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Abstract 

The Raspberry Pi is renowned for its compact design and essential features, coupled with a free Linux operating system, 

making it an ideal platform for a myriad of scientific and research endeavors.  Particularly noteworthy are the official 

CMOS cameras tailored for Raspberry Pi, offering unique capabilities tailored for image data analysis purposes. The 

Raspberry Pi's Linux operating system (Raspbian) boasts crucial attributes like binary image output and adjustable shutter 

speed, rendering it highly conducive for scientific inquiries exploring the impact of particles and rays on CMOS sensors. 

Indeed, it serves as a valuable tool for conducting X-ray studies. Leveraging Python on Raspberry Pi enables the execution 

of camera operations, facilitating the generation of RAW image files that capture the effects of X-rays. By capturing 

RAW images with a shutter speed set to three seconds and conducting subsequent analysis on the RAW image files, one 

can derive insightful data, including the spot count diagram, the average area of spots diagram, and the average numerical 

value stored in spots diagram. Through this experimental approach, the distinctive effects of varying energy and intensity 

levels can be effectively discerned and elucidated. 
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1. Introduction 

Raspberry Pi technology is extensively utilized across 

educational, industrial, and scientific domains for a 

multitude of applications. It encompasses micro-

controllers and ARM architecture-based computers, and 

comes with a free operating system called Raspberry Pi 

OS, which is based on Debian-Linux and optimized for 

the hardware. The OS boasts over 35,000 pre-compiled 

software packages [1]. Raspberry Pi manufactures camera 

boards that are compatible with the Sony imx219 (version 

2 camera), the Sony imx477, and an older version 1 

camera board based on the Omnivision OV5647. These 

Bayer sensors capture "raw" Bayer images, which have 

not undergone any processing. The raw pixels are then 

transmitted back to the system-on-chip in separate image 

frames [2]. Image sensors integrated into circuits present 

a promising option for developing low-power, compact 

detectors with superior spatial resolution compared to 

conventional detectors. This makes them particularly 

suitable for ionizing particle detection [3]. 

In [4], the examination investigated the response of two 

distinct Commercial Off-the-Shelf CMOS image sensors 

when used as particle detectors. The sensors were 

subjected to irradiation using X-ray photons, gamma 

photons, beta particles, and alpha particles from various 

sources. An algorithm was employed to compare and 

assess the amount of charge generated by different 

particles and the size of the spot recorded on the sensor 

for classification purposes. Observable effects of these 

particles on the CMOS image sensor were evident. In [5], 

the electronic circuit integrates a CMOS sensor with an 

area of 640x480 pixels for the purpose of detecting 

ionizing radiation. The sensor was subjected to alpha 

particles, beta particles, and gamma photons. The results 

indicate that even after prolonged exposure (168 hours) to 

irradiation, the sensor maintained full functionality. 

Additionally, accurate detection of the energy from 

charged particles and photons was achieved. 

The effects of radiation on different types of CMOS image 

sensors due to X-rays are discussed in [6], indicating that 

the composition and design of CMOS cells significantly 

impact their sensitivity to X-rays. Consequently, some 

CMOS cameras exhibit high sensitivity to X-rays, while 

others do not. 

 



56 Gholamreza Fardipour Raki, Mohsen Khakzad, Shehu AbdusSalam, Milad Daneshnazar IJPR Vol. 25, No. 3 
 

 

Figure 1. Official Raspberry Pi camera modules: (Left) 5-

mega-pixel, (Right) 12.3-mega-pixel. 

  

Figure 2. (Left) Bayer bytes format. (Right) Image CMOS 

sensor pattern of pixels. 

This sensitivity is comparable to the detection of more 

energetic particles such as gamma photons, electrons, and 

alpha particles using CMOS technology. 

The Raspberry Pi camera is capable of capturing images 

in low-light environments, making it particularly well-

suited for identifying X-ray and gamma ray activity from 

sources with low activity levels by allowing the image 

sensor additional time to gather input light or particle 

impacts. 

In this article, we present the results of an experiment 

assessing the response of the CMOS sensors in Raspberry 

Pi cameras to changes in X-ray energy and intensity, using 

the RAW [7] images recorded by the sensors. 

2. Raspberry Pi Camera 

Several official camera modules are now available for the 

Raspberry Pi. The initial 5-megapixel model was 

launched in 2013, followed by an 8-megapixel Camera 

Module 2 in 2016, and a 12.3-megapixel Camera Module 

3 in 2023. These cameras can be best utilized through 

dedicated applications provided such as libcamera-still or 

libcamera-vid software packages [8,9]. Figure1 shows 

two types of camera modules. 

A  recent software library called libcamera has been 

developed to provide direct support for advanced camera 

systems within the Linux operating system. This open-

source project is designed to drive the Raspberry Pi's 

camera system through open-source code on ARM 

processors, effectively reducing reliance on proprietary 

code running on the Broadcom GPU, to which users do 

not have access. The libcamera library offers a C++ 

interface for applications, providing functionality for 

configuring the camera and enabling applications to 

request image frames. These image buffers are stored in 

system memory and can be directly used by still image 

encoders (e.g., JPEG) or video encoders (e.g., h.264). The 

source code for the libcamera-apps is freely available  at 

[10]. 

 

 

Figure 3. (Left) A small cut of the negative image file took by 

shutter speed of 3 seconds by 22 keV X-ray with the maximum 

intensity coefficient equal to 8. (Right) A photo of x-ray 

shadow of a screw and the screw itself. Both of these two 

photos were recorded by the 12.3-megapixel camera. 

When using a Raspberry Pi OS, the standard libcamera-

apps come pre-installed, ensuring that official Raspberry 

Pi cameras are automatically recognized [1,8]. 

Another  potential library for controlling Raspberry Pi 

cameras is Picamera2. This Python library offers a 

convenient way to access the Raspberry Pi camera 

system, specifically designed for use with cameras 

connected via flat ribbon cable directly to the connector 

on the Raspberry Pi itself. Although it primarily supports 

this type of connection, it also offers limited compatibility 

with USB cameras. 

Picamera2  is built on the open-source libcamera project, 

which supports intricate camera setups in Linux. 

Picamera2 is better suited for Raspberry Pi applications 

compared to libcamera's native bindings. It is specifically 

designed to optimize the capabilities of the Raspberry Pi's 

integrated camera and imaging hardware, serving as a 

replacement for the older PiCamera Python library. While 

the functionalities offered are largely similar, they are 

presented in a different manner. Picamera2 provides a 

more precise and direct insight into the Pi's camera 

system, streamlining its use for Python applications [9]. 

The data captured by CMOS image sensors and directly 

stored in memory can also be accessed by applications as 

RAW image files or Bayer data. These files contain 

comprehensive and uncompressed information about the 

image. A RAW format file preserves the unaltered data 

from the camera sensor, allowing for greater flexibility in 

post-processing and image editing. One issue with RAW 

image files is the absence of a standard file format. Major 

camera manufacturers each utilize their own unique RAW 

image format, creating potential challenges for 

collaboration or file sharing. One widely used universal 

RAW image file format is .dng, introduced by Adobe in 

2003 to establish a standardized RAW file for industry-

wide use. While it has not completely resolved the issue, 

it is now the most widely used RAW file format for both 

Raspberry Pi camera libraries and other applications [7]. 
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Bayer data is consistently maintained at full resolution, 

irrespective of the camera's output resolution and any 

resizing parameter. In the V1 module, this data occupies 

the final 6,404,096 bytes of the output file, while in the 

V2 module it occupies the last 10,270,208 bytes. The 

initial 32,768 bytes represent header data. Bayer data 

comprises 10-bit values due to its compatibility with the 

OV5647 and IMX219 sensors used in Pi's camera 

modules. The 10-bit data is structured into four sets of 8-

bit values, and then the least significant 2 bits of these four 

values are combined into a fifth byte. 

To create an image that appears more typical from RAW 

Bayer data, demosaicing is essential, along with possibly 

applying some type of color correction [11]. Figure 2 

(left) shows the structure of a RAW file data of Bayer 

image, while figure 2 (right) shows the pattern structure 

of the CMOS image sensor. Bitmap image files have a 

format similar to the CMOS pattern. If all pixels in a 

Bitmap image file are zero and there is no pixel affected, 

the file size remains fixed based on resolution. Converting 

a Bayer file to Bitmap can be beneficial because analysis 

is more straightforward with a fixed pattern. Image file 

data typically does not change during conversion using 

software like Windows Paint. 

Raspberry Pi cameras lack a physical shutter, making it 

impossible to prevent light from reaching the CMOS 

cells. The sensor allows only two operations: resetting or 

reading a row of cells. By adjusting the delay between 

resetting and reading a line, we can regulate the exposure 

time for each frame. To prolong the exposure duration, it 

is necessary to minimize the number of frames captured 

per second by using a very low frame rate. 

As a result, the maximum exposure time is influenced by 

the camera's minimum frame rate, which largely depends 

on how slowly the sensor can read lines. This hardware-

level capability relates to factors such as the register size 

for holding line read-out times. In the Picamera2 module, 

the exposure-speed parameter indicates the duration of 

exposure for the most recent processed frame. This value 

is essentially a multiple of the sensor's line read-out time 

and is constrained by the camera's frame rate [9]. 

All libcamera-app allow the user to run the camera with 

fixed shutter speed. The command below in Raspberry OS 

terminal would capture a Bayer image with long exposure 

(shutter open duration time) of 3 seconds [8]: 

 

libcamera-still -r -o test.dng --shutter 3000000 --gain 1 --

awbgains 1,1 –immediate 

In this command: 

-r specifies that the output image will be in raw Bayer 

format. 

-o test.dng indicates the output file name and format (in 

this case, a .dng file). 

--shutter 3000000 sets the shutter open duration time to 3 

seconds (3000000 microseconds). 

--gain 1 and --awbgains 1,1 adjust the gain and white 

balance gains, respectively. 

--immediate initiates the capture immediately after 

parameter configuration. 

Energetic particles and different photon wavelengths 

affect the CMOS sensor cells differently in terms of 

sensitivity and lifespan. Adjusting the shutter open time is 

important for optimizing detection levels during specific 

experiments. 

3. X-ray effect on 5.0- and 12.3-megapixels 

cameras 

We utilized the official Raspberry Pi cameras, including 

5-megapixel and 12.3-megapixel models, positioned in 

front of an X-ray source to capture Bayer image files with 

a fixed shutter speed of 3 seconds. Additionally, we 

conducted experiments with varying shutter speeds of 1 

ms, 100 ms, 1 s, and 10 s. However, the results obtained 

with shorter exposure times were less consistent 

compared to those obtained with a 3-second exposure. 

Conversely, results obtained with a longer exposure time 

of 10 seconds did not yield better outcomes due to decay 

of spots on the CMOS cells, emphasizing the optimal 

performance achieved with the 3-second exposure 

duration. 

Furthermore, we systematically increased the energy of 

the X-rays from 0 keV to 22 keV across five increments, 

while also adjusting the radiation intensity at each step. 

As anticipated, elevating both the quantity and energy of 

photons effectively intensified the observable effects 

recorded in the RAW image files. Consequently, there 

was a proportional augmentation in the volume of data 

requiring storage within the file as X-ray effects within 

the RAW image file increased. 

For visual reference, figure 3 presents a negative cut 

example depicting the effects of X-rays captured by the 

12.3-megapixel camera, alongside a photograph 

showcasing the X-ray shadow of a screw. These visual 

representations offer insight into the observed phenomena 

resulting from our experimental setup and parameter 

variations. 

We conducted a Python-based analysis on the RAW 

image files to detect and enumerate spots affected by X-

ray radiation, assigning each spot a unique identifier. 

These spots represent clusters of adjacent pixels impacted 

by X-rays. To accurately differentiate X-ray-affected 

spots from the background and enhance the analysis 

accuracy, we implemented a thresholding mechanism. 

This involved setting a minimum pixel value, referred to 

as a trigger, to classify pixels as affected by X-rays. For 

the 12.3-megapixel camera, we established a trigger value 

of 150. Notably, each pixel in the RAW image has a 

recorded value ranging between 0 and 765. 

The spot count, the average area of spots, and the average 

numerical value stored in spots in the absence of X-rays, 

as well as at the maximum energy and intensity of the X-

rays used in this experiment, are compared in Table 1. In 

the absence of X-rays, the values in Table 1 represent the 

background measurement, which is almost canceled by a 

suitable trigger in the analysis. 

The value of uncertainty, or more precisely, the standard 

deviation between repeated measurements, is shown in 

Table 1. This uncertainty might be considered background 

noise; however, suitable analysis and a well-adjusted 

trigger can mitigate this background noise. Error bars in 

figure 5 to 7 also illustrate this uncertainty.  
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Table 1. Results from the analysis of the response of the Raspberry Pi 12.3-megapixel camera to the absence of X-rays and the 

maximum energy and intensity of X-rays used in this experiment. 

 
Absence of X-ray 22 keV, 8x intensity X-ray 

No Trigger With Trigger No Trigger With Trigger 

Spot count 33.75 ± 75.71 3.00 ± 0.01 833884.75 ± 7568.44 
496010.25 ± 

8150.14 

The average area of spots 1.25 ± 0.16 pixels 1.00 ± 0.01 pixels 6.11 ± 0.06 pixels 2.84 ± 0.02 pixels 

The average numerical value 

stored in spots 
56.90 ± 20.47 276.50 ± 17.21 826.81 ± 14.06 1000.67 ± 8.80 

 

Figure 4. A cut of a negative RAW image file took by the 

12.3-megapixel camera. (Left) Some spots with different sizes 

and values. (Right) Two connected spots (ID2,ID3) 

distinguished by the analysis. 

 

Figure 5. The average area of spot variation interval for each 

X-ray energy and intensity level. 

 

Figure 6. The average numerical value stored in spots for each 

X-ray energy level. 

 

Figure 7. The spot count for each X-ray energy and intensity 

condition. 

 

 

Figure 8. (a) The LEYBOLD X-ray machine. (b) Collimator 

and camera stand. (c) The experimental setup: 1: High-Voltage, 

2: X-ray tube, 3: Collimator, 4: Raspberry Pi CMOS camera. 

 

Figure 9. (Left) X-ray spectrum of the LEYBOLD Mo (554 

861) molybdenum anode X-ray tube. (Right) Photograph of the 

X-ray tube [13] [Error! Bookmark not defined.]. 
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The variation in each measurement arises from the 

distribution of X-ray photons' orientation and the strength 

of each X-ray photon's effect on CMOS pixels. This 

variation is more pronounced at lower intensities and 

lower energies. 

To ensure proper spot identification (ID), we devised a 

priority scheme based on the pixel arrangement in the 2D 

pixel array. Pixels exceeding the trigger value were 

assigned a group ID. However, if a pixel had neighboring 

pixels with existing IDs, we prioritized assigning the ID 

of the top and left neighbors to maintain consistency in 

spot identification. This approach lets connected spots to 

receiving multiple IDs, even if they shared common 

boundaries. 

Figure 4 (left) presents a segment of a negative RAW 

image file captured by the 12.3-megapixel camera, 

depicting various spots with diverse sizes and intensity 

values. In figure 4 (right), we illustrate an instance where 

the analysis effectively distinguished two connected 

spots, with each spot receiving its unique identifier. This 

analysis methodology enabled accurate spot detection and 

identification within the X-ray-affected regions of the 

images, facilitating comprehensive characterization of the 

X-ray effects on the CMOS sensor. 

By assigning IDs to the pixels meeting the trigger criteria, 

we construct a 3D array of data, facilitating convenient 

processing. Each spot is represented by a unique ID in the 

third axis of the array, enabling spot counting and 

identification of the average area and the average 

numerical value stored in spots. While all aspects (spot 

count and average area of spots and average numerical 

value stored in spots) tend to increase with higher X-ray 

energy and intensity, their behavior differs. Consequently, 

these three aspects serve to differentiate between the 

effects of energy and intensity changes. In our 

experiments, we observed that mostly, each different 

radiation condition yields a unique set of values for spot 

count, average area and average numerical value stored in 

spots. 

While we meticulously examined the 5-megapixel official 

camera, we found that the consistency of the 12.3-

megapixel camera far exceeded that of its counterpart. 

Therefore, we solely report the results obtained using the 

12.3-megapixel camera. The enhanced consistency of the 

second camera can be attributed to its higher pixel count 

and larger CMOS chip size. 

The diagram depicted in figure 5 illustrates the variation 

interval of the average area of spots for each energy and 

intensity level. It's noteworthy that the trigger level and 

analysis structure employed in this experiment are 

specific to our setup. If the same methodology were 

applied to a different type of CMOS camera or X-ray 

energy and intensity intervals, the analysis would require 

modification to suit the new conditions. This underscores 

the importance of calibration. The average area of spots, 

and the average numerical value stored in spots are more 

indicative of the energy level, as changes in spot size and 

value are more significantly affected by variations in X-

ray energy than by intensity, and do not show a very good 

increase in higher intensities at each energy level, 

especially in lower energies. 

Figure 6 shows the change in the average numerical value 

stored in spots for each energy level, while figure 7 

illustrates the spot count for each combination of energy 

and intensity conditions. 

We explored various aspects, such as the memory size of 

each RAW image file, the number of affected pixels, the 

total value recorded in the affected pixels, the maximum-

sized spot, the average area of spots, and the average 

numerical value stored in spots. However, none of these 

parameters exhibited the same level of consistency as the 

spot count. Together with the average area of spots, and 

the average numerical value stored in spots diagrams, this 

chart serves to distinguish the effect of each energy and 

intensity level in our experiment. 

4. Experimental details 

We used the LEYBOLD 55490 X-ray machine [12] to 

study the effects of X-rays on the Raspberry Pi CMOS 

cameras. Figure 8 shows a suitable space for placing the 

Raspberry Pi camera in front of the X-ray beam. To test 

the effect of X-rays on the Raspberry Pi camera, the 

collimator provides a beam with a circular cross-section 

with a diameter of one centimeter. We placed the camera 

in front of the X-ray beam. 

The X-ray tube used in this experiment is the LEYBOLD 

Mo (554 861) [13]. This X-ray tube is a directly heated 

hot cathode tube, with a molybdenum anode seated in a 

copper block to dissipate heat. Technical data for this X-

ray tube is provided in Table 2. 

Table 2.  The LEYBOLD Mo (554 861) X-ray tube technical 

data [13]. 

Anode material 

Molybdenum 

Kα = 17.4 keV (71.1 pm), Kβ = 19.6 

keV (63.1 pm) 

Max. anode voltage 35 kV 

Max. emission 

current 
1 mA 

Size of focal spot 

approx. 
2 mm2 

 

Figure 9 shows the X-ray spectrum of the LEYBOLD Mo 

(554 861) molybdenum anode X-ray tube. 

To photograph objects like the one shown in figure 6, we 

positioned the object between the collimator and the 

camera, minimizing the distance between them. 

5. Conclusion 

The official 12.3-megapixel Raspberry Pi camera 

demonstrates strong performance in capturing changes in 

X-ray energy and intensity. By acquiring RAW images 

with a 3-second shutter speed and analyzing them as 

shown in figure 5 and 6 which display the average spots 

area and the average numerical value stored in spots, 

respectively and in figure 7’s spot count diagram, we 

could assess the effects of energy and intensity levels in 

this experiment. 

The average spots area and the average numerical value 

stored in spots are notably more affected by changes in X-

ray energy than by intensity. In contrast, the spot count is 

almost equally sensitive to changes in both X-ray energy 

and intensity. Lower X-ray energy levels (here, below 11 



60 Gholamreza Fardipour Raki, Mohsen Khakzad, Shehu AbdusSalam, Milad Daneshnazar IJPR Vol. 25, No. 3 
 

keV) have minimal impact on CMOS image sensors, even 

at high intensities, while higher energy levels (here, above 

16.5 keV) show a pronounced response to intensity 

changes. Even at low intensities, higher energy levels 

(such as 100 keV) can be detected due to this energy 

level’s high efficiency on CMOS image sensors. 

Using the presented analysis to distinguish spots, and 

calculate their area and values with a suitable trigger level, 

is essential for obtaining meaningful results from the 

extensive data provided by CMOS image sensors. While 

the image processing and analysis are complex, the entire 

procedure from image acquisition to final result takes less 

than two minutes, performed entirely on a Raspberry Pi 4 

with a 12.3-megapixel camera using Python. 

As shown in figure 7, the difference in spot count between 

the absence of X-rays and low-energy, low-intensity X-

rays (3 vs. 4,703 spots, respectively) is striking. This 

method is therefore highly effective in detecting X-rays, 

particularly at higher energy levels. 

We have presented accessible and suitable facilities and 

methods tailored for young scientists, enabling them to 

utilize a comprehensive, supported, and integrated 

package. This package empowers them to employ CMOS 

technology for detecting X-rays and other energetic 

particles, and perform analysis using both C and Python 

within a readily available Linux operating system. 

6. Data Availability Statement 

The data for this paper is quite large, but the data will be 

shared in a repository, and the access link will be shared 

by request from the reader. 
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