Document Type : Original Article

Authors

1 Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran

2 Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

3 Department of Electrical Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran

4 Department of Physics, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

5 Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

In this paper, we introduce a new variation of the Gate All Around Nanosheet Field Effect Transistor (GAA NS FET) called the Dual Wire (DW), which integrates source heterojunctions and strained channels. We assess its electrical properties across different temperatures (300K, 400K, and 500K) and compare them to those of the Heterojunction DW Gate All Around Nanosheet Field Effect Transistor (Heterojunction DW GAA NS FET) and the Conventional DW Gate All Around Nanosheet Field Effect Transistor (Conventional DW GAA NS FET). Our investigation encompasses the electrostatic control effects on DC and analog parameters, including gate capacitance ( ), transconductance ( ), and cut-off frequency ( ) for all three device types. The channel regions in our structures feature Silicon Germanium (SiGe) (Si/Ge/Si), and the introduction of strain and a heterojunction structure notably enhances device performance. To analyze the semiconductor device accurately, we solve the Density Gradient (DG) equation self-consistently, utilizing the Shockley-Read-Hall (SRH) equation to estimate carrier generation, considering bandgap narrowing in transport behavior, and accounting for auger recombination. Additionally, at temperatures of 300K, 400K, and 500K, the Heterojunction DW GAA NS FET exhibits substantial improvement in  and  compared to the Conventional DW GAA NS FET. Overall, our results show a notable improvement in drain current, transconductance, and unity-gain frequency, with enhancements of around 34%, 9.5%, and 30%, respectively, observed across different temperatures. This improvement translates into superior RF performance for the Heterojunction DW GAA NS FET when compared to the conventional DW GAA NS FET.

Keywords

Main Subjects

  1. V B Sreenivasulu and V Narendar, AEU - Int. J. Electron. Commun. 137 (2021)153803.
  2. K Baral, et al., Superlattices Microstruct. 138 (2019) 106364.
  3. B Kumar and R Chaujar, Silicon 14 (2022) 10009615.
  4. V B Sreenivasulu and V Narendar, Silicon. 14 (2022) 01221328.
  5. K Roy Barman and S Baishya, Phys. A 125 (2019) 2682-x.
  6. S Tayal, et al., Silicon. 14 (2022) 1.
  7. N Loubet, et al.,IEEE. IEEE Symposium on VLSI technology (2017) 7998183.
  8. D Nagy, et al., IEEE J. Electron Devices Soc. (2018) 1.
  9. H H Park, et al., SISPAD. (2019) 8870365.
  10. Y Seon, et al., (2021). Electronics 10 (2021) 180.
  11. K Bhol and U Nanda, Silicon 14 (2022) 00909.
  12. D Ryu, et al., IEEE J. Electron Devices Soc. 10 (2020) 10122462.
  13. A K Shukla, A Nandi, and S Dasgupta. Solid-State Electro. 171 (2020) 107866.
  14. A K Shukla, A Nandi, and S Dasgupta. Electron. Mater. 49 (2020) 4291.
  15. C L Chu, et al., IEEE J. Electron Devices Soc. 39 (2018) 2850366.
  16. A Chaudhry and M J Kumar. IEEE Trans. Device Mater. Reliab. 4 (2010) 824359.
  17. P J Sung, et al., IEEE Trans. Electron Dev. 67 (2020) 3007134.
  18. Y S Huang, et al., IEEE Electron Device Lett. 39 (2018) 2852775.
  19. Q Zhang, et al., Nanomater. 11 (2021) 646.
  20. K Chen, et al., IEEE Access 11 (2023) 3287148.
  21. R Hosseini, et al., Comput. Electron. 13 (2014) 170.
  22. M Bavir, A Abbasi, and A A Orouji, Journal of Electron. Mater. 51 (2022) 09462-5.
  23. N A Kumari and P Prithvi, Silicon 14 (2022) 1.
  24. R Abbasnezhad, et al., Electr. Eng. 74 (202) 503-512.
  25. Q Zhang, et al., (2021). Nanomater. 11 (2021) 646.
  26. M Kantner et al., 402 (2019) 109091.
  27. Atlas User Manual, Device Simulation Software. (2011)
  28. Z M Teng, H Ye, and T Qinyi, Phys. Commun. 79 (1994) 190.
  29. A Richter, et al., Rev. 86 (2012) 165202.
  30. S Yoo and S Y Kim, IEEE Trans. Electron Devices 69 (2022) 1.
  31. C Li, et al., IEEE Access 9 (2021) 63602-63610.
  32. K S Lee and J Y Park, (2022). Micromachines 13 (2022) 432.

ارتقاء امنیت وب با وف ایرانی