نوع مقاله : مقاله پژوهشی
نویسندگان
1 گرایش مهندسی پزشکی، گروه مهندسی برق، دانشکده مهندسی ، دانشگاه فردوسی مشهد، مشهد
2 پژوهشکدۀ فیزیک، پژوهشگاه دانشهای بنیادی(IPM)، تهران
چکیده
با توجه به ساختار الکتریکی- شیمیایی سلولهای عصبی، انتظار میرود که اعمال تحریک الکتریکی بر دینامیک شبکههای عصبی تأثیر گذاشته، و فعالیت مغزی را تقویت یا تضعیف کند. برهمین مبنا در دو دهۀ گذشته، استفاده از تحریک الکتریکی برای درمان اختلالات عصبی مانند افسردگی، صرع، پارکینسون، و … مقبولیت زیادی پیدا کردهاست. البته پاسخ بافت عصبی به تحریک بیرونی، خطی نیست، یعنی مطالعات عملی بر روی مدلهای حیوانی و نیز مدلسازیهای محاسباتی، نشان میدهند که تغییر در دامنه و الگوی تغییرات تحریکِ الکتریکی میتواند به نتایج کاملاً متفاوتی منجر شود. در اغلب روشهای تحریک، میدان الکتریکی ناشی از تزریقِ مستقیم جریان به سَر (و مغز) شدت نسبتاً پایینی دارد. درک ناقص از سازوکار و پیچیدگیهای تحریکِ الکتریکی، گاهی پزشکان را به اتخاذ رویکردِ مبتنی بر آزمون و خطا وادار میسازد؛ یعنی عملا بیمار را در معرض خطر قرار میدهد. ما با استفاده از مدلسازی محاسباتی، و به صورت تحلیلی پاسخ غشای تک نورون به تحریک جریانی خارج سلولی را که در مکان و زمان نوسان میکند محاسبه کرده، و اثر ویژگیهای مختلف تحریک خارج سلولی بر پاسخ نورونی را بررسی کردهایم. مشخصاً، ناهمگنی مکانی میدان الکتریکی، و اثرگذاری آن بر فعالیت نورون را، با استفاده از مدل توسعهیافتۀ نقطهای که ساده اما حاوی اطلاعات هندسی سلول عصبی است، اولینبار و بهطور کامل در نظر گرفتهایم. نتایج به دستآمده نشان میدهند که پاسخ وابسته به بسامد زمانی نورونها شدیداً به بسامد و فاز مکانی تحریک بستگی دارد. در واقع شدت ناهمگنی میدان در مکان میتواند رفتار بسامدی نورون را تحت تأثیر قرار دهد. نتایج این مطالعه به طراحی روشهای بهینه برای تحریک بافت عصبی، و همچنین تخمین میزان خطرات ناشی از قرار گرفتن ناخواسته در میدان های الکتریکی کمک میکند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Studying the effect of oscillating electric field in time and space on neuronal activity using the extended point neuron model
نویسندگان [English]
- Maryam Ghorbani 1
- Firoozeh Naderkam firoozi 1
- Seyyed Nader Rasuli 2
1 Biomedical Engineering Branch, Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
چکیده [English]
According to the electrical-chemical structure of nerve cells, it is expected that applying electrical stimulation affects the dynamics of neural networks, and strengthens or weakens brain activity. On this basis, in the last two decades, the use of electrical stimulation to treat neurological disorders such as depression, epilepsy, Parkinson's, etc. has gained wide acceptance.But the response of nerve tissue to external stimulation is not linear, that is, empirical studies on animal models as well as computational modeling show that changes in the amplitude and pattern of changes in electrical stimulation can lead to completely different results. However, in most stimulation methods, the electric field resulting from direct injection of current to the head (and brain) is relatively low in intensity. But the incomplete understanding of the mechanism and complexities of electrical stimulation sometimes forces physicians to adopt a trial-and-error approach. It means that it actually puts the patient at risk. Using computational modeling, we have analytically calculated the response of the single neuron membrane to the extracellular current stimulation that oscillates in space and time, and investigated the effect of different characteristics of the extracellular stimulation on the neuronal response. In particular, we have for the first time fully considered the spatial non-homogeneity of the electric field, and its effect on neuron activity, using the extended point model, which is simple but contains the geometrical information of the neuron. The obtained results show that the time-frequency-dependent response of neurons strongly depends on the spatial frequency and phase of stimulation. In fact, the intensity of field non-homogeneity in space can affect the frequency behavior of the neuron. The results of this study help to design optimal methods for nerve tissue stimulation, as well as to estimate the amount of risks caused by unwanted exposure to electric fields.
کلیدواژهها [English]
- brain electrical stimulation
- nonhomogeneous electric field
- ball and stick model
- extended point neuron
- frequency behavior
- G Galli, et al., Social cognitive and affective neuroscience 17 (2022) 4.
- A M Lozano, et al., Nature Reviews. Neurology15 (2019) 148.
- M Sabé, et al., Neuroscience & Biobehavioral Reviews 152 (2023)
- J Frey, et al., Frontiers in Neurology 13 (2022) 825178.
- R. Cajal, NobelPrize.org (1906).
- Alcohol health and research world 21, 2 (1997) 107.
- A L Hodgkin, and A F Huxely, The Journal of physiology117 (1952) 500.
- H H Dale, et al., Journal of Pharmacology and Experimental Therapeutics 6 (1914) 147.
- O Loewi, et al., Pflügers Archiv European Journal of Physiology 189 (1921) 239.
- A E. Hady and B. B. Machta, Nature communications 6 (2015)
- E Kandel, et al., “Principles of Neural Science”, fifth edition, McGraw-Hill Education / Medical ( 2014).
- Z Esmaeilpour, et al., Hum. Neurosci 11 (2017) 71.
- V Sreekumar, et al., Front Neurosci 11 (2017) 650.
- J Lian, et al., J Physiol 574 (2003) 427.
- L Marshall, et al., Nature 444 (2006) 610.
- M A Nitsche, et al., Brain Stimul 1 (2008) 206.
- A L Hewitt, et al., Clin. Pract. 10 (2020) 324.
- J L Ostrem and P. A Starr, Neurotherapeutics 5 (2008) 320.
- N Zangiabadi, et al., Neurol 10 (2019) 1.
- C J Hartmann, et al., Adv. Neurol. Disord 12 (2019) 1.
- P J Karas, et al., Frontiers in Neuroscience 12 (2019) 998.
- U R Mohan , et al., Brain Stimul. 13 (2020) 1183.
- F Aspart, et al., PLOS Comput. Biol. (2016) 1.
- F Aspart, et al., PLOS Comput. Biol. (2018)1.
- Z Gilbert, et al., Clinical Neurophysiology 152 (2023).
- E H S Toloza, et al., Neurophysiol. 119 (2018) 1029.
- C Cakan and K. Obermayer, PLOS Comput. Biol. (2020) 1.
- J Ladenbauer and K Obermayer, PLOS Comput. Biol. (2019) 1.
- R D Saunders and J. G. R Jefferys, Health Phys. 83 (2002) 366.
- A Liu , et al., Commun. 9 (2018).
- M Bikson, et al., J Physiol. 1 (2004) 175.
- T Radman, et al., Brain Stimul. 2 (2009) 215.
- M Vöröslakos, et al., Commun. 9 (2018) 483.
- J K Deans, et al., J Physiol. 2 (2007) 555.
- J T Francis, et al., Neurosci. 23 (2003) 7255.
- S Ozen, et al., Neurosci. 30 (2010) 11476.
- D Reato, et al., Neurosci. 30 (2010) 15067.
- T Radman, et al., Neurosci. 27 (2007) 3030.
- M R Krause, et al., Natl. Acad. Sci. 116 (2019) 5747.
- L Johnson, et al., Adv. (2020) 1.
- S Ronchi, et al., Hum. Neurosci. 13 (2019).
- C A Anastassiou, et al., Publ. Gr. 14 (2011) 217.
- D Reato, et al., Hum. Neurosci. 7 (2013) 1.
- F Frohlich and D. A Mccormick, Neuron 67 (2010) 129.
- C S Herrmann, et al., Hum. Neurosci. 7 (2013) 1.
- L Marshall and S Binder, Hum. Neurosci. 7 (2013) 614.
- R F Helfrich, et al., Biol. 24 (2014) 333.
- M M Ali, et al., Neurosci. 33 (2013) 11262.
- E Negahbani, et al., Neuroimage (2019) 3.
- M Schellenberger Costa, et al., PLoS Comput. Biol. 12 (2016) e1005022.
- D Tranchina and C Nicholsont, J. 50 (1977) 1139.
- C A Anastassiou, et al., Neurosci. 30 (2010) 1925.
- B Howell and C. C Mcintyre, Neuromdulation 24 (2020) 843.
- C Koch, “BIOPHYSICS OF COMPUTATION Information Processing in Single Neurons” Oxford University Press (1999).
- H C Tuckwell, “Introduction to theoretical neurobiology”, Volume 1. Cambridge University Press (1988).