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Abstract 

This work investigates the behavior of Shannon entropy and Fisher information for the Varshni-Hellmann potential (VHP) 

in one and three dimensions using the Nikiforov-Uvarov method. We employ the Greene-Aldrich approximation scheme 

to obtain the energy eigenvalues and normalized wavefunctions, which are then used to calculate these information-

theoretic quantities. Our analysis revealed remarkably similar high-order features in both position and momentum spaces. 

Notably, our calculations showed enhanced accuracy in predicting particle localization within position space. 

Furthermore, the combined position and momentum entropies obeyed the lower and upper bounds established by the 

Berkner-Bialynicki-Birula-Mycieslki inequality. Additionally, for three-dimensional systems, the Stam-Cramer-Rao 

inequalities were fulfilled for different eigenstates with respect to the calculated Fisher information. It is observed that as 

the position Fisher entropy decreases, indicating a more precise measurement of position, the momentum Fisher entropy 

must increase. This implies that the Fisher information regarding momentum decreases, resulting in a decrease in the 

precision of momentum measurement. This demonstrates how position and momentum uncertainties complement each 

other in quantum mechanics. Exploring the balance between position and momentum Fisher entropy reveals a 

fundamental aspect of the uncertainty principle in quantum mechanics, highlighting the restrictions on measuring certain 

pairs of conjugate variables simultaneously with high precision. 

Keywords: Schrodinger equation, Stam-Cramer-Rao inequality, Nikiforov-Uvarov method; Shannon entropy; Fisher information. 

1. Introduction 

In non-relativistic quantum mechanics, both exact and 

approximate solutions of the Schrodinger equation (SE) 

hold significant value due to their unique properties. This 

is as a result of the useful information that the wave 

functions and eigenvalues provide in describing various 

quantum systems like atomic structure theory, 

information theory, quantum electrodynamics, quantum 

dots, and more [1-5]. Exploring the fundamental 

principles that govern the processing and transmission of 

information in quantum systems is a key focus of quantum 

information theory, a branch of quantum mechanics and 

information theory. Various researchers have made 

significant efforts to address the SE through diverse 

analytical approaches [6–10] to handle the superposition 

of various potentials, enabling a broader spectrum of 

applications [11]. For instance, Inyang et al. [12] 

examined the mass spectra of heavy mesons using the 

combination of the Hulthern and Hellmann potential 

models. Quantum information theory heavily relies on 

two key concepts: global Shannon entropy and Fisher 

information (FI) [13]. These concepts, rooted in Claude 

Shannon's information theory principles [14], have found 

applications in communication theory, as evidenced by 

their use in various studies [15-17]. While Fisher 

information's theoretical foundation was established 

earlier [18], its practical significance remained elusive 

until Sear et al. [19] demonstrated its connection to the 

kinetic energy of quantum systems. Besides Shannon and 

FI, other global measures include Tsallis, Renyi, and 

Onicescu energy [20–22]. Understanding the uncertainty 

associated with a probability distribution is crucial, as 

highlighted in previous studies [23-26]. Berkner, 

Bialynicki-Birula, and Mycieslki (BBM) [27] explored 

this concept by establishing an entropic connection 

between the position and momentum spaces (PMS) using 
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Shannon entropy, denoted by 

( ) ( ) (1 ln )nl nlS S D  +  + , where D represents 

the number of spatial dimensions. This relationship has 

been demonstrated to be more advanced than the 

Heisenberg uncertainty relation (HUR), as it can 

accommodate a higher level of complexity. The Shannon 

entropy expression is defined as follows:  

( ) ( ) ln ( )
D

nl nl q nl q q

R

S r r dr  = −   (1) 

and 

( ) ( ) ln ( )
D

nl nl nl

R

S p p dp  = −   (2) 

where ( )nlS  is the position space Shannon entropy, 

( )nlS  is the momentum space Shannon entropy, 

and the probability densities (PD) in the position and 

momentum spaces, are given in Eq.(3) and (4) 

respectively. 
2

( ) ( )q qr r =  (3) 

and  
2

( ) ( )p p =  (4) 

( )p  represents the momentum-space wave function, 

which is the result of applying the Fourier transform (FT) 

of ( )qr . Shannon entropy quantifies the level of 

unpredictability and disorder within a specific area. In 

quantum mechanics, the spread of a particle's momentum 

is captured by momentum entropy, derived from the 

position space through a Fourier transform. This concept 

is linked to Shannon entropy and reflects the degree of 

localization or delocalization of a system [28-30]. 

Conversely, FI, as the only part of the local measure, 

focuses mainly on local alterations in PD. The FI, is 

expressed as follows [23, 24]: 
2

( )
( )

( )D

nl q

q

nl qR

r
I dr

r







=   (5) 

2
( )

( )
( )D

nl

nlR

p
I dp

p







=   (6) 

Fisher information inequality becomes [23] 

( )

2

2 1
( ) ( ) 9 2 36

1

l
I I m

l l
 

 +
 −  

+ 

 (7) 

The uncertainty relation utilized to validate the FI 

measure for any central potential is known as the Stam-

Cramer-Rao (SCR) inequality [33]. Onyeaju et al. [34] 

derived the wave equation utilizing a molecular potential 

function. The wave function was utilized to analyze 

information-theoretic measures (ITM) like Shannon and 

Renyi entropic densities. The expectation value in 

position and momentum spaces was calculated to confirm 

the HUR. Laguna et al. [35] investigated the ITM using 

Gaussian-type functions. Njoku et al. [36] utilized the 

Mobius squared plus Eckart (MMSE) potential to study 

the ITM and complexity. The study confirmed that the 

BBM inequality, the lower bound of complexity, and the 

FI sum inequality, were all validated for the system. 

Furthermore, Ayedun and colleagues [37] explored the FI 

and Shannon entropy using the Eckart-Hellmann 

potential, and their findings meet the lower-bound BBM 

and SCR inequalities. Similarly, Estañon et al. [38] used 

informational measures to study helium atoms in 

impenetrable spherical cavities. The cavity radius-based 

energies and wave functions of the confined helium atom 

were calculated using the Ritz variational method. 

Various ITMs, including Shannon entropy, FI, and 

Kullback-Leibler entropy, were calculated and revealed to 

be responsive to electronic correlation. Njoku et al. [39] 

calculated the energy and wave function to analyze the 

Shannon information entropy of the system. The BBM 

was authenticated for the system. Several authors have 

studied quantum information related to harmonic 

oscillators in one, two, and three dimensions [40, 41]. We 

aim to extensively explore combined exponential-type 

potential models in our current paper. The Varshni and 

Hellmann potential (VHP) model has not been explored 

for quantum information theoretic measures, as far as we 

know. We aim to further explore the research conducted 

by Inyang et al. [42] by focusing on information theoretic 

measures such as Shannon entropy and Fisher information 

in one and three dimensions. To achieve this, we will 

employ the Nikiforov Uvarov (NU) method for solving 

the  SE.   

The VHP is of the form:     

( )
q qr r

q

q q q

abe c de
V r a

r r r

 − −

= − − +  (8) 

where a , b, c  and d  are the strengths of the VHP, 
qr  is 

the inter-nuclear distance, and  is the screening 

parameter that dictates the form of the potential energy 

curve depicted in Figure 1. In atomic and plasma physics, 

researchers have employed the Hellmann potential [43] to 

investigate various phenomena [44-47]. The Varshni 

potential [48] is a short-range repulsive potential energy 

function. It is essential in chemical and molecular physics. 

This potential has been explored by several authors, as 

referenced in [49, 50]. The paper is structured as outlined 

below. In Section 2, we present the energy eigenvalues 

and the normalized wave functions. Section 3 focuses on 

analyzing our findings. Section 4 provides a concise 

conclusion. 

2. Solutions for bound states of the Schrödinger 

equation involving Varshni and Hellmann 

potentials 

The SE is represented by [51].  

( )

( )
( )

2

2

2 2

12
( ) ( ) 0

nl q

q

nl q nl q

q

d R r

dr

l lm
E V r R r

r

+

 +
− − = 

  

 (9) 



 

 

 

Fig. 1: Variation of the combined potential as a function of r
for various values of .  

where  m  is the reduced mass, 
nlE  is the energy 

spectrum,  is the reduced Planck’s constant, 

respectively.  Equation (9) is solved analytically using the 

Greene-Aldrich approximation scheme [52] to address the 

centrifugal barrier. This approximation scheme is a 

reliable method for approximating the centrifugal barrier 

and is valid for a certain range of values ( 1  ). The 

scheme is expressed as: 

( )

2

22

1

1 qr
qr e





−


−
 (10) 

Substituting Eq. (8) and Eq. (10) into Eq. (9) and using 

coordinate transformation 
qr

cx e
−

= we have 

( ) ( )

( ) ( )

( )

2

22 2

2

( ) 1 ( ) 1

1 1

2
( ) 0

c c c

c c c c c c

a c a b c

c

b

d R x x dR x

dx x x dx x x

x x
R x

    

  

−
+ +

− −

 − + + + −
= 

− − +  

 

(11)     

where   

( )

2 2 2 2

2 2 2

2 2
,  

2 2 2
,   ,   1

nl

a b

mE am

abm dm cm
l l


 

  
  

− = −

= − = = +

 (12)                                                                                                         

Comparing  Eqs. (11) and (A1) ,we have the following 

parameters 

( ) ( ) ( )

( )

2

( )

2 ,

( ) 1 ,  ( ) 1

c

a c a b c b

c c c c c

x

x x

x x x x x



       

 

=


− + + + − − − + 


= − = − 

 (13)                                                                             

Substituting Eq. (13) into Eq. (A9), we obtain   

( ) ( )2( )
2

c
c a a c a a c a

x
x A k x k B x C = −  − + + +  (14)                                                                                                                                                                                             

where 

( )

1
,  

4

2 ,  

a a a

a b a b

A B

C

 

     


= + + = 


− + − = − + 

 (15)                                                                                                                                                                                                                                                                    

To determine the constant ak , the discriminant of the 

expression within the square root in Equation (14) must 

be set to zero. Therefore, we have 

1
2 2

4
a a b bk       = + −  − + +  (16)                                    

By substituting Equation (16) into Equation (14), we get 

( )
2

1

4

c
c

b c b

x
x

x



      

= − 

 
− + + + − − +  

 

 (17)                                         

Calculating ( )cx  as 

( ) 1 2 2

1
2 2

4

c c b c

c b

x x x

x

   

   

= − − − +

− + + − +
 (18)  

Equation (18) yields Equation (19) as  

' 1
( ) 2 2

4
c bx    

 
= − − − + + +  

 
 (19)                                                       

According to Equation (A10), we define the constant λ 

as  

1

2

1 1
2 2

4 4

b

a b b

   

       

= − − − + −

+ + + − − − + +

 (20)                            

Also from Eq.(A11),we get 
n as 

2 1
2

4
n bn n n    

 
= + + − + + +  

 
 (21)                                                         

By setting equations (20) and (21) equal to each other and 

replacing equation (12), the energy eigenvalues equation 

of the VHP is obtained.

          

 
2 2 2 2

2

2 2

( 1)
 

2 2

2 ( ) 2
( 1)

( 1)
1

nl

h l l h
E a c

m m

m d c mab
l l

h hn l
n l

 


 

+
= + − −

− 
+ + − 

+ + + 
+ + 

 
 (22)            

                                                                                                                                                                                                                                          

The wave function with the normalization constant in 

ground and first excited state are given in Eqs.(23) and 

(24).  

𝜓0𝑙 (
qr ) = √

𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
× (ⅇ

−𝛼
qr )𝐴 × (1 −

ⅇ
−𝛼

qr
)𝐵+

1

2  (23) 



 

 

𝜓1𝑙 (
qr ) = √

2𝐴(3+2𝐴+2𝐵)𝛼 [2(1+𝐴+𝐵)]

(3+2𝐵) [2+2𝐴] [2+2𝐵]
× (ⅇ

−𝛼
qr )𝐴 ×

(1 − ⅇ
−𝛼

qr )𝐵+
1

2 × P1
(2𝐴,2𝐵)

(1 − 2ⅇ
−𝛼

qr ) (24) 

where 

𝐴 = √𝑙 × (𝑙 + 1) −
2𝑚

𝛼2ℎ2 × (𝐸𝑛𝑙 − 𝑎) −
2𝑚×𝛼𝑐

𝛼2ℎ2   

𝐵 = 𝑙 +
1

2
  

The momentum space wave function is,  

Ψ00(𝑝) = √
1

2𝜋
√

𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
∫ (ⅇ

−𝛼
qr )𝐴 × (1 −

∞

0

ⅇ
−𝛼

qr )𝐵+
1

2ⅇ
−ⅈ𝑝

qr ⅆ
qr  (25) 

 Ψ00(𝑝) = √
𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
×

 [
3

2
+𝐵] [𝐴+

ⅈ𝑝

𝛼
]

√2𝜋𝛼 [
3

2
+𝐴+𝐵+

ⅈ𝑝

𝛼
]
 (26) 

The SE eigenfunction in spherical polar coordinates is 

solved in 3D by  

Ψ𝑛𝑙𝑚 (
qr , 𝜃

qr
, 𝜙

qr
) =

𝑅𝑛𝑙(𝑟)

𝑟
𝑌𝑙𝑚 (𝜃

qr
, 𝜙

qr
) (27) 

The Spherical Harmonics 𝑌𝑙𝑚(𝜃, 𝜙)  correspond to the 

solution of the angular component of the Schrödinger 

equation and is expressed as 

𝑌𝑙𝑚(𝜃, 𝜙) = (−1)𝑚√
2𝑙+1(𝑙−𝑚)!

4𝜋(𝑙+𝑚)!
𝑃𝑙

𝑚(𝐶𝑜𝑠𝜃)ⅇⅈ𝒎𝜙 (28) 

where the function 𝑃𝑙
𝑚(𝐶𝑜𝑠𝜃) is the associated Legendre 

function.  

The wave function in momentum space is represented by 

the Fourier transform [53]. 

Ψ𝑛𝑙𝑚(𝑝, 𝜃𝑝, 𝜙𝑝) =
1

(2𝜋)3 2⁄ ∫ Ψ𝑛𝑙𝑚 (
qrℝ3

, 𝜃
qr

, 𝜙
qr

) ⅇ−ⅈ𝒑̅.𝒓̅ ⅆ
qr  (29) 

The notation ⅆ
qr   = (

qr
2

ⅆ
qr ) 𝑠𝑖𝑛𝜃ⅆ𝜃ⅆ𝜙 is the volume 

element. The plane-wave expansion for ⅇ
−ⅈ𝒑̅.

qr
̅̅ ̅̅ ̅

  takes the 

form as [54] 

ⅇ−ⅈ𝒑̅.𝒓̅  =

(2𝜋)3 2⁄ ∑ ∑

𝑖−𝑙
𝐽𝑙+1 2⁄ (𝑝

qr )

√𝑝
qr

 Y𝑙𝑚(𝜃𝑝, 𝜙𝑝)Y𝑙𝑚
∗ (𝜃

qr
, 𝜙

qr
)

𝑙
𝑚=−𝑙

∞
𝑙=0  (30) 

Where  𝐽𝑙+1 2⁄ is the Bessel function. 

Due to axial symmetry, only the m=0 terms remain, 

reducing the plane-wave expansion to  

ⅇ−ⅈ𝒑̅.𝒓̅  = (2𝜋)3 2⁄ Y𝑙𝑚(𝜃𝑝, 𝜙𝑝) 

∑ 𝑖−𝑙
𝐽𝑙+1 2⁄ (𝑝

qr )

√𝑝
qr

 Y𝑙0
∗ (𝜃

qr
, 𝜙

qr
)∞

𝑙=0  (31) 

Substituting equations (28) and (31) into equation (30) 

yields  

Ψ𝑛𝑙𝑚(𝑝, 𝜃𝑝, 𝜙𝑝)

= 𝑖−𝑙Y𝑙𝑚(𝜃𝑝, 𝜙𝑝) ∫ ∫

Y𝑙0 (𝜃
qr

, 𝜙
qr

)

Y𝑙0
∗ (𝜃

qr
, 𝜙

qr
)

2𝜋

0

𝜋

0

𝑠𝑖𝑛𝜃ⅆ𝜃ⅆ𝜙  

× ∫
𝑅𝑛𝑙(

qr )

qr

∞

0
 

𝐽𝑙+1 2⁄ (𝑝
qr )

√𝑝
qr

qr
2

ⅆ
qr  (32) 

For the ground state ( 𝑛 = 0, 𝑙 = 0 ) and using the 

orthonormality condition for the Spherical Harmonics 

Ψ000(𝑝, 𝜃𝑝, 𝜙𝑝) =
Y00(𝜃𝑝,   𝜙𝑝)

√𝑝
𝐹00(𝑝) (33) 

where 

𝐹00(𝑝) = ∫ √ qr 𝑅00 (
qr )

∞

0
 𝐽1 2⁄ (𝑝

qr ) ⅆ
qr  (34) 

The integral in equation (34) can be computed using the 

MATHEMATICA software by utilizing the position wave 

function expression. The momentum space wave function 

is derived accordingly as,  

Ψ000(𝑝, 𝜃𝑝, 𝜙𝑝) =

(−1)1 4⁄ ⅇ
−

ⅈ𝜋
4  [

3

2
+𝐵]√

𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]

(−
ⅈ [𝐴−

ⅈ𝑝
𝛼 ]

 [
3
2+𝐴+𝐵−

ⅈ𝑝
𝛼 ]

+
ⅈ a[𝐴+

ⅈ𝑝
𝛼 ]

 [
3
2+𝐴+𝐵+

ⅈ𝑝
𝛼 ]

)

𝑝√2𝜋𝛼
Y00(𝜃𝑝,   𝜙𝑝) (35) 

3. Results and Discussion 

Utilizing the NU method to find the SE eigenstates with 

VHP in a closed form. Table 1 shows the one-dimensional 

ground state Shannon entropy for d = 1 with different 

values of c. As the potential parameter (c) increases, the 

position space entropy goes up, while the momentum 

space decreases with higher values of c. One can note that 

the total entropies follow the BBM inequality. Observing 

a similar pattern when adjusting the potential parameter d 

from 1 to 10, with c held constant at 0.1. The table 

displays the three-dimensional ground state Shannon 

entropy in Table 2. In this case, the potential parameter d 

was set to 1, while c was varied from 0.1 to 1.0. There was 

an increase in position space and a decrease in momentum 

space, with a total exceeding 6.4343. Observing a 

consistent outcome when c is set at 0.1 and d ranges from 

1 to 10. The sum of the values also meets the BBM 

inequality in three dimensions. This implies that when 

position entropy is known more precisely, that is, 

decreasing, momentum entropy must increase, meaning 

the momentum is known less precisely. This trade-off is a 

fundamental aspect of quantum mechanics, reflecting the 

dual nature of particles as both particles and waves and 

the inherent limitations on our ability to precisely measure 

certain pairs of conjugate properties. 



 

 

Table 1. One-dimensional Ground State Shannon entropy 

ℎ = 1, 𝑚 = 1, 𝑎 = 0, 𝑏 = 0, ⅆ = 1, 𝑙 = 0, 𝑛 = 0, 𝛼 = 0.01 

 ⅆ = 1  𝑐 = 0.1 

𝑐 𝑆(𝑟) 𝑆(𝑝) 𝑆(𝑇)
≥ 2.1447 

ⅆ 𝑆(𝑟) 𝑆(𝑝) 𝑆(𝑇)
≥ 2.1447 

0.1 0.558352186 1.820251835 2.378604022 1 0.558352186 1.820251835 2.378604022 

0.2 0.675104361 1.703499994 2.378604354 2 -0.184507904 2.563110947 2.378603043 

0.3 0.807312204 1.571292634 2.378604838 3 -0.606008840 2.984611720 2.378602880 

0.4 0.959701366 1.418904214 2.37860558 4 -0.901613293 3.280216119 2.378602826 

0.5 1.139562940 1.239043861 2.378606801 5 -1.129480282 3.508083082 2.378602801 

0.6 1.359029861 1.019579166 2.378609027 6 -1.314938432 3.693541219 2.378602787 

0.7 1.640619425 0.737994349 2.378613774 7 -1.471323519 3.849926299 2.378602779 

0.8 2.034029065 0.344598000 2.378627065 8 -1.606527444 3.985130218 2.378602774 

0.9 2.691999426 -0.313306000 2.378693426 9 -1.725609404 4.104212174 2.378602770 

1.0 5.453596870 -3.054975192 2.398621678 10 -1.832007844 4.210610612 2.378602768 

Table 2.                              Three-dimensional Ground State Shannon entropy.   

ℎ = 1, 𝑚 = 1, 𝑎 = 0, 𝑏 = 0, ⅆ = 1, 𝑙 = 0, 𝑛 = 0, 𝛼 = 0.01 

 ⅆ = 1  𝑐 = 0.1 

𝑐 𝑆(𝑟) 𝑆(𝑝) 𝑆(𝑇)
≥ 6.4342 

ⅆ 𝑆(𝑟) 𝑆(𝑝) 𝑆(𝑇)
≥ 6.4342 

0.1 2.356488661 4.210105084 6.566593745 1 2.356488661 4.210105084 6.566593745 

0.2 2.706744186 3.859849958 6.566594144 2 0.127911327 6.438681244 6.566592571 

0.3 3.103366265 3.463228459 6.566594724 3 -1.136590993 7.703183368 6.566592375 

0.4 3.560531526 3.006064088 6.566595614 4 -2.023404187 6.058972249 4.035568062 

0.5 4.100112582 2.466484498 6.566597081 5 -2.707005078 9.273597358 6.566592279 

0.6 4.758506661 1.808093094 6.566599755 6 -3.263379488 9.829971751 6.566592263 

0.7 5.603261121 0.963344326 6.566605447 7 -3.732534727 10.29912698 6.566592253 

0.8 6.783450506 -0.216829244 6.566621263 8 -4.138146485 10.70473873 6.566592247 

0.9 8.75716367 -2.190463224 6.566700446 9 -4.495392354 11.06198460 6.566592243 

1.0 16.98279444 -10.39165035 6.591144099 10 -4.814587667 11.38117991 6.56659224 

Table 3.                 Three-dimensional Ground State Fisher Information  

                                        ℎ = 1, 𝑚 = 1, 𝑎 = 0, 𝑏 = 0, ⅆ = 1, 𝑙 = 0, 𝑛 = 0, 𝛼 = 0.01 

 ⅆ = 1  𝑐 = 0.1 

𝑐 𝐼(𝑟) 𝐼(𝑝) 𝐼(𝑟)𝐼(𝑝) ≥ 36 ⅆ 𝐼(𝑟) 𝐼(𝑝) 𝐼(𝑟)𝐼(𝑝) ≥ 36 

0.1 13.1768 3.642751741 47.99981 1 13.1768 3.642751741 47.99981114 

0.2 10.4328 4.600867777 47.99993 2 58.2168 0.824488281 47.99906934 

0.3 8.0088 5.993417858 48.00008 3 135.2568 0.354872211 47.99887971 

0.4 5.9048 8.129030139 48.00030 4 244.2968 0.196477482 47.99882003 

0.5 4.1208 11.64834918 48.00052 5 385.3368 0.12456343 47.99887357 

0.6 2.6568 18.06717879 48.00088 6 558.3768 0.085961509 47.99891224 

0.7 1.5128 31.73029037 48.00158 7 763.4168 0.062873883 47.99897888 

0.8 0.6888 69.69146674 48.00348 8 1000.4568 0.047977061 47.99897643 

0.9 0.1848 259.8105483 48.01299 9 1269.4968 0.037809514 47.99905749 

1.0 0.0008 63888.88889 51.11111 10 1570.5368 0.03056232 47.99924751 



 

 

 

 

Fig 2. Variation of energy spectra with potential parameters and principal quantum number.  ℎ = 1, 𝑚 = 1, 𝑎 = 0, 𝑏 = 0 

     

     

Figure3: Position space ground and first excited state wave function and probability densities. ℎ = 1, 𝑚 = 1, 𝑎 = 0, 𝑏 = 0, ⅆ = 1, 𝑙 =
0, 𝛼 = 0.01 



 

 

Table 3 presents the three-dimensional ground-state 

Fisher information. At a constant value of d, the position 

entropy decreases as the optimizing parameter (c) 

increases, whereas the momentum space entropy rises as 

the optimizing parameter (c) for the ground state 

increases. When the product entropy exceeds 36, the SCR 

inequality is satisfied. The identical pattern holds true 

when c remains constant and d is varied between 1 and 

10. It is observed that as the position Fisher entropy 

decreases, indicating a more precise measurement of 

position, the momentum Fisher entropy must increase. 

This implies that the Fisher information regarding 

momentum decreases, resulting in a decrease in the 

precision of momentum measurement. This demonstrates 

how position and momentum uncertainties complement 

each other in quantum mechanics. Looking into the 

balance between Fisher entropy and momentum reveals a 

basic part of quantum mechanics' uncertainty principle. It 

shows how you can't measure certain pairs of related 

variables with great accuracy at the same time. The 

variation of energy spectra with respect to potential 

parameters and the principal quantum number is 

illustrated in Figure 2(a–c). The energy spectrum is 

illustrated in Figure 2(a) alongside the screening 

parameter (SP). As SP increases, it has been observed that 

energy decreases. The energy spectra are plotted against 

the PP c in Figure 2b. We observed parabolic curves with 

distinct minimum turning points that concave upwards 

prior to a point of convergence. The energy spectrum is 

represented as a function of the potential parameter d in 

Figure 2(c ). As the value of d increases, the energy 

decreases exponentially along the vertical axis, resulting 

in diverging spectral curves. The position space, ground, 

and first excited state wave function and probability 

density plot are illustrated in Figure 3(a–d). The wave 

function plot for the ground state is depicted in Figure 

3(a), wherein the maximum point is located at 1. Fig. 3b 

illustrates the probability density plot pertaining to the 

ground state. It is quantized according to a Gaussian 

distribution with distinct peaks. Figure 3(c) illustrates the 

wave function plot of the first excited state, which reveals 

a sinusoidal curve featuring local minimum and 

maximum points. In contrast, Figure 3(d) presents the 

probability density plot of the first excited state, which 

deviates from the wave function by displaying distinct 

peaks that correspond to a particular quantum state and 

conform to a normal distribution. These graphs are in 

excellent agreement with other researchers' work in the 

existing literature. 

4.  Conclusion 

This study used the NU method to study the radial SE for 

a newly proposed Varshni-Hellmann potential. We used 

the Greene-Aldrich approximation and a good coordinate 

transformation procedure to get the energy eigenvalues 

and normalized wave function through analysis. We 

investigated the Shannon entropy and FI in position and 

momentum space using the normalized wave function. 

Both entropies met the BBM and SCR in one and three 

dimensions. The ground and fist excited state wave 

functions and probability density plots were also obtained. 

Momentum Fisher entropy increases as position Fisher 

entropy decreases, indicating more precise position 

measurement. This decreases momentum Fisher 

information, reducing momentum measurement 

precision. This shows how quantum mechanics' position 

and momentum uncertainties work together. The balance 

between position and momentum Fisher's entropy shows 

how the uncertainty principle in quantum mechanics 

limits the precision of measuring certain pairs of 

conjugate variables simultaneously. 

Funding 

This research was carried out under LRGS Grant 

LRGS/1/2020/UM/01/5/2 (9012-00009), Fault-tolerant 

Photonic Quantum States for Quantum Key Distribution, 

provided by the Ministry of Higher Education of Malaysia 

(MOHE). 

Acknowledgements 

N. Ali, Inyang, E.P. and A.E.L. Aouami, acknowledges 

the support from the UniMAP Special Research Grant-

International Postdoctoral with grant number: 9004-

00100. 

Conflicts of interest/Competing interests 

No conflicting interests are stated by the authors. 

Availability of data and material 

This article contains all of the materials used and all data 

generated or analyzed during this investigation.  

Authors' contributions 

Inyang E. P., A.E.L. Aouami, and Ali N. formulated the 

problem, wrote the full manuscript, and presented the 

results and graphics. Endut R. performed computational 

analysis. Aljunid S.A. and N. R. Ali progresses by 

creating the literature, carefully reviewing it, and making 

essential revisions to the manuscript. All authors have 

reviewed and endorsed the final manuscript. 

5. References 

1. J Obu, et al., Jordan J. Phys. 16, 3 (2023) 329. 

2. C O Edet, et al., Eur. Phys. J. Plus 138, 10 (2023) 904. 

3. E P Inyang, Indian J. Phys. (Online), 95, 12 (2021) 2733. 

4. E Omugbe, et al., J. Mol. Model. 30, 3 (2024) 1. 

5. E P Inyang, et al., East Europ. J. Phys. 1 (2024) 156. 

6. R Khalid, Phys. Scr. 99 (2024) 025234. 

7. E Omugbe, et al., Phys. Scr. 96, 12 (2021) 125408. 

8. E P Inyang, et al., East Europ. J. Phys. 1 (2023) 53. 



 

 

9. M Abu-Shady, E Omugbe, and E P Inyang, J. Niger. Soc. Phys. Sci. (2024) 1771. 

10. A N Ikot, et al., Eur. Phys. J. Plus 137, 12 (2022) 1370. 

11. E P Inyang, et al., Eur. Phys. J. Plus  38, 11 (2023) 969. 

12. E P Inyang, et al., Canad. J. Phys. 99, 11 (2021) 982. 

13. P O Amadi, et al., Int. J. Quant. Chem. 120, 14 (2020) e26246. 

14. C E Shannon, 1948. Bell Syst. Tech. J. 27, 3 (1984) 379. 

15. S Kullback and R A Leibler, Ann. Math. Stat. 22, 1 (1951) 79. 

16. S Kullberg, “Information theory and statistics” Wiley, New York (1959). 

17. T M Cover and J A Thomas, (1988). IEEE Trans. Inf. Theory 29 (1983) 5. Sci. 34 724. 

18. R A Fisher, “Theory of statistical estimation” Cambridge University Press (1925). 

19. S B Sears, R G Parr, and U Dinur, 1980.  Isr. J. Chem. 19, 1-4 (1980) 165. 

20. C Tsallis, Europ. Phys. J. A 40, 3 (2009) 257. 

21. A Renyi, “Proc. 4th Symp. on Mathematics, Statistics and Probability” (1960). 

22. O Onicescu, C. R. Acad. Sci. Ser. AB 263 (1966) 841. 

23. E Omugbe, Indian J. Phys. 97, 12 (2023) 3411. 

24. S Majumdar, N Mukherjee, and A K Roy, Chem. Phys. Lett. 716 (2019) 257. 

25. G H Sun and S H Dong, Phys. Scr. 87, 4 (2013) 045003. 

26. M S Abdelmonem, A Abdel-Hady, and I Nasser, Mol. Phys. 115, 13 (2017) 1480. 

27. I Białynicki-Birula and J Mycielski, Commun. Math. Phys. 44 (1975) 129. 

28. R O Esquivel, M Molina-Espíritu, and S López-Rosa,  J. Phys. Chem. A 127, 30 (2023) 6159.  

29. J S Dehesa, et al., Int. J. Quant. Chem. 110, 8 (2010) 1529. 

30. Y J Shi, et al., Laser Phys. 27, 12 (2017) 125201.  

31. C A Onate, et al., Int. J. Quant. Chem. 119, 19 (2019) e25991. 

32. C N Isonguyo, K J Oyewumi, and O S Oyun, Int. J. Quant. Chem. 118, 15 (2018) e25620. 

33. E Romera and J S Dehesa, Phys. Rev. A 50, 1 (1994) 256. 

34. M C Onyeaju, et al., J. Mol. Model. 29, 10 (2023) 311. 

35. H G Laguna, S J Salazar, and R P Sagar, J. Math. Chem. 60, 7 (2022) 1422. 

36. I J Njoku, et al., Int. J. Quant. Chem. 123, 6 (2023) e27050. 

37. F Ayedun, et al., East Europ. J. Phys. 4 (2022) 87. 

38. C R Estañón, et al., Int. J. Quant. Chem. 124, 4 (2024) e27358. 

39. I J Njoku, et al., Phys. Open, 15 (2023) 100152. 

40. N Sobrino-Coll, et al., J. Stat. Mech.: Theory Exp. 2017, 8 (2017) 083102. 

41. A K Roy, Mod. Phys. Lett. A  29, 21 (2014) 1450104. 

42. E P Inyang, E S William, and J A Obu, Rev. Mex. Fis. 67, 2 (2021) 193. 

43. H Hellmann, J. Chem. Phys. 3, 1 (1935) 61. 

44. P Aspoukeh and S M Hamad, Chin. J. Phys. 68 (2020) 224. 

45. V K Gryaznov, Zh. Eksp. Teor. Fiz. 79 (1980) 125. 

46. L Kleinman and J C Phillips, Phys. Rev. 116, 4 (1959) 880. 

47. A J Hughes and J Callaway, Phys. Rev. 136, 5A (1964) A1390. 

48. Y P Varshni and R C Shukla, Rev. Mod. Phys. 35, 1 (1963) 130. 

49. E P Inyang, E P Inyang, and E S William, Jordan J. Phys. 14, 4 (2021) 337.  

50. T C Lim and R A Udyavara, C. Europ. J. Phys. 7 (2009) 193-197.  

51. E S William, E P Inyang, and E A Thompson, Rev. Mex. Fis. 66, 6 (2020) 730. 

52. R L Greene and C Aldrich, Phys. Rev. A 14, 6 (1976) 2363. 

53. A F Nikiforov and V B Uvarov, “Special functions of mathematical physics” Springer (1988). 

54. E P Inyang, et al., Rev. Mex. Fis. 68 (2022) 1. 

Appendix A: Review of Nikiforov-Uvarov (NU) method 

The NU method according to Nikiforov and Uvarov is used to transform Schrödinger-like equations into a second-order 

differential equation through a coordinate transformation
( )x x r=

, of the form [55,56] 

( )
( )

( )
( )

( )

( )
( )

2
0

x x
x x x

x x

 
  

 
 + + =

 (A1) 

where
( )( ),  and x x 

  are polynomials, at most second degree and
( )x

 is a first-degree polynomial.  

The exact solution of Eq. (A1) can be obtained by using the transformation  

( ) ( ) ( )x x y x =
 (A2) 

This transformation reduces Eq.(A1) into a hypergeometric-type equation of the form  



 

 

( ) ( ) ( ) ( ) ( ) 0x y x x y x y x   + + =
 (A3)     

The function
( )x

  can be defined as the logarithm derivative 

( )

( )

( )

( )

x x

x x

 

 


=

 (A4) 

With 
( )x

 being at most a first-degree polynomial. The second part of the wave functions in Eq. (A2) is a 

hypergeometric-type function obtained by Rodrigues relation:   

( )
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( ) ( )
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N d
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 (A5) 

where nlN
 is the normalization constant and 

( )x
the weight function which satisfies the condition below;  

( ) ( )( ) ( ) ( )x x x x    =
 (A6) 

where also    

( ) ( ) ( )2x x x  = +
 (A7) 

For bound solutions, it is required that  

( )
0

d x

dx




 (A8) 

The eigenfunctions and eigenvalues can be obtained using the definition of the following function 
( )x

  and parameter 

λ, respectively: 
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and 

( )k x − −
= +

 (A10) 

The value of k  can be obtained by setting the discriminant in the square root in Eq. (17) equal to zero. As such, the new 

eigenvalues equation can be given as  

( ) ( )' ''( 1)
0,( 0,1,2,...)

2
n

n n
n x x n  

−
+ + = =

 (A11) 


