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Abstract

In this article, the physical properties of the surface of the CdS/Si(p) material under
studied . The dependence of the density of surface states of the p-ty
temperature has been studied. For the first time, a mathematical mod
dependence of the density of surface states of a semicgnduc

Mathematical modeling of processes was carried out using e
density of surface states, obtained at various low temperatures a
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1. Introduction

As is known, one of the pressing pr:
the electrical, optical and magnetic p
Cds/Si(p) semiconductor heterg

operties of these

nsity of surface states

0 deterioration in the
eterostructure.

at deep energy le

To date, several St
the densSiiy,0f surface States and determine its dependence
particular, in [1-23], the density of

iconductor structures was determined

0d was proposed for calculating the densities
of surface states in semiconductors based on the
frequency dependence of the capacitance-voltage
characteristic for states in which the charge of surface
states depends on the applied constant reverse bias voltage
[24-35]. But these works did not consider the influence of
a magnetic field on the density of surface states at the
semiconductor-insulator interface. And also, a perfect
mathematical model has not been developed to determine
the dependence of surface states on the magnetic field and
temperature.
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possibility of calculating discrete energy levels is demonstrated

influence of a magnetic field were
i(p) semiconductor on the magnetic field and
een developed to determine the temperature
e influence of a strong magnetic field.
lues of the continuous energy spectrum of the
g magnetic fields, in the band gap of silicon. The

cture, deep levels, capacitance-voltage characteristic, mathematical modeling,

The main purpose of the work is to model the dependence
of the densities of the surface states of a heterostructured
CdS/Si(p) semiconductor on the magnetic field.

2. MODEL

2.1 Dependence of the maximum reverse bias voltage
on a strong magnetic field in semiconductor
heterostructures.

Since the bulk charge field of a CdS/Si(p) heterostructure
semiconductor is mainly concentrated in Si(p),
calculating the densities of silicon surface states up to the
bandgap is sufficient. In this case, from the band diagram
Si(p), presented in Figure 1, one can trace the process of
charge distribution at deep levels and, since the sample is
p-type, the energy levels in surface states are filled with
cavities, starting with Ey . According to the Fermi level
rule, the energy levels of a heterojunction are filled with
holes up to the quasi- Fermi level. However, energy levels
above the quasi- Fermi levels are considered empty.
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E, [36-39]. The following analytical expression is derived
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Fig. 1. Band diagram of the base part of the CdS/Si(p) energy;
heterostructure at reverse bias, taking into account deep levels Eg (O) -bandgapatT=0K;
(Ess - deep levels of surface states, E: - discrete deep levels in o ) o )
the bulk of the base region) [1]. a,,a, - thermal coefficienfgi irical equation of

Varshni ;

When determining the density of surface states, the

capacitance -voltage (CV) method is used. When N

measuring the CV characteristic, the constant voltage band and vafene
corresponds to the reverse bias voltage of the d- is the thicknes
heterostructure. The increase in the bending of the energy Nn. .n. —number of @
bands in Fig.1 and the expansion of the space charge erP

region is directly proportional to the value of the reverse m,,

voltage. However, increasing the reverse voltage value @ T
causes deeper levels in surface states to become filled with
holes. This will make it possible to control the quasi- i

mpl
t

similar to a quantum well . The reason for this
e study is limited to two dimensions, both energy

Fermi levels. Si(p) is calculated starting from the valence  statg€'in the plane and energy spectra in the quantum well.
field spin. It follows from this that the object is a heterostructure or
Deep energy levels at the interface of CdS and Si(p), t the quantum well condition is satisfied, equation (4) is
is, at the heterointerface, are associated withreverse applicable to the heterointerface of states . When Si(p) is
voltage and are expressed as follows [1]: exposed to a strong magnetic field at the heterointerface ,
Es—E =q (@-V) @) according to equation (3), the value E (B, T,d) at
where Ess is the value of the deep enefgjglevel on the constant low temperature will increase slightly, and the
surface in the current state, q is th rge vallie, @ is the maximum value of the reverse bias voltage will decrease

effective value of the consct potential difference, V is the to reduce Vsr;'ax- Considering that the heterostructure

reverse voltage. .
If we increase the value reverse voltage to the CdS/Si(p) does not have a quantum well, and also (3) and
max (4), the dependence of the maximum reverse bias voltage

maximum degree, V this”will lead to the quasi- on the quantizing magnetic field can be found as follows:
Fermi levels reachingthe ction band Si(p). And this \/ mex (B T ):
will be the reaso Esswill be equal to Ec. In this case, $S ’

Ec-Si( the conduction band. Therefore, aT? eB 1
Ess=Ec (1) is written as: Es (0)+—t—+h— (N N +)+
max a, +T mC 2 (5)
Ec o _Vss ) O] QP - eB 1
Consideringthat E. — E, = E_ (silicon band gap), the hW (N N +2j
maximum reverse voltage can be determined from (2): ¢
max ‘q(p—Eg‘ H q
Vit =t (3) In experiments, the density of surface states at room
q temperature (T=300 K) was calculated using the CV
As a result of the influence of external factors on method. Taking into account deep energy levels, the
semiconductor structures, their properties will radically effective value of the contact potential difference is equal
change. One of the main dynamic parameters of to @ = 0.11 V [1], Varshni coefficients for silicon

semiconductors is that the band gap is highly dependent o, =7.021*107; @, =1108 K; E,(0)=1.17eV
on temperature, pressure, magnetic field and strain. In 40

particular, the dependence of the band gap on the [40].
magnetic field and quantum well thickness was studied in
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Fig. 2. Graph of the dependence of the maximum voltage
displacement Vg™ on the magnetic field B.

If consider m¢ =m; = me and for the first Landau

level, N7 = N =0 then equation (5) can be written as:

2
qcD—[Es (0)—051T+f’e%j
mC

o, +T

(6)

Vs (B’T ) = q
Using these parameters, we will plot the dependence of
the magnetic field induction B for a semiconductor with a
heterostructure CdS/Si(p), taking into account the value of

the maximum bias voltage v;gax obtained by equation (6)
(Fig.2):

2.2 Simulation effect of a strong magnetic field on the
temperature dependence of the density of surface
states in semiconductor heterostructures.

The low-frequency capacitance-voltage characterist

sgoq‘Na +

2(Vy —Va— A
Here, g, ; - the ionic c@wes the low-frequency
; a

oncentration of acceptor

concentration at deep levels; V,

, the value of V will vary from 0 to V3™ .
Then, if we integrate (7) over V in the interval from 0 to
Vg™ and V™ (B, T) considering g can be defined

as follows:

Veg ™ (B,T)
a, f= Uss = J.o Cy V)av ®)
_ [vsT(eT) ggoq(Na + Nt)
s =, S\/z(cb——V)dV

In addition, the amount of ionized charge on the surface
depends on the acceptor concentration and the
concentration of deep levels. This is calculated as follows.

qSS:q(Na+Nt)6S )
d — part of the space charge region in which recharging of

deep level _
From Fig.1. d is defined as:

ggoQ(Et —E¢ )w

W-6= (10)
a’N,
In this case, the dependence of W on V has t llowing
form [1]:
EELS
W (V)= =20 (11)
Using (10) and (11), we find 81”
5 = FooS W (12)
C(V)
Er for Si(p) the valence band top is determined
as follows [1]:
E. =E, - (13)
From/(13)
[
— (14)
N
Letds connect E;with (14):
E~E. —E-E - kTIn(%) (15)

If we replace E;on Essfor surface states and use equation
(1), we obtain:

(Ex _EFD)=Q(@—V)—len(%J

a

(16)
For surface states from (12), substituting (16) instead of
(Et -E; ) , we obtain the following expression:

P

EELS
Oss = ,

Cu (V)
_Jq

A7)

EE, N
2 q(D -V )—kTin|

N a N a
The density of surface states Nss at the heterointerface is
related to the volume concentration at the deep level as
follows:

Ngs = NiIss (18)

According to [1], ds calculated based on the condition

V =Vg™ and also taking into  account
E,(T)=E,(0)- AN , we calculate (17), then for
o o o, +T

Sss (B, T) let's get:
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Using (8), (9), (18) and (19), we find the dependence of
the density of surface states on a strong magnetic field:

1 v
NS =Na5§§)—$ [, Cr(V)dv (20)

Thus, using (19) and (20), we determine the dependence
of the density of surface states, determined by the CV
method, on a strong magnetic field:

N (B)=
I

N, —
2¢ee eB
_\/qN:[Eg(T)+f)mCJ kTIn[Naj (21)

|25, (N, +N)
q

eB
®-|E,(T)+h— |-V
mC
If in this expression B — 0, then the value of the d
of surface states returns to the expression pres in [:

This proves that our proposed mathemati odgl is
correct from a theoretical point of vi

In the proposed mathematical model,

B
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0 (21) practically

cannot

fully explain the temperature dep
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low temperatures N
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ly be obtained at higher
ccordlng to [40]. Therefore,

)+ eB

does not change. That
all materials, whil
temperatures, suc 100

C

(22)

a

%J in equation (21), also

has virtually no effect on the dynamics N (B) of the

temperature dependence. To determine the temperature
dependence of the density of surface states, the
probability of thermal generation of charge carriers in
deep energy levels (zones close to the center of the band
gap) is used.

It is known that the probability of the time of release of
surface states depends on the temperature and the nature
of the center of the band gap. The probability of releasing

the energy level Essat deep levels is determined by the
equation [24,25,41]:

p(ESS)zl—exp(r(éss)j (23)

Here, 7(E ) - electron release time from 0 to Essin deep

energy levels . Of course, as the Ess value increases, this
will take longer. According to [42,43] (Ess), the function
strongly depends on Essand KT :

7(Eg, T t)= roexp(f_r)] (24)

= 7, N, is a constant coefficieqt.

Here, 7,
From (23) and (24) we determine p(

p(Eg, T,t)=1—exp @— (25)
N

(25) expresses the dependence of the probability of
discharge of energy levels Ess of charge carriers in the
surface state on temperature.

It is known from the scientific literature that the
dependence of the number of surface states on time is
determined by the following expression [24,25]:

Nwsp(Ess,T,t)dE (26)

In expression (26), the value of Nss is a quantity
independent of energy, equal to the density of surface
states calculated by the CV method in [1]. In addition, the
Nss(B) we propose also returns to the Nss specified in [1]
when B—0. In this case, if we substitute (21) into (26) and
consider it as an integral over the energy of surface states
over a constant period of time (t=const), the number of
surface states is determined as follows:

N(E,BT)=[ N (B)p(Es T)dEs; (21

The product of the number of surface states N(E,B) and
the energy Ess is called the energy density of surface
states. In it, as a result of differentiation (27) by Ess,
expression (27) will look like this:

dN (E.,B,T
Ny (ESS,BT) (dISE—S)
ss
or
N;
NSS(ESS,B.T)z ZNSSi(B)
N, =0

NL— number of Landau levels

Equation (28) expresses the influence of a strong
magnetic field on the temperature dependence of the
density of energy surface states.

dp(EssvT) (28)
dE

3. Discussion and results. Processing of

experimental results.

Now, based on the proposed model, the density of surface
states under the influence of external factors can be
applied to semiconductor structures.



TOR 3

= 10'3

,
[ 4
N
/
T
Ty

N, {E), cm

’ I(l,: 3

BT L s_‘_?——"i;;}’
ol
10, . . : . i
0.6 -4 -0.2 0 0.2 04
Encray £, eV

Fig.3. The influence of a magnetic field on the density of
surface states in Bi-Si-Al structures (based on Si). 1- B=0
TI, 1°- B=0.17 T1, T=300 K [44].
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1-B=0T,T=300K,2-B=0.17T, T =300 K
Fig. 4. Modeling the influence of a magnetic field on the
density of surface states in Bi-Si-Al structures (base Si) at
room temperature. Calculated using equation (28)

In particular, in [44-47], experi
obtained for the dependence of the influe
of surface states in metal-oxide-se
on radiation and magneticﬁelds.
of a magnetic field on the depsit
Bi-Si-Al semiconductor st

Fig.

e at room temperature
ows graphs of Nss(E)
Z0 and B=0.17 Tl. As can

example, applying the physical parameters given in [44]
to equation (28). That is, for the Bi-Si-Al structure (Si
surface) E,(0)=1.12eV, B=0.17 TI, T=300 K,

©®=0.11V. In Fig.4 shows Nss(B,T), obtained by equation
(28), depending on various magnetic fields. Comparing
the graphs of experiment (Fig.3) and theory (Fig.4), we
can say that the results are close to each other
qualitatively, of course, when certain laws are fulfilled.
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c) 1-B=0T,T=10K,2-B=0.17T, T=10K
Fig.5. Modeling the temperature dependence of the density of
surface states in the Bi-Si-Al structure (based on Si) under the
influence of a magnetic field. Calculated using equation (28).

a)1-B=0T, T=200 K, 2-B=0.17T, T=200 K

b) 1-B=0T, T=50 K, 2-B=0.17 T, T=50 K
c)1-B=0T,T=10K, 2-B=0.17T,T=10K

Another advantage of the proposed model is that using
equation (28) it is possible to calculate the experimental
results at low temperatures and strong magnetic fields. In
Fig.5 shows the dependence Nss(E,B,T) on T for magnetic
field induction values B=0 and B=0.17 Tl . As the
temperature decreases, the continuous energy spectrum
splits into discrete Landau levels.



Conclusions

The following conclusions were made during the study:

- for the first time, the dependence of the density of
surface states on temperature and magnetic field for
semiconductor  heterostructural ~ materials ~ was
theoretically explained;

- a new analytical expression is proposed for calculating
the influence of a magnetic field on the density of
surface states at the semiconductor-insulator interface;
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