F J Hambsch, and M Vidali, Rev. C 90 (2014) 064611.
  35. E M Kozulin, et al., Tekh. Eksp. 1 (2008) 51.
  36. D C Hofman, et al., Rev. C 21 (1980) 637.
  37. E K Hulet, et al., Rev. C 40 (1989) 770.
  38. N Dubray, H Goutte, and J F Berger, Emission of Prompt Neutrons and Gamma Rays, Sinaia, Romania (2011).
  39. L Bonneau, P Quentin, and I N Mikhailov, Rev. C 75 (2007) 064313.
  40. A V Andreev, et al., Phys. J. A 22 (2004) 51.
  41. V Y Denisov and I Y Sedykh,  Phys. J. A 57 (2021) 129.
  42. J Blocki, et al., Phys. 105 (1977) 427.
  43. J Blocki and W J Swiatecki, Phys. 132 (1981) 53.
  44. X Bao, et al., Nucl. Phys. A 906 (2013) 1.
  45. N Sugarman and A Turkevich, “Radiochemical Studies: The Fission Product” McGraw-Hill (1951).
  46. H Umezawa, S Baba, and H Baba, Phys. A 160 (1971) 65.
  47. M R Pahlavani and P Mehdipour, J. Mod. Phys. E 27 (2018) 1850018.
  48. M R Pahlavani and P Mehdipour. Sci. Tech. 29 (2018) 146.
  49. A Gook, et al., Rev. C 96 (2017) 044301.
  50. D Hoffman, et al., Phys. Rev. C 22 (1980) 1581.
  51. D C Hoffman, Chem. Res. 17, 7 (1984) 235.
  52. P Mehdipour Kaldiani and M R Pahlavani, Res. Many-body Syst. 7 (2017) 37 (In Persian).
  53. M R Pahlavani and P Mehdipour Kaldiani, 23th Iranian Nuclear Conference, Tehran (2016) (In Persian).

ارتقاء امنیت وب با وف ایرانی