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Abstract 

In this paper, we have studied the squeezing and statistical properties of the light produced by a three-level laser whose 

cavity contains a parametric amplifier, and with the cavity mode driven by coherent light and coupled to a vacuum 

reservoir. We obtain stochastic differential equations associated with the normal ordering using the pertinent master 

equation. By making use of the solutions to the resulting differential equations, we calculate the quadrature variances. 

We also determine the mean and variance of the photon number for the cavity mode by employing the Q function. It is 

found that the parametric amplifier increases the degree of squeezing, while the driving coherent light does not have any 

effect on the squeezing. Moreover, the mean photon number increases considerably due to the driving coherent light and 

the parametric amplifier. 

Keywords: stochastic differential equations, C-number Langevin equations, vacuum reservoir, mean photon number 

1. Introduction 

There has been a considerable interest in the analysis of 

the squeezing and statistical properties of the light 

generated by three-level lasers [1-20]. A light mode to be 

in a squeezed state, if either the change in plus quadrature 

or the change in minus quadrature is less than one, with 

the product of the uncertainties in the two quadratures 

satisfying the uncertainty relation. Because of a less noise 

in one quadrature component, the squeezed states of light 

have important applications in information processing 

systems like quantum computations, photon detection, 

and in the field of high-precision measurements [10 - 20]. 

A three-level laser may be defined as a quantum optical 

system in which the injected three-level atoms in a 

cascade configuration are initially prepared in a coherent 

superposition of the top and bottom levels and coupled to 

a vacuum reservoir via a single port mirror. When a three-

level atom in a cascade configuration makes a transition 

from the top to the bottom level via the intermediate level, 

two photons are generated. If the two photons have the 

same frequency, then the three-level atom is called 

degenerate three-level atom; o\herwise it is called 

nondegenerate [3]. The two photons are highly correlated 

and this correlation is responsible for the production of 

squeezed light. 

Three-level lasers in which the crucial role is played by 

the coherent superposition of the top and bottom levels of 

the injected atoms have been studied by several authors 

[1-7]. These studies show that this quantum optical system 

can generate light in a squeezed state under certain 

conditions. Currently, Menisha [21] has studied the 

squeezing and statistical properties of the cavity modes 

produced by two nondegenerate three-level atoms, with 

the cavity mode coupled to a vacuum reservoir. He has 

shown that the maximum quadrature squeezing of the 

light generated by the laser for A = 100 and κ = 0.8, is 

found to be 65.3% below the coherent-state level. 

In addition, Fesseha has studied the squeezing and 

statistical properties of the light produced by a degenerate 

three-level laser whose cavity contains a degenerate 

parametric amplifier [4]. His study indicates that a more 

squeezed light could be generated by a combination of 

these two quantum optical systems. On the other hand, 

Alebachew and Fesseha [10] have considered the same 

system with the injected atoms having equal probability to 

be in the upper and lower levels and with these two levels 

coupled by the pump mode emerging from the parametric 

amplifier. This study shows that the system generates light 

in a squeezed state with a maximum intracavity squeezing 

of 93% below the coherentstate level. 

In this paper, we introduce a model that generates bright 

and squeezed light from a two nondegenerate three-level 

atoms, in which the cavity modes contains a parametric 

amplifier and with the cavity mode driven by coherent 

light and coupled to a vacuum reservoir. We consider a 

two nondegenerate three-level laser in which the pump 

mode emerging from the parametric amplifier does not 

couple the top and bottom levels of the injected atoms.  
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Figure 1. Schematic representation of two nondegenerate three-level lasers. 

 

The two atoms are different in preparation and injection 

rate (see figure 1). In order to determine the squeezing and 

statistical properties of the light produced by this quantum 

optical system, we first derive c-number Langevin 

equations using the pertinent master equation. Employing 

the solutions of the resulting c-number Langevin 

equations along with the properties of the Langevin 

forces, we calculate the quadrature variance of the cavity 

mode. Applying the same solutions, we also obtain the 

antinormally ordered characteristic function with the aid 

of which the Q function is determined. The resulting Q 

function is then used to calculate the mean and variance 

of the photon number sum and difference of the cavity 

mode. 

2. Stochastic differential equations 

In this section we consider a two nondegenerate three-

level laser whose cavity contains a nondegenerate 

parametric amplifier (NOPA) and with the cavity modes 

driven by a strong coherent light and coupled to a vacuum 

reservoir. The three-level atoms injected into the cavity 

are initially prepared in a coherent superposition of the top 

and bottom levels. As it is clearly indicated in Figure 1, 

the top, intermediate, and bottom levels of a three-level 

atom are represented by |a>, |b>, and |c>, respectively. We 

prefer to call the light emitted from the top level light 

mode a and the one emitted from the intermediate level 

light mode b. We assume the transitions between levels 

|a> and |b> and between levels |b> and |c> to be dipole 

allowed, with direct transitions between levels |ai and 

level |ci to be dipole forbidden. We consider the case for 

which the two cavity modes are at resonance with the two 

transitions |a> → |b> and |b> → |c> having transition 

frequencies ωa and ωb, respectively. The interaction of a 

nondegenerate three-level atom with two-mode cavity 

radiation can be expressed in the interaction picture with 

the rotating-wave approximation (RWA) by the 

Hamiltonian of the form [3] 

( )† †ˆ ˆˆ ˆ ˆH ig a b a a b a b c b b c b ,= − + −  (1) 

where g is the coupling constant assumed to be the same 

for both transitions, â  and b̂   are the annihilation 

operators for the cavity modes. 

The interaction of the driving light modes, treated 

classically, and cavity modes is described by the 

Hamiltonian [4] 

( )1
† †ˆ ˆˆ ˆ ˆH i a a b b ,= − + −  (2) 

where ε1 is proportional to the amplitude of the driving 

light modes. In addition, the Hamiltonian describing the 

parametric interaction, with the pump mode treated 

classically, can be written as [10] 

( )2
† †ˆ ˆˆ ˆ ˆH i a b ab ,= −  (3) 

where ε2 is proportional to the amplitude of the pump 

mode. In this paper, we suppose the state of a single three-

level atom initially in the state 

| 0A a c( ) C a C c , = +  (4) 

and hence, the density operator of a single atom is 

( ) 0 0

0 0

0
( ) ( )

A aa ac

( ) ( )
ca cc

ˆ a a a c

c a c c ,

  

 

= + +

+
 (5) 

where 

2 20 0( ) ( )
a caa ccc and c , = =  (6) 

are the initial probabilities of the atoms to be in the upper 

and lower levels, respectively, and 
(0) (0) ,ac a c ca c aC C and C C  = =  (7) 

represent the atomic coherence at the initial time. We note 

that 
2

(0) (0) (0) ,ac aa cc  =  (8) 
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Following the straightforward procedure outlined in [4], the 

master equation for the cavity modes of a nondegenerate 

three-level laser whose cavity contains a nondegenerate 

parametric amplifier and whose cavity modes are driven by 

a two-mode coherent light and coupled to a two-mode 

vacuum reservoir can be written as 

( ) ( )
( )

( )
( )( )

1

2

0
1

0
1

0
1

21

2 2

21

2

† † † †

† † † †

( ) † † †
aa

( ) † † †
cc

( ) † † † † †
ac

ˆd t ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆa a a a b b b b
dt

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆab ab a b a b

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆA a a aa aa

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆA b b b b b b

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆA a b b a b a


        

    

   

    

   

= − + − + − + −

+ − + −

 − −
 +
 + + − −
 

− −
−

( )
( )

( )

0
1

1

2

2
2

†

( )
ca

† † †

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆA b a ab ab

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆa a a a a a ,

   


  

 
 
 + − −
 

 + − −
  

 (9) 

where 

2

1
2
1

2 ag r
A ,


=  (10) 

is the linear gain coefficient, κ1 is a cavity damping 

constant, and γ1 which is considered to be the same for all 

the three-levels, is the atomic decay constant. In view of 

eq. (9), we can also write the master equation for the 

cavity mode in which two different types of atoms 

injected at rates ra and rb as 

( )

( )

( )
( )

( )

1

2

0

0

0

0

2
2

2

2

2

† †

† †

† † † †

( ) † † †
aa

( ) † † †
cc

( ) † † † † † †
ac

( )
ca

ˆ ˆ ˆd t ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆa a a a b b
ˆ ˆˆ ˆdt b b

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆab ab a b a b

A
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ{ a a aa aa

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆb b b b b b

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆa b b a b a

ˆ

      


 

    

   

   

   



 − + − + − +
=  

− 

+ − + −

+ − −

+ − −

− − −

− ( )

2 2

2

† † † †

† †

ˆ ˆˆ ˆ ˆˆ ˆ ˆb a ab ab }

ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆa a a a a a b b
,

ˆ ˆ ˆ ˆˆ ˆb b b b

  

    

 

− −

 − − + −
+  

− 

 (11) 

where 

1 1 1 ,  = +                  (12)  

2 2 2 ,   = +                                                          (13) 

1 1A A A ,= +  (14) 

and 

1 1 ,   = +  (15) 

3. C-number Langevin equations 

We now seek to obtain the c-number Langevin equations 

associated with the normal ordering for the cavity mode 

variables. To this end, employing the relation [5] 

( )ˆd td ˆ ˆB Tr B ,
dt dt

 
=  

 

 (16) 

along with eq. (11), one readily finds the following 

equations 

1
1 1

2 2

†
a

d ˆˆ ˆa a b ,
dt

  −= − + +  (17) 

, (18) 

2 2
12†

a
d ˆˆ ˆ ˆ ˆa a b a a ,
dt

  −= − + +  (19) 

2 2
12†

c
d ˆ ˆ ˆ ˆˆb b a b b ,
dt

  += − + +  (20) 

( ) 0
1

1

2
1

2

† † † †
a

( )†
aa

d ˆˆ ˆ ˆ ˆ ˆa a a a a b
dt

ˆˆ ˆ ˆab a a A ,

 

  

−


−

= − + +

+ + +

 (21) 

( )1

1

2
1

2

† † † †
c

†

d ˆ ˆ ˆ ˆ ˆ ˆb b b b b a
dt

ˆ ˆ ˆâb b b ,

 

 

+


+

= − +

+ + +

 (22) 

( )

( )

2

2
1

1 1

2 2
1

2

† † †
a c

†

d ˆ ˆˆ ˆ ˆa b a b a
dt

ˆ ˆ ˆb b a ,

  

 

+


−

= − + +

+ + +

 (23) 

( )

( )1

1 1

2 2
1 1

2 2

†
a c

†

d ˆ ˆˆ ˆ ˆ ˆab ab a a
dt

ˆ ˆ ˆ ˆb b b a ,

  

  

+

− +

= − + +

+ + + +

  (24) 

where 
0( )

a aaA ,  = −  (25) 

(0) ,c ccA  = +  (26) 

0
22

( )
acA ,  − = −  (27) 

0
22

( )
aaA ,  + = +  (28) 

We note that the operators in the above equations are in 

the normal order. The c-number equations corresponding 

to eqs. (17-24) are [2] 

1
1 1

2 2

*
a

d
,

dt
     −= − + +  (29) 

1
1 1

2 2

*
c

d
,

dt
     += − + +  (30) 

2 2
12*

a
d

,
dt

       −= − + +  (31) 

2 2
12*

c
d

,
dt

       += − + +  (32) 

( ) 0
1

1

2
1

2

* *
a

( )*
aa

d

dt

A ,

       

     

 
−


−

= − +

+ + + +

  (33) 
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( )1

1

2
1

2

* *
c

*

d

dt

,

       

    

 
+


+

= − +

+ + +

 (34) 

( )2 2
1

1 1

2 2
1

2

a c

* *

d

dt

,

      

     

 


+ −

= − + +

+ + +

 (35) 

( )1

1 1

2 2
1 1

2 2

*
a c

*

d

dt

,

      

      

+

− +

= − + +

+ + + +

 (36) 

On the basis of eqs. (29) and (30), we can write 

( ) ( ) ( ) ( )1
1 1

2 2

*
a

d
t t t f t ,

dt
     −= − + + +  (37) 

( ) ( ) ( ) ( )1
1 1

2 2

* * *
c

d
t t t f t ,

dt
     

+= − + + + (38) 

where fα(t) and fβ(t) are Langevin forces the properties of 

which remain to be determined, α(t) and β(t) are the c-

number variables corresponding to the cavity mode 

operators â and b̂ . Making the use of eqs. (29, 30), the 

correlation properties of the Langevin forces can be 

readily put as [3] 

( ) ( ) 0f t f t , = =  (39) 

( ) ( ) 0f t f t ,  =  (40) 

( ) ( ) ( ) ( ) 0*f t f t f t f t ,    = =  (41) 

( ) ( ) ( )0( )*
aaf t f t A t t ,    = −  (42) 

( ) ( ) 0*f t f t ,  =  (43) 

( ) ( ) ( )
1

2
f t f t t t ,   + = −  (44) 

The results described by eqs. (39- 44) represent the 

correlation properties of the Langevin forces fα(t) and fβ(t) 

associated with the normal ordering. Following the 

procedure described in [20], the solutions of the coupled 

differential eqs. (37 , 38) are given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 110 0*
at p t q t F t t ,   = + + +  (45) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 120 0* *
bt p t q t F t t ,   = + + + (46) 

where 

( )
1 1

2 21
2 2

t tA A
p t e e ,

 

 

− +
− −

+ −
= −  (47) 

( )
1 1

2 22
2 2

t tA A
p t e e ,

 

 

+ −
− −

+ −
= −  (48) 

( )
1 1

2 21
2 2

2 2

t t
q t e e ,

  

 

− +
− −

− −
= −  (49) 

( )
1 1

2 22
2 2

2 2

t t
q t e e ,

  

 

− +
− − 

+ +
= −                (50) 

( ) ( ) ( )
( ) ( )

1

10

t

a
*

p t t f t
F t dt ,

q t t f t




 − + 
=   −                 (51) 

( ) ( ) ( )
( ) ( )

1

20

t *
b

q t t f t
F t dt ,

q t t f t




 − + 
=   −                 (52) 

( )

1

2

1
11 1

2

2
1

2
1

t

t

A
e

t ,

A
e










 



−

+

−
+ −

−

−
− −

+

  
+  −

  
  =
  +   − −
  
  

 (53) 

( )

1

2

1
12 1

2

2
1

2
1

t

t

A
e

t ,

A
e










 



+

−

−
+ −

+

−
− −

−

  
−  −

  
  =
  −   − −
  
  

   (54) 

( ) ( )
21

4
2

*
a c a c ,       + −

 
= +  − +  

    (55)  

2 4 *A ,  + −= +  (56) 

A A . =                    (57) 

4. Quadrature variance of the cavity modes 

Here, we seek to analyze the quadrature squeezing of the 

two-mode light in the cavity. The squeezing properties of 

the two-mode light in the cavity can be described by two 

quadrature operators defined by [18]  

( )1 †ˆ ˆ ˆc c c , =               (58) 

where 

( )
1

2

ˆˆ ˆc a b ,= +  (59) 

with â and b̂ represent the separate modes of cavity light 

emitted from the three-level atoms. The two-mode light is 

said to be in a squeezed state if either 2 1c +    and 

2 1c −   or 2 1c +    and 2
1 1c   , such that  c+ c− ≥ 1 

[3, 20]. 

The variances of the quadrature operator, defined by 

2 2 2ˆ ˆc c c ,  =   −                   (60) 

can be expressed in terms of c-number variables 

associated with the normal ordering as 

2 1 ( ), ( ) ,c t t    =                    (61) 

where 

( )1

2
( t ) ( t ) ( t ) ( t ) ( t ) ,     

 = +    (62) 
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On account of Eq. (62), we see that 

1

2
2

2

( t ), ( t ) ( ( t ), ( t )

( t ), ( t ) ( t ), ( t )

( t ), ( t )

( t ), ( t ) ( t ), ( t ) ) c.c ,

   

   

 

   

 

 



 

  =   +

  +  

   

     +

 (63) 

in which c.c. stands for complex conjugate. Using eqs. 

(51, 52), (45, 46), and assuming the cavity modes are 

initially in vacuum states along with the fact that a noise 

force at a certain time does not affect the cavity mode  

variables at earlier time, one can easily establish that 

0( t ), ( t ) ( t ), ( t ) ( t ), ( t ) ,       =   =   = (64) 

2

1

2

2

1

2

2

1

2

2 2

2 2

1

2 2

2 2

1

2 2

2 2

1

2

( )t

( )t

( )t

A [ A f f ] A f
( t ), ( t )

( )

( e )

A [ A f f ] A f

( )

( e )

A [ A f f ] A f

( )

( e )

A [ A f

 

 

 

 

 

 
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and 
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where 
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Now substitution of eqs. (64), (65), (66),and (67), and the 

complex conjugate of (67) into eq. (63) leads to 
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Hence on account of eq. (69), eq. (61) takes at steady state 

the form 
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 (70) 

This represents the quadrature variances of the cavity 

modes for a two nondegenerate three- level laser whose 

cavity contains a parametric amplifier and whose cavity 

modes are driven by coherent light and coupled to a two-

mode vacuum reservoir. In order to have a mathematically 

manageable analysis, we take ρac = ρca. 

Now in view of this and eq. (8), we have 
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So that with the aid eqs. (70, 71), we get 
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 (72) 

This is the quadrature variances of the cavity modes for a 

two nondegenerate three-level laser whose cavity contains 

a parametric amplifier and whose cavity modes are 

coupled to a two-mode vacuum reservoir. Since the 

parameter χ1 does not appear in this equation, the driving 

coherent light has no effect on the quadrature variances.  

 
Figure 2. Plots of the quadrature variance [eq.(72)] versus η 

for κ = 0.8, χ2 = 0.399, and for different values of the linear 

gain coefficient. 

 

 
Figure 3. Plots of the quadrature variances [eq.(72)] versus η 

(blue curve) and [eq.(73)] versus η (red curve) for A = 100, χ2 = 

0.399, and κ = 0.8. 

 

Figure 2 represents the variances of the minus quadrature 

[eq. (72)] versus η for different values of the linear gain 

coefficient. This figure indicates that the degree of 

squeezing increases with the linear gain coefficient and 

almost perfect squeezing can be obtained for large values 

of the linear gain coefficient and for small values of η. 

Moreover, the minimum value of the quadrature variance 

described by eq. (72) for A = 100, κ = 0.8, and X2= 0.399, 

is found to be 3066 and occurs at η = 0.11. This 

result implies that the maximum intracavity squeezing for 

the above values is 69.34% below the coherent-state level. 

This result is greater than the one obtained by Menisha 

[21]. 

The plots in Figure 3 represent the variances of the minus 

quadrature of the cavity modes for a two nondegenerate 

three-level laser alone (red curve) and with parametric 

amplifier (blue curve). This figure indicates that better 

squeezing can be obtained from a two nondegenerate 

three-level laser with parametric amplifier. We now 

consider the case in which the nonlinear crystal is 

removed from the cavity and the cavity is coupled to a 

two-mode vacuum reservoir. Then upon setting χ2 = 0 in 

eq.(72), we get 
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Figure 4. Plots of the quadrature variance [eq.(73)] versus η 

for A = 100 and κ = 0.8. 
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 (73) 

This is the quadrature variances of the cavity modes for a 

two nondegenerate three-level laser coupled to a two-

mode vacuum reservoir. The minimum value of the 

quadrature variance described by figure 4 for A = 100 and 

κ = 0.8, is found to be 2
1( ) 3467c = and occurs at η = 

0.18. This result implies that the maximum intracavity 

squeezing for the above values is 65.3% below the 

coherent-state level. Comparison of this result with the 

69.34% squeezing that could be obtained in the presence 

of the parametric amplifier shows that the parametric 

amplifier has significant effect on the squeezing of the 

cavity modes. 

5. Photon statistics 

In this section we study the statistical properties of the 

cavity modes produced by a two nondegenerate three-

level laser whose cavity contains a parametric amplifier 

and with the cavity modes driven by coherent light and 

coupled to a two-mode vacuum reservoir. We first obtain, 

using the antinormally ordered characteristic function 

defined in the Heisenberg picture, the Q function for the 

cavity modes. 

Then applying the resulting Q function, we calculate the 

mean and variances of the photon number sum and 

difference for the cavity modes. 

5.1. The Q function 

Here we wish to obtain the Q function for the cavity 

modes produced by the system under consideration. The 

Q function for a two-mode light can be expressed as [3] 
2 2

2

1 z z
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d z d
Q( , ,t ) ( z, ,t ) e ,    

  
 

   − + −=   

 (74) 

with the characteristic function ΦA(z,w,t) defined in the 

Heisenberg picture by 

0
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 (75) 

Employing the Baker-Hausdorff identity, we can rewrite 

eq. (75) in the normal order as 

0
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so that the corresponding c-number equation is  
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 (77) 

Now taking into account eqs. (45) and (46) along with 

their complex conjugates, eq. (77) can be put in the form 

11 11 12 12z z z z
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where 

1 10 0 a( t ) p ( t ) ( ) q ( t ) ( ) F ( t ) ,    = + +  (79) 

2 20 0
b

( t ) p ( t ) ( ) q ( t ) ( ) F ( t ) .    = + +  (80) 

With the aid of eqs. (47)- (52), it can be easily established 

that 

1 1
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d
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1 1
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c

d
( t ) ( t ) ( t ) ,

dt
     

+  = − +  (82) 

We see that eqs. (81) and (82) are linear differential 

equations for 𝛼 ´(𝑡)  and 𝛽´(t). On the other hand, taking 

into account eqs. (51), (52), and the assumption that the 

cavity modes are initially in a vacuum state, we have 

0( t ) ( t ) ,  = =  (83) 

Thus we observe that α´(t) and β´(t) are Gaussian variables 

with a vanishing mean. In view of this, eq. (78) can be 

expressed as [20] 

11 11 12 12

2
1

2

z z z z
A( z, ,t ) e

z ( t ) z ( t )
exp ,

( t ) ( t

       

 

  

     − − + − + −

 

 

 =

 
  −   

  + − 
 

 (84) 

Hence on account of eqs. (64- 67), the characteristic 

function can be put in the form 
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and 
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Now introducing (85) into eq (74) and carrying out the 

integration with the help of 
2

2 2

2

2 2

22

1
0

44

d z
exp( azz bz cz Az Bz )

abc Ac Bb
exp , a

a ABa AB



  − + + + +

 + +
=  

− −  


     (89) 

we obtain 
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where 
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11 12p u , = −   (94) 

12 11q u .  = −  (95) 

6. Mean of the photon number sum and 

difference 

We next proceed to calculate the mean and variances of 

the photon number sum and difference of mode a and 

mode b applying the Q function. We define the operators 

representing the photon number sum and difference of 

mode a and mode b by 
† †ˆ ˆˆ ˆ ˆn a a b b , =   (96) 

The mean of the photon number sum and difference can 

be written in terms of the Q function as 
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Now applying the Q function eq. (90) in eq. (97) and 

performing the integration with the help of eq. (89), we 

obtain 
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from which follows 
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are the mean photon numbers of mode a and mode b. With 

the aid of eqs. (91), (92), (86), and (87), we can write 
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 (102) 

and 

( )
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 (103) 

We easily see from eqs. (102) and (103) that the driving 

coherent light enhances the mean photon numbers of 

mode a and mode b. On account of eqs. (102) and (103), 

the mean of the photon number sum and difference can be 

written as 
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 (104) 

We now proceed to consider some special cases. We first 

consider the case in which the parametric amplifier and 

the driving coherent light are absent. Thus upon setting χ1 
= χ2 = 0 in eq. (104), we get 

2 2 1 1 1
1

4 2

( A ) ( )A( )
n A( ) ,

( A )( A )

  


   


+ +  +
= −

+ +
 (105) 

This is the mean of the photon number sum and difference 

for the cavity modes produced by two different 

nondegenerate three-level atom coupled to a vacuum 

reservoir. We see from eq. (105) that the mean of the 

photon number difference is positive. This shows that the 

mean photon number of mode a is greater than that of 

mode b. We observe from Figure. 5 that the mean photon  
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Figure 5. Plots of the mean of the photon number difference [eq. 

(104)] versus η (blue curve) and the variances of the photon 

number difference [eq. (105)] versus η (red curve) for A = 100, 

κ = 0.8 χ1 = 0.2, and χ2 = 0.399. 

 

number increases considerably due to the driving coherent 

light and parametric amplifier. We next consider the case 

in which atoms are not injected into the cavity. Hence 

upon setting A = 0 in eq. (104), we find 

( )

2 2 2
2 1

2 2 2
2 2

2
2

2 4
1 1

4 4

n ( ) ,
  
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 
 

=  + 
− −

 

 (106) 

This represents the mean of the photon number sum and 

difference of the cavity modes for a two nondegenerate 

parametric oscillator driven by coherent light and coupled 

to a vacuum reservoir. We see from eq. (106) that the mean 

of the photon number difference is zero. We observe from 

these two special cases that the mean photon number of 

mode a is greater than that of mode b due to the three-

level laser. And the increase in the mean photon number 

of mode a must be due to the decay of some atoms from 

the intermediate level to levels other than level c 

spontaneously. 

7. Variances of the photon number sum and 

difference 

The variances of the photon number sum and difference 

defined by 

( )
2 2

2 † † † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆn a a b b a a b b , =  −   (107) 

can be expressed as 

2 2 2 2a a bb
n n n n , =  +   (108) 

in which 

( )
2

2 2†
a aˆ ˆn a a n , = −  (109) 

is the photon number variance of mode a, 

( )
2

2 2†
b b

ˆ ˆn b b n , = −  (110) 

is the photon number variance of mode b, and 
† †

a b a b
ˆ ˆˆ ˆn a ab b n n ,= −  (111) 

 

 
Figure 6. Plots of the mean of the photon number difference [eq. 

(105)] versus η (solid curve) and the variances of the photon 

number difference [eq. (119)] versus η (dashed curve) for A = 

100, κ = 0.8. 

 

with  and  . Using the 

commutation relation , we can write 

2 2 2 2 3 2†
a a aˆ ˆn a a n n , = − − −  (112) 

The first term on the right side of eq. (112) can be 

expressed in terms of the Q function as [3] 

( )2 2 2 2 2 2† *ˆ ˆa a d d Q , ,t ,     =   (113) 

Now applying the Q function eq. (90) in eq. (113) and 

performing the integration, we obtain 

( )
422 2

112 1†
aˆ ˆa a n ,= + −              (114) 

Therefore, substitution of eq. (114) into eq. (112) yields 
42 2

11a a an n n , = + −  (115) 

Following the same procedure, we easily obtain 
42 2

12bb b
n n n , = + −            (116) 

and 
2 22

11 12 11 12
* *

a bn b ,   = + −  (117) 

Hence combination of eqs. (108), (115), (116), and (117) 

results in 
2

2 2 2
11 12

2
22

11 12

2 *
a a bb

*

n n n n n b

,

 

 

 = + + +  +

 
−  
 

 . (118) 

Upon setting χ1 = χ2 = 0 in eq. (118), we get 

22 2 2 2a a bb
n n n n n b , = + + +   (119) 

We observe from figure 6 that the variance of the photon 

number difference is greater than the mean of the photon 

number difference. 

8. Conclusion 

In this paper, we have studied the squeezing and statistical 

properties of the cavity modes produced by two 
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nondegenerate three-level lasers whose cavities contain 

a parametric amplifier, with the cavity modes driven by 

coherent light and coupled to a vacuum reservoir. We have 

obtained, using the master equation, stochastic differential 

equations associated with the normal ordering. Applying 

the solutions of the resulting differential equations, we 

have calculated the quadrature variances. The light 

produced by the two nondegenerate systems is in a 

squeezed state. It is found that the parametric amplifier 

increases the degree of squeezing, but the driving 

coherent light does not have any effect on the squeezing. 

We have also seen that the degree of squeezing increases 

with the linear gain coefficient for small values of η, and 

almost perfect squeezing can be obtained for large values 

of the linear gain coefficient. In addition, we have 

determined, employing the Q function, the mean photon 

number and the variance of the photon number for the 

cavity modes. The mean photon number increases 

considerably due to the driving coherent light and the 

parametric amplifier. Since the effect of the parametric 

amplifier on the three-level laser is to enhance both the 

degree of squeezing and the mean photon number, a bright 

and highly squeezed light can be produced by the quantum 

optical system considered in this paper. 
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