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Abstract 

In this research paper, we present an exact matrix form analytical solution of the multi-dimensional generalized Langevin 

equation with quadratic potentials. Our investigation provides detailed expressions for the two-dimensional probability 

distribution  p(x1,x2)=p(x1,x2) and extends the understanding of the dynamics governed by harmonic potentials. By 

utilizing the inverse Laplace transformation, we offer a precise method to solve these equations, corroborated by specific 

examples. This study contributes to the fundamental understanding of stochastic processes in multi-dimensional systems 

with harmonic potentials and clarifies the limitations of our approach. While the findings are specific to quadratic 

potentials, they provide a robust framework for exploring related phenomena within this context. 
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1. Introduction 

The Langevin equation (LE) and generalized Langevin 

equations (GLE) are fundamental tools for studying 

stochastic processes in various scientific fields [1, 2]. 

While significant progress has been made in finding 

analytical solutions for one-dimensional (1D) systems [2, 

8] and certain two-dimensional (2D) cases [9, 10], the 

extension to multi-dimensional scenarios remains 

challenging and less explored [11]. This paper aims to 

address this gap by presenting an exact matrix form 

analytical solution for the multi-dimensional generalized 

Langevin equation with quadratic potentials. 

Previous studies have highlighted the importance of 

obtaining analytical solutions for LE and GLE to advance 

theoretical understanding and practical applications. 

However, the complexity of multi-dimensional systems 

has often necessitated simplifications and approximations 

that limit the generality and applicability of the results 

[12, 13]. Our work overcomes these limitations by 

utilizing matrix operations and the inverse Laplace 

transformation, providing a clear and straightforward 

method for solving the multi-dimensional GLE under 

harmonic potentials The derivation of analytical solution 

for the autocorrelation and cross-correlation functions of 

the kinetic, potential and total energy of a Langevin 

oscillator [23]. 

In this study, we derive detailed expressions for the two-

dimensional probability distribution p(x1,x2)=p(x1,x2 ), 

validating our approach with specific examples. While 

our solution is specific to quadratic potentials, it offers a 

robust framework for exploring related phenomena within 

this context and underscores the potential for further 

theoretical and practical advancements. 

This paper is organized as follows: Section II details the 

derivation of our solution, Section III validates the results 

through rigorous examples, and Section IV summarizes 

our conclusions and discusses potential applications and 

future research directions. 

2. MATHEMATICAL DETAILS OF THE 

DERIVATION 

In accordance with the matrix form as we have seen in 

Refs.[9] and [11], the generalized Langevin equation 

describing the multi-dimensional diffusion of a Brownian 

particle to be expressed as 

mij x¨j (t) + βij x˙j (t) + ωijxij (t) = ξi(t), (1) 

with 𝑥𝑗 (0) = 𝑥𝑗0 and x˙j (0) = vj0, where the Einstein’s 

summation convention is used and the potential is 

supposed to be an inverse harmonic oscillator potential.  

mij, βij and ωij are the constant tensors of inertia, 

viscosity and potential frequency, respectively. The 

components of the random force are always assumed to 

be Gaussian white noises and their correlations obey the 

fluctuation-dissipation theorem ⟨ ξi(t)ξj(t )⟩ = 
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𝑘𝐵T𝑚𝑖𝑘
−1βkjδ(t −𝑡𝑗 ) where 𝑘𝐵is the boltzmann constant 

and T is the temperature. 

Generally, obtaining an analytical solution for Equation 

(1) frequently poses significant difficulties. Nevertheless, 

by using Laplace transformation, our investigation has 

shown a possible path. By applying the differentiation 

theorem to first- and second-order derivatives, we arrive 

at a system of related equations that enable a more 

manageable solution to the given issue. This 

methodological improvement highlights the effectiveness 

of Laplace transformation in handling intricate 

mathematical formulations while simultaneously 

streamlining the analytical procedure. 

a11(s)x1(s) + a12(s)x2(s) + a13(s)x3(s) + . . . + 

a1n(s)xn(s) − b1(s) = ξ1(s) 

a21(s)x1(s) + a22(s)x2(s) + a23(s)x3(s) + . . . + 

a2n(s)xn(s) − b2(s) = ξ2(s) (2) 

. . . 

. . . 

an1(s)x1(s) + an2(s)x2(s) + an3(s)x3(s) + . . . + 

ann(s)xn(s) − bn(s) = ξn(s) 

where aij(s) = s2mij + sβij + ωij and bi(s) = (smij + βij)xj0 

+ mijvj0 can be regarded as the elements of a coefficient 

matrix A(s) and B(s) respectively. The equation array of 

Eq.(2) can then be written for simplicity in a matrix form 

A(s)X(s) − B(s) = E(s), (3) 

where X(s) represents the Laplacian matrix of the 

displacements and E(s) is that of noise. Then we can 

obtain 

X(s) = A−1(s)[B(s) + E(s)], (4) 

To obtain the analytical solution for the multi-

dimensional generalised Langevin equation (MGLE), 

which describes the motion of particles, we can use an 

inverse Laplacian transformation on X(s). This 

transformative methodology plays a crucial role in 

revealing the complex dynamics depicted by the MGLE 

across various dimensions. Through the utilisation of the 

Laplacian inversion technique on the 

variable X(s), scientists can gain a thorough 

comprehension of the fundamental physical processes 

contained within the MGLE framework. That is to say 

xj (t) = L−1{Ajk(s)[bk(s) + ξk(s)]}. (5) 

where Ajk(s) are the elements of the inverse matrix of 

A(s). 

3. VERIFIABLE REPEATING OF THE TWO 

DIMENSIONAL RESULTS 

For example, in the two-dimensional case, we have 

x1(t) = L−1{A1k(s)[bk(s) + ξk(s)]} (6a) 

x2(t) = L−1{A2k(s)[bk(s) + ξk(s)]} (6b) 

where the form of 𝐴𝑗𝑘(s), (j, k = 1, 2) needs to be got 

firstly before the expression of 𝑥1 (t) and 𝑥2 (t) are 

completely obtained. From the derivations hereinbefore 

we can see that A11(s) = a22[detA(s)]−1 , A12(s) = 

−a12[detA(s)]−1 , A21(s)  

= −a21[detA(s)]−1 and A22(s) = a11[detA(s)]−1 , where 

detA(s) denotes the value of  

determinant of matrix A(s).  

Then after some algebra we can obtain 

x1(s) = A11(s)[b1(s) + ξ1(s)] + A12(s)[b2(s) + ξ2(s)] 

x2(s) = A21(s)[b1(s) + ξ1(s)] + A22(s)[b2(s) + ξ2(s)](7a) 

Substituting all the relevant elements into Eq.(7) and then 

perform inverse Laplaican trans-formation over it we can 

findSubstituting all the relevant elements into Eq.(7) and 

then perform inverse Laplaican trans-formation over it we 

can find 

𝑥1(t) = <𝑥1(t)> + ∑ ∫ 𝐻1𝑗
𝑡

0
2
𝑗=1 (t - 𝑡′)ξj(𝑡′)d𝑡′ (8a) 

𝑥2(t) = <𝑥2(t)> + ∑ ∫ 𝐻2𝑗
𝑡

0
2
𝑗=1 (t - 𝑡′)ξj(𝑡′)d𝑡′ (8b) 

where the three response functions Hij(t) with i, j = 1, 2 

respectively can be yielded from the inverse Laplacian 

transformation as Hij(t) = L−1[Hij(s)/P(s)], where 

and  

H11(s) = m22s 2 + β22s + ω22, (9a) 

H12(s) = −m12s 2− β12s − ω12, (9b) 

H21(s) = −m21s 2− β21s − ω21, (9c) 

H22(s) = m11s 2 + β11s + ω11, (9d) 

P(s) =  (detm)s4 + (m11β22 + m22β11 − m12β21 − 

m21β12)s3 

+ (detβ + m11ω22 + m22ω11 − m12ω21 − m21ω12)s 2 

+ (β11ω22 + β22ω11 − β12ω21 − β21ω12)s + detω. (10) 

The mean displacements of the particle along two 

mutually perpendicular 

directions in Eq.(8) are given by 

<𝑥1(t)> = ∑ [𝐶1𝑗(𝑡)𝑥𝑗0
2
𝑗=1 + 𝐷1𝑗(t)𝑣𝑗0], (11a) 

<𝑥2(t)> = ∑ [𝐶2𝑗(𝑡)𝑥𝑗0
2
𝑗=1 + 𝐷2𝑗(t)𝑣𝑗0], (11b) 

where the factors Cij(t) = L−1[Cij(s)/P(s)] and Dij(t) = 

L−1[Dij(s)/P(s)] with i, j = 1, 2 are in accordance to the 

following expressions 

C11(s) =  (detm)s 3 + (m11β22 + m22β11 − m12β21 − 

m21β12)s 2 

+ (detβ + m11ω22 − m21ω12)s + β11ω22 − β21ω12, 

C12(s) = (m12ω22 − m22ω12)s + β12ω22 − β22ω12, 

C21(s) = m11(m21 − m12)s3+ [m11(β21 − β12) + 

β11(m21 − m12)]s 2 

+ [β11(β21 − β12) + m21ω11 − m11ω12]s + β21ω11 − 

β11ω12, 

C22(s)  =  (m11m22 – m122 )s 3+ (m11β22 + m22β11 − 

2m12β12)s 2 

+ (m22ω11 − m12ω12 + β11β22 − β212)s + β22ω11 − 

β12ω12, 

D11(s) =  (detm)s 2+ (m11β22 − m21β12)s + m11ω22 − 

m21ω12, 

D12(s) =  (m12β22 − m22β12)s + m12ω22 − m22ω12, 

D21(s)  =  m11(m21 − m12)s 2 + (m12β11 − m11β12)s + 

m12ω11 − m11ω12, 

D22(s)  =  (m11m22 − m 2 12 )s 2 + (m22β11 − m12β12)s 

+ m22ω11 − m12ω12, 

here detm, detβ and detω denoting the values of 

determinant of the matrix mij, βij and ωij respectively. 

The resulting results are congruent with those found in 

previous 2D experiments [9]. This alignment highlights 

the precision and applicability of the derivations and 

computational approaches used in this study to other 

situations with greater complexity. Therefore, these 

findings not only confirm the accuracy of the derived 

results and calculations, but also confirm their wider 

applicability in other dimensional scenarios. 

3. CONCLUSION, PROSPECTION AND 

DISCUSSION 

In conclusion, we have obtained an exact analytical 



 

solution of the multi-dimensional generalized Langevin 

equation (MGLE) with quadratic potentials using matrix 

operations and the inverse Laplace transformation. Our 

results have been rigorously validated against known two-

dimensional cases, confirming the soundness and validity 

of our approach. This work provides a specific and 

practical framework for solving the MGLE in higher 

dimensions under harmonic potentials. 

Our method simplifies the process of obtaining solutions, 

making it less prone to errors and more accessible for 

complex multi-dimensional problems. This framework 

can be particularly useful in fields requiring precise 

modeling of stochastic processes, such as the study of 

heavy nuclei fusion reactions. By focusing on quadratic 

potentials, we avoid the complexities and inaccuracies 

associated with arbitrary parameter assumptions and 

excessive approximations. 

This study highlights the utility of our approach in 

addressing specific scenarios within the context of 

quadratic potentials. While the solutions presented here 

are not universally applicable to all potential forms, they 

offer a robust starting point for further exploration and 

refinement in related areas. Future research can build 

upon this foundation to extend the applicability and refine 

the methods for broader classes of potentials and more 

complex systems. 
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