نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک دانشگاه زنجان، زنجان

چکیده

پاسخ اپتیکی نانوذرات پلاسمونی طلا و نقره به موج تخت فرودی با شدت W/cm^2 3/13 
برای دو ساختار هندسی کرۀ کامل و یک چهارم کره در گسترۀ 1 تا 500 نانومتر مدل‌سازی شده است. معادلۀ هلمهولتز با روش FEM و با اعمال شرایط مرزیPEC و PMC با انتخاب مش‌بندی مناسب،  برای هر یک از ساختار‌های هندسی به طور مستقل حل شده و طیف‌های جذبی و پراکندگی به دست آمده‌اند. الگوی پراکندگی برای نانوذرات طلا در شعاع‌های انتخابی 20، 50، 80، 100 و nm 500 نشان می‌دهد کمینه شدت پراکندگی برای سه شعاع اول به ترتیب در زاویه‌های 90، 85 و 65 درجه اتفاق می‌افتد و با افزایش شعاع کمینه‌های مربوطه از زاویۀ90 درجه فاصله گرفته تعداد آنها نیز افزایش می‌یابد. مدل‌سازی در شعاع‌های بالاتر از 100 نانومتر نانو جت‌های پلاسمونی تولید می‌کند و در شعاع‌های کمتر از 30 نانومتر رفتار دو‌قطبی بروز می‌کند. محدودۀ شعاعی بیشترین تقویت سطحی میدان الکتریکی برای نانوذرات نقره را تعیین کرده‌ایم. کوک‌پذیری مکان SPR با ثابت دی‌الکتریک محیط و شعاع نانوذرات را بررسی و نشان داده‌ایم جا‌به‌جایی قرمز برای نانوذرات  5 ، 10 ، 15 ، 20 ، 25 و 30 نانومتری به ترتیب برابر 56 ، 72 ، 206 ، 232 ، 252 و 262 نانومتر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling the optical response of plasmonic nanoparticles

نویسندگان [English]

  • Yeganeh Ranjouri
  • Hamid Nadjari

Physics Department, Zanjan University, Zanjan, Iran

چکیده [English]

In this research, the optical response of gold and silver plasmonic nanoparticles to incident plane wave with intensity of 13.3 W/cm2 has been modeled for two geometrical structures of a whole sphere and a quarter sphere in the radial range 1 to 500 nm. The Helmholtz equation was solved by the FEM method and by applying the PEC and PMC boundary conditions with the appropriate mesh selection, for each of the geometrical structures independently, and the corresponding absorption and scattering spectra were obtained. The scattering pattern for gold nanoparticles at selected radii of 20, 50, 80, 100 and 500 nm shows that the minimum scattering intensity for the first three radii occurs at angles of 90, 85 and 65 degrees, respectively. As the radius increases, the minima are observed far away from the 90- degree angle, and the number of them also increases. Modeling at radii greater than 100 nm leads to the production of plasmonic nanojets while dipolar behavior occurs below 30 nm radius. We have determined the radial range of the maximum surface enhancement of the electric field for silver nanoparticles. The tunability of the SPR location with the dielectric constant of the medium and the radius of the nanoparticles has been investigated. We have shown that the red shift for 5, 10, 15, 20, 25 and 30 nm nanoparticles equals to 56, 72, 206, 232, 252 and 262 nm, respectively.

کلیدواژه‌ها [English]

  • plasmonic nanoparticles
  • absorption spectrum
  • dielectric function
  • near field enhancement
  • far field pattern
  1. V Amendola , R Pilot , M Frasconi ,O M Maragò, and M A Iatì, Phys.: Condens. Matter 29 (2017) 203002.
  2. M B Cortie and A M McDonagh , Rev. 111 (2011) 3713.
  3. G Baffou and H Rigneault, Rev. B 84, 3 (2011) 035415.
  4. G Baffou and H Rigneault, Laser Photonics Rev. 7, 2 (2013) 171.
  5. Frank-Hubenthal , Comprehensive Nanoscience and Nanotechnology 1 (2019)61.
  6. R Borah and S W  Verbruggen, Phys. Chem. C 124, 22 ( 2020) 12081.
  7. J M Terrés-Haro, F  J  Ibáñez-Civera, J  Monreal-Trigo, A  Hernández-Montoto, R  Masot-Peris, and R  Martínez-Máñez, Bioengineering 10 (2023)232.
  8. E Mencarelli, L Fano, L Tarpani, and L Latterini, Materials Today Proceedings 2 (2015) 161.
  9. D Pines, Reviews of Modern Physics 28 (1956) 184 .
  10. C F Bohren and D R  Huffman, “ Absorption and Scattering of Light by Small Particles”  New York, Wiley (1983).
  11. F Tian, F Bonnier, A Casey, and H J Byrne, Analytical Methods 6 (2014) 22.
  12. X Fan , W Zheng and D J Singh, Light: Sci. & App. 3 (2014) e179.
  13. R Gan, H Fan, Z Wei, H Liu, Sh Lan and Q Dai , Nanomaterials 9 (2019) 711.
  14. P B Johnson and R W  Christy, Rev. B 6 (1972) 4370.
  15. W C Mundy, J A  Roux and A M Smith, JOSA 64, 12 (1974)1593.
  16. M Kerker, D-S  Wang, and C L Giles, JOSA 73, 6 (1983) 765.
  17. C Mätzler , “MATLAB Functions for Mie Scattering and Absorption” , Institut für Angewandte Physik, University of Bern–CH (2002).
  18. B T Draine and P J  Flatau, JOSA A: Optics and Image Science, and Vision 11, 4 (1994) 1491.
  19. M K Oh, S Park, S K Kim,  and S -H Lim , Comp. & Theo. Nanoscience 7, 6 ( 2010) 1085.
  20. Jianming Jin, “The Finite Element Method in Electromagnetics”, 2nd Edition. Wiley, IEEE Press (2002).
  21. P Silvester , Alta Frequenza 38 (1969).
  22. P L Arlett, A K Bahrani, and O C  Zienkiewicz, IEE 115, 12( 1968) 1762.
  23. P Monk, “Finite element methods for Maxwell's equations”, Oxford University Press (2003).
  24. Y R Davletshin , COMSOL Practice: Finite element calculation of the optical properties of plasmonic nanoparticles.
  25. Y R Davletshin, et al., ACS Nano 6, 9 (2012)
  26. V R Kumar and S Soni, Plasmonics 17 (2022)107.
  27. J Grand and E Le Ru, Plasmonics 15 (2020) 109.
  28. J P Berenger, Comp. Phys. 114 (1994) 185.
  29. A Ashkin, J M Dziedzic, J E Bjorkholm, and S Chu , Optics letters 11, 5 (1986) 288.
  30. A Ashkin, Rev. Lett. 24 (1970)156.
  31. P Zijlstra, J W M Chong and M  Gu , Nature 459 (2009) 410.
  32. A Bek, et al., Nano Letters 8 (2008) 485.

تحت نظارت وف ایرانی