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Abstract 

In this article, the physical properties of the surface of the CdS/Si(p) material under the influence of a magnetic field were 

studied . The dependence of the density of surface states of the p-type Si(p) semiconductor on the magnetic field and 

temperature has been studied. For the first time, a mathematical model has been developed to determine the temperature 

dependence of the density of surface states of a semiconductor under the influence of a strong magnetic field. 

Mathematical modeling of processes was carried out using experimental values of the continuous energy spectrum of the 

density of surface states, obtained at various low temperatures and strong magnetic fields, in the band gap of silicon. The 

possibility of calculating discrete energy levels is demonstrated 

Keywords: Density of surface states, magnetic field, heterostructure, deep levels, capacitance-voltage characteristic, mathematical modeling, 
temperature 

1. Introduction 

As is known, one of the pressing problems is the study of 

the electrical, optical and magnetic properties of the 

CdS/Si(p) semiconductor heterostructure , which is 

widely used as photoelectric converters. In particular, the 

formation of defects at the heterointerface CdS/Si(p) 

negatively affects the electrical properties of these 

semiconductor materials, and the density of surface states 

at deep energy levels leads to deterioration in the 

photovoltaic efficiency of the heterostructure. 

To date, several studies have been conducted to measure 

the density of surface states and determine its dependence 

on external factors. In particular, in [1-23], the density of 

surface states in semiconductor structures was determined 

by the capacitance-voltage (CV) method. At the same 

time, a method was proposed for calculating the densities 

of surface states in semiconductors based on the 

frequency dependence of the capacitance-voltage 

characteristic for states in which the charge of surface 

states depends on the applied constant reverse bias voltage 

[24-35]. But these works did not consider the influence of 

a magnetic field on the density of surface states at the 

semiconductor-insulator interface. And also, a perfect 

mathematical model has not been developed to determine 

the dependence of surface states on the magnetic field and 

temperature. 

The main purpose of the work is to model the dependence 

of the densities of the surface states of a heterostructured 

CdS/Si(p) semiconductor on the magnetic field. 

2. MODEL 

2.1 Dependence of the maximum reverse bias voltage 

on a strong magnetic field in semiconductor 

heterostructures. 

Since the bulk charge field of a CdS/Si(p) heterostructure 

semiconductor is mainly concentrated in Si(p), 

calculating the densities of silicon surface states up to the 

bandgap is sufficient. In this case, from the band diagram 

Si(p), presented in Figure 1, one can trace the process of 

charge distribution at deep levels and, since the sample is 

p-type, the energy levels in surface states are filled with 

cavities, starting with EV . According to the Fermi level 

rule, the energy levels of a heterojunction are filled with 

holes up to the quasi- Fermi level. However, energy levels 

above the quasi- Fermi levels are considered empty. 
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Fig. 1. Band diagram of the base part of the CdS/Si(p) 

heterostructure at reverse bias, taking into account deep levels 

(ESS - deep levels of surface states, Et - discrete deep levels in 

the bulk of the base region) [1]. 

When determining the density of surface states, the 

capacitance -voltage (CV) method is used. When 

measuring the CV characteristic, the constant voltage 

corresponds to the reverse bias voltage of the 

heterostructure. The increase in the bending of the energy 

bands in Fig.1 and the expansion of the space charge 

region is directly proportional to the value of the reverse 

voltage. However, increasing the reverse voltage value 

causes deeper levels in surface states to become filled with 

holes. This will make it possible to control the quasi-

Fermi levels. Si(p) is calculated starting from the valence 

field spin. 

Deep energy levels at the interface of CdS and Si(p), that 

is, at the heterointerface, are associated with reverse 

voltage and are expressed as follows [1]: 

( ) SS VE E q Ф V− = −  (1) 

where ESS  is the value of the deep energy level on the 

surface in the current state, q is the charge value, Ф is the 

effective value of the contact potential difference, V is the 

reverse voltage. 

If we increase the value of the reverse voltage to the 

maximum degree, 
max

SSV V=  this will lead to the quasi-

Fermi levels reaching the conduction band Si(p). And this 

will be the reason that ESS will be equal to EC . In this case, 

EC–Si(p) is the bottom of the conduction band. Therefore, 

ESS =EC , then equation (1) is written as: 

( )  Ф max

C V SSE E q V− = −  (2) 

Considering that 
C V gE E E− =  (silicon band gap), the 

maximum reverse voltage can be determined from (2): 

gmax

SS

qФ E
V

q

−
=  (3) 

As a result of the influence of external factors on 

semiconductor structures, their properties will radically 

change. One of the main dynamic parameters of 

semiconductors is that the band gap is highly dependent 

on temperature, pressure, magnetic field and strain. In 

particular, the dependence of the band gap on the 

magnetic field and quantum well thickness was studied in 

[36-39]. The following analytical expression is derived 
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( ) ( )
2

2 1

2

2 2 2 2
2 2

2 2

, , 0

1 1

2 2

2 2

d

g g

e e p p

C L C L

e p

e p

T
E B T d E

T

N N

h h
n n

m d m d





 

 

= −
+

    
+ + + +    

    

 
+ +  
 

ħ ħ  (4) 

Here, e

C e

C

eB

m
 =ħ ħ , p

C p

C

eB

m
 =ħ ħ  – magnetic field 

energy; 

( )0gE - band gap at T = 0 K ; 

1 2,   - thermal coefficients in the empirical equation of  

Varshni ; 

, e p

L LN N - number of Landau levels in the conduction 

band and valence band; 

d- is the thickness of the quantum well; 

, e pn n  – number of dimensional quanta in allowed zones; 

,e pm m  are the effective masses of the electron and hole. 

The physical processes occurring on the surface of the 

sample are similar to a quantum well . The reason for this 

is that the study is limited to two dimensions, both energy 

states in the plane and energy spectra in the quantum well. 

It follows from this that the object is a heterostructure or 

the quantum well condition is satisfied, equation (4) is 

applicable to the heterointerface of states . When Si(p) is 

exposed to a strong magnetic field at the heterointerface , 

according to equation (3), the value ( ), ,gE B T d  at 

constant low temperature will increase slightly, and the 

maximum value of the reverse bias voltage will decrease 

to reduce 
max

SSV . Considering that the heterostructure 

CdS/Si(p) does not have a quantum well, and also (3) and 

(4), the dependence of the maximum reverse bias voltage 

on the quantizing magnetic field can be found as follows: 
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 (5) 

In experiments, the density of surface states at room 

temperature (T=300 K) was calculated using the CV 

method. Taking into account deep energy levels, the 

effective value of the contact potential difference is equal 

to Ф = 0.11 V [1], Varshni coefficients for silicon 
4

1 7.021*10 −= ; 
2 1108 =  K; ( )0 1.17gE eV=   

[40]. 



 

 

 

Fig. 2. Graph of the dependence of the maximum voltage 

displacement 
max

SSV  on the magnetic field B. 

If consider *e e

C p Cm m m= =  and for the first Landau 

level, 0e p

L LN N= =  then equation (5) can be written as: 
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Using these parameters, we will plot the dependence of 

the magnetic field induction B for a semiconductor with a 

heterostructure CdS/Si(p), taking into account the value of 

the maximum bias voltage 
max

SSV  obtained by equation (6) 

(Fig.2): 

2.2 Simulation effect of a strong magnetic field on the 

temperature dependence of the density of surface 

states in semiconductor heterostructures. 

The low-frequency capacitance-voltage characteristics of 

a sharp pn junction diode can be described for a 

heterostructure semiconductor CdS/Si(p). Then the low-

frequency capacitance-voltage of the heterostructure is 

calculated using the following expression [1]: 

( )

( )
0lf

lf
2

a t

d d

q N Ndq
C S

dV V V V

 +
= =

− −
 (7) 

Here, 
1 fq - the ionic charge determines the low-frequency 

CV characteristics;   
aN  - concentration of acceptor 

impurity; 
tN - electron concentration at deep levels; 

dV  

– contact potential difference; 
dV – the amount of 

reduction in the contact potential difference CdS/Si(p) due 

to the influence of deep levels. Then 
d dV V Ф− = . In 

equation (7), the value of V will vary from 0 to 
max

SSV .  

Then, if we integrate (7) over V in the interval from 0 to 
max

SSV  and ( ),max

SSV B T  considering 𝑞lf  can be defined 

as follows: 
max ( , )

0
( )

SSV B T

l SS lfq f q C V dV= =   (8) 
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0 2
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 +
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−  

In addition, the amount of ionized charge on the surface 

depends on the acceptor concentration and the 

concentration of deep levels. This is calculated as follows. 

( )SS a tq q N N S= +  (9) 

δ – part of the space charge region in which recharging of 

deep level _ 

From Fig.1. δ is defined as: 

( )0

2

pt F
W

a

q E E
W

q N




−
− =  (10) 

In this case, the dependence of W on V has the following 

form [1]: 

( )
( )

0SW V
C V


=  (11) 

Using (10) and (11), we find δ: 

( )

( )0
0

2
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a

q E E WS

C V q N
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

−
= −  (12) 

EF  for Si(p) relative to the valence band top is determined 

as follows [1]: 

 
p

a
F V

V

N
E E kTln

N

 
= −  

 

 (13) 

From (13) we get: 
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Let us connect Et with (14): 
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If we replace Et on ESS for surface states and use equation 

(1), we obtain: 

( ) ( )
p

V
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a
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 (16) 

For surface states from (12), substituting (16) instead of 

( )
pt FE E− , we obtain the following expression: 
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The density of surface states NSS at the heterointerface is 

related to the volume concentration at the deep level as 

follows: 

SS t SSN N =  (18) 

According to [1],  SS  calculated based on the condition 

max

SSV V=  and also taking into account 

( ) ( )
2

1

2

0g g

T
E T E
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+
 , we calculate (17), then for 

( ),SS B T  let's get: 
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Using (8), (9), (18) and (19), we find the dependence of 

the density of surface states on a strong magnetic field: 

( ) ( ) ( )lf  
0

1 max
SSVB B

SS a SSN N C V dV
qs

= −   (20) 

Thus, using (19) and (20), we determine the dependence 

of the density of surface states, determined by the CV 

method, on a strong magnetic field: 
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If in this expression B 0→ , then the value of the density 

of surface states returns to the expression presented in [1]. 

This proves that our proposed mathematical model is 

correct from a theoretical point of view. 

In the proposed mathematical model, ( )SSN B  cannot 

fully explain the temperature dependence of the densities 

of surface states according to equation (21). Because at 

low temperatures ( )SSN B  according to (21) practically 

does not change. That is, the value of α1 is about 10-4 for 

all materials, while α2 can only be obtained at higher 

temperatures, such as 100 K, according to [40]. Therefore, 
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In addition, member V

a

N
kTln

N

 
 
 

 in equation (21), also 

has virtually no effect on the dynamics ( )SSN B   of the 

temperature dependence. To determine the temperature 

dependence of the density of surface states, the 

probability of thermal generation of charge carriers in 

deep energy levels (zones close to the center of the band 

gap) is used. 

It is known that the probability of the time of release of 

surface states depends on the temperature and the nature 

of the center of the band gap. The probability of releasing 

the energy level ESS at deep levels is determined by the 

equation [24,25,41]: 
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E
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 (23) 

Here , )( SSE - electron release time from 0 to ESS in deep 

energy levels . Of course, as the ESS value increases, this 

will take longer. According to [42,43] (ESS), the function 

strongly depends on ESS and kT : 

( ) 0, ,
)

SS
SS

E
E T t exp
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 (24) 

Here, 
0 n CN =  is a constant coefficient. 

From (23) and (24) we determine ( ), ,SSE T t : 

( )
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 (25) 

(25) expresses the dependence of the probability of 

discharge of energy levels ESS of charge carriers in the 

surface state on temperature. 

It is known from the scientific literature that the 

dependence of the number of surface states on time is 

determined by the following expression [24,25]: 

( ) ( ), ,
c

v

E

SS SS
E

N t N E T t dE=   (26) 

In expression (26), the value of NSS is a quantity 

independent of energy, equal to the density of surface 

states calculated by the CV method in [1]. In addition, the 

NSS(B) we propose also returns to the NSS specified in [1] 

when B→0. In this case, if we substitute (21) into (26) and 

consider it as an integral over the energy of surface states 

over a constant period of time (t=const), the number of 

surface states is determined as follows: 

( ) ( ) ( ), . ,
c

v

E

SS SS SS
E

N E BT N B E T dE=   (27) 

The product of the number of surface states N(E,B) and 

the energy ESS is called the energy density of surface 

states. In it, as a result of differentiation (27) by ESS, 

expression (27) will look like this: 

( )
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N
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SS SS SSi
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d E T
N E BT N B

dE



=

=   (28) 

NL – number of Landau levels 

Equation (28) expresses the influence of a strong 

magnetic field on the temperature dependence of the 

density of energy surface states. 

3. Discussion and results. Processing of 

experimental results. 

Now, based on the proposed model, the density of surface 

states under the influence of external factors can be 

applied to semiconductor structures. 



 

 

 

Fig.3. The influence of a magnetic field on the density of 

surface states in Bi-Si-Al structures (based on Si).  1- B=0 

Tl, 1`- B =0.17 Tl, T=300 К [44]. 

 

1- B =0 T, T =300 K, 2- B =0 .17 T, T =300 K 
Fig. 4. Modeling the influence of a magnetic field on the 

density of surface states in Bi-Si-Al structures (based on Si) at 

room temperature. Calculated using equation (28). 

In particular, in [44-47], experimental results were 

obtained for the dependence of the influence of the density 

of surface states in metal-oxide-semiconductor structures 

on radiation and magnetic fields. That is, in [44], the effect 

of a magnetic field on the density of surface states of the 

Bi-Si-Al semiconductor structure at room temperature 

was determined (Fig.3). In Fig. 3 shows graphs of NSS(E) 

versus E, with magnetic fields B=0 and B=0.17 Tl. As can 

be seen from this figure, the experiment observed a 

displacement along the OY axis (NSS axis ) when exposed 

to a magnetic field. However, a mechanism to explain the 

reasons for the results of this experiment has not been 

developed. 

However, the mathematical model we proposed (equation 

28) allows us to interpret the results of the experiment. For 

example, applying the physical parameters given in [44] 

to equation (28). That is, for the Bi-Si-Al structure (Si 

surface) ( )0 1.12 gE eV= , B=0.17 Tl, T=300 K, 

Ф=0.11V. In Fig.4 shows NSS(B,T), obtained by equation 

(28), depending on various magnetic fields. Comparing 

the graphs of experiment (Fig.3) and theory (Fig.4), we 

can say that the results are close to each other 

qualitatively, of course, when certain laws are fulfilled. 

 

a) 1- B =0 T, T =200 K, 2- B =0 .17 T, T =200 K 

 

b) 1- B=0 T, T=50 K, 2- B=0 .17 T, T=50 K 

 

c) 1- B=0 T, T=10 K, 2- B=0 .17 T, T=10 K 
Fig.5. Modeling the temperature dependence of the density of 

surface states in the Bi-Si-Al structure (based on Si) under the 

influence of a magnetic field. Calculated using equation (28). 

a) 1- B=0 T, T=200 K,   2- B=0 .17 T, T=200 K 

b) 1- B=0 T, T=50 K,   2- B=0 .17 T, T=50 K  

c) 1- B=0 T , T=10 K,   2- B=0 .17 T, T=10 K 

Another advantage of the proposed model is that using 

equation (28) it is possible to calculate the experimental 

results at low temperatures and strong magnetic fields. In 

Fig.5 shows the dependence NSS(E,B,T) on T for magnetic 

field induction values B=0 and B=0.17 Tl . As the 

temperature decreases, the continuous energy spectrum 

splits into discrete Landau levels. 



 

 

Conclusions 

The following conclusions were made during the study:  

- for the first time, the dependence of the density of 

surface states on temperature and magnetic field for 

semiconductor heterostructural materials was 

theoretically explained; 

- a new analytical expression is proposed for calculating 

the influence of a magnetic field on the density of 

surface states at the semiconductor-insulator interface; 

- a mathematical model has been developed that 

determines the influence of a strong magnetic field on 

the temperature dependence of the density of surface 

states in semiconductor heterostructures; 

- based on the proposed model, the division of continuous 

energy spectra measured at room temperature and under 

the influence of a strong magnetic field into discrete 

levels at low temperatures is explained; 

a physical mechanism has been developed for the shift of 

discrete energy levels into the band gap at different 

magnetic field values. 
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