Document Type : Original Article

Authors

1 Laboratoire d’étude et développement des Matériaux Semi-conducteur et Diélectriques (LEDMaScD), Université Amar Telidji , Bp37G 03000 Laghouat ,Algerie

2 Laboratoire physique des materiaux (LPM), Université Amar Telidji , Bp37G 03000 Laghouat ,Algerie.

3 Laboratoire de matériaux pour Application et Valorisation des Enérgies Renouvelables (LMAVER), Université Amar Telidji , Bp37G 03000 Laghouat ,Algerie.

Abstract

Ab initio calculations were employed to examine the structural, elastic, and electrical properties of Li3OCl, a cubic antiperovskite compound, under varying pressures. The calculations were performed using first principles density functional theory based on the full potential linearized augmented plane wave (FP-LAPW) method as implemented in a Wien2k package. The Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) was used as an exchange and correlation potential to investigate equilibrium structural parameters, energy band structure, density of states, and elastic characteristics for the Li3OCl compound. We computed the Young modulus, Poisson ratio, and elastic anisotropy factor for this compound using elastic parameters. It is concluded that the material is mechanically stable according to the Born stability criteria and behaves in a brittle manner, referring to Pugh's index. Our results show that the predicted structural parameter values at 0 GPa are consistent with previous studies. Additionally, it has been found that the material exhibits a transition phase under a pressure of 1 GPa.

Keywords

Main Subjects

  1. Z Deng, et al, InfoMat 4 (2022) e12252.
  2. P Hartwig, A. Rabenau, and W. Weppner, Less-Common Met. 78 (1981), 227.
  3. J Zheng et al , ACS Mater. 1 (2021)
  4. E Quartarone and P.Mustarelli, Soc. Rev. 40 (2011) 2525.
  5. Y Wang, et al., Mater. 14 (2015) 1026.
  6. Y Zhao et al Chem soc, 134 (2012) 15042.
  7. M Wu, et al., Surf. Sci. 510 (2020)145394.
  8. V Thangadurai and W Weppner, Ionics 12 (2006) 81.
  9. Y Zhang et al , Phys Rev B, 87 (2013)
  10. X Lü, et al., Sci. 3 (2016) 1500359.
  11. Z Lu et al , Phys. Chem. Phys. 17 (2015) 32547.
  12. M H Chen, A Emly, and A Van der Ven, Rev. B, 91 (2015) 214306.
  13. M H Braga, et al., Mater. Chem. A, 2 (2014) 5470.
  14. M Wu, et al., Mater. Chem. A, 6 (2018) 1150.
  15. Z Deng , Electrochem. Soc 163 (2016) A67.
  16. K Schwarz and P Blaha, Mater. Sci 28 (2003) 259.
  17. M Jamal, et al., Alloys Compd, 735 (2018) 569.
  18. J P Perdew, K Burke, and M Ernzerhof, Rev. Lett. 77 (1996) 3865.
  19. J Hendrik et al, Rev. B. 13 (1976) 5188.
  20. W Xuelong et al , Energy Storage Sci. Technol. 5 (2016) 725.
  21. M Born Math. Proc. Camb. Philos. Soc, 36 (1940) 160.
  22. Gomis, et al., Appl. Phys, 116 (2014) 133521.
  23. S Ayhan and G Kavak, Res. Express, 6 (2019) 0865e9.
  24. Y O Ciftci, M Evecen, and İ O Alp, Mol. Model. 27 (2021) 1.
  25. E W Kammer and J V Atanasoff, Rev. 62 (1942) 395.
  26. R Paudel and Z Jingchuan, Supercond Nov. Magn. 31 (2018) 1.
  27. S F Pugh, London Edinburgh Philos. Mag.  J. Sci. 45 (1954) 823.
  28. F Tran , Phys Rev B,75 (2007)
  29. C M I Okoye, Mater. Sci. 92 (2014) 141.

ارتقاء امنیت وب با وف ایرانی