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Abstract

The Raspberry Pi is renowned for its compact design and essential features, coupled with a free Linux operating system,
making it an ideal platform for a myriad of scientific and research endeavors. Particularly noteworthy are the official
CMOS cameras tailored for Raspberry Pi, offering unique capabilities tailored for image data analysis purposes. The
Raspberry Pi's Linux operating system (Raspbian) boasts crucial attributes like binary image output and adjustable shutter
speed, rendering it highly conducive for scientific inquiries exploring the impact of particles and rays on CMOS sensors.
Indeed, it serves as a valuable tool for conducting X-ray studies. Leveraging Python on Raspberry Pi enables the execution
of camera operations, facilitating the generation of RAW image files that capture the effects of X-rays. By capturing
RAW images with a shutter speed set to three seconds and conducting subsequent analysis on the RAW image files, one
can derive insightful data, including the spot count diagram, the average area of spots diagram, and the average numerical
value stored in spots diagram. Through this experimental approach, the distinctive effects of varying energy and intensity

levels can be effectively discerned and elucidated.
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1. Introduction

Raspberry Pi technology is extensively utilized across
educational, industrial, and scientific domains for a
multitude of applications. It encompasses micro-
controllers and ARM architecture-based computers, and
comes with a free operating system called Raspberry Pi
OS, which is based on Debian-Linux and optimized for
the hardware. The OS boasts over 35,000 pre-compiled
software packages [1]. Raspberry Pi manufactures camera
boards that are compatible with the Sony imx219 (version
2 camera), the Sony imx477, and an older version 1
camera board based on the Omnivision OV5647. These
Bayer sensors capture "raw" Bayer images, which have
not undergone any processing. The raw pixels are then
transmitted back to the system-on-chip in separate image
frames [2]. Image sensors integrated into circuits present
a promising option for developing low-power, compact
detectors with superior spatial resolution compared to
conventional detectors. This makes them particularly
suitable for ionizing particle detection [3].

In [4], the examination investigated the response of two
distinct Commercial Off-the-Shelf CMOS image sensors
when used as particle detectors. The sensors were

subjected to irradiation using X-ray photons, gamma
photons, beta particles, and alpha particles from various
sources. An algorithm was employed to compare and
assess the amount of charge generated by different
particles and the size of the spot recorded on the sensor
for classification purposes. Observable effects of these
particles on the CMOS image sensor were evident. In [5],
the electronic circuit integrates a CMOS sensor with an
area of 640x480 pixels for the purpose of detecting
ionizing radiation. The sensor was subjected to alpha
particles, beta particles, and gamma photons. The results
indicate that even after prolonged exposure (168 hours) to
irradiation, the sensor maintained full functionality.
Additionally, accurate detection of the energy from
charged particles and photons was achieved.

The effects of radiation on different types of CMOS image
sensors due to X-rays are discussed in [6], indicating that
the composition and design of CMOS cells significantly
impact their sensitivity to X-rays. Consequently, some
CMOS cameras exhibit high sensitivity to X-rays, while
others do not.



56 Gholamreza Fardipour Raki, Mohsen Khakzad, Shehu AbdusSalam, Milad Daneshnazar

IJPR Vol. 25, No. 3

- A

c e
“
-
o
o

]
5
(%3
v

Figure 1. Official Raspberry Pi camera modules: (Left) 5-
mega-pixel, (Right) 12.3-mega-pixel.
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Figure 2. (Left) Bayer bytes format. (Right) Image CMOS
sensor pattern of pixels.

This sensitivity is comparable to the detection of more
energetic particles such as gamma photons, electrons, and
alpha particles using CMOS technology.

The Raspberry Pi camera is capable of capturing images
in low-light environments, making it particularly well-
suited for identifying X-ray and gamma ray activity from
sources with low activity levels by allowing the image
sensor additional time to gather input light or particle
impacts.

In this article, we present the results of an experiment
assessing the response of the CMOS sensors in Raspberry
Pi cameras to changes in X-ray energy and intensity, using
the RAW [7] images recorded by the sensors.

2. Raspberry Pi Camera

Several official camera modules are now available for the
Raspberry Pi. The initial 5-megapixel model was
launched in 2013, followed by an 8-megapixel Camera
Module 2 in 2016, and a 12.3-megapixel Camera Module
3 in 2023. These cameras can be best utilized through
dedicated applications provided such as libcamera-still or
libcamera-vid software packages [8,9]. Figurel shows
two types of camera modules.

A recent software library called libcamera has been
developed to provide direct support for advanced camera
systems within the Linux operating system. This open-
source project is designed to drive the Raspberry Pi's
camera system through open-source code on ARM
processors, effectively reducing reliance on proprietary
code running on the Broadcom GPU, to which users do
not have access. The libcamera library offers a C++
interface for applications, providing functionality for
configuring the camera and enabling applications to
request image frames. These image buffers are stored in
system memory and can be directly used by still image
encoders (e.g., JPEG) or video encoders (e.g., h.264). The
source code for the libcamera-apps is freely available at
[10].
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Figure 3. (Left) A small cut of the negative image file took by
shutter speed of 3 seconds by 22 keV X-ray with the maximum
intensity coefficient equal to 8. (Right) A photo of x-ray
shadow of a screw and the screw itself. Both of these two
photos were recorded by the 12.3-megapixel camera.

When using a Raspberry Pi OS, the standard libcamera-
apps come pre-installed, ensuring that official Raspberry
Pi cameras are automatically recognized [1,8].

Another potential library for controlling Raspberry Pi
cameras is Picamera2. This Python library offers a
convenient way to access the Raspberry Pi camera
system, specifically designed for use with cameras
connected via flat ribbon cable directly to the connector
on the Raspberry Pi itself. Although it primarily supports
this type of connection, it also offers limited compatibility
with USB cameras.

Picamera2 is built on the open-source libcamera project,
which supports intricate camera setups in Linux.
Picamera2 is better suited for Raspberry Pi applications
compared to libcamera's native bindings. It is specifically
designed to optimize the capabilities of the Raspberry Pi's
integrated camera and imaging hardware, serving as a
replacement for the older PiCamera Python library. While
the functionalities offered are largely similar, they are
presented in a different manner. Picamera2 provides a
more precise and direct insight into the Pi's camera
system, streamlining its use for Python applications [9].
The data captured by CMOS image sensors and directly
stored in memory can also be accessed by applications as
RAW image files or Bayer data. These files contain
comprehensive and uncompressed information about the
image. A RAW format file preserves the unaltered data
from the camera sensor, allowing for greater flexibility in
post-processing and image editing. One issue with RAW
image files is the absence of a standard file format. Major
camera manufacturers each utilize their own unique RAW
image format, creating potential challenges for
collaboration or file sharing. One widely used universal
RAW image file format is .dng, introduced by Adobe in
2003 to establish a standardized RAW file for industry-
wide use. While it has not completely resolved the issue,
it is now the most widely used RAW file format for both
Raspberry Pi camera libraries and other applications [7].
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Bayer data is consistently maintained at full resolution,
irrespective of the camera's output resolution and any
resizing parameter. In the V1 module, this data occupies
the final 6,404,096 bytes of the output file, while in the
V2 module it occupies the last 10,270,208 bytes. The
initial 32,768 bytes represent header data. Bayer data
comprises 10-bit values due to its compatibility with the
OV5647 and IMX219 sensors used in Pi's camera
modules. The 10-bit data is structured into four sets of 8-
bit values, and then the least significant 2 bits of these four
values are combined into a fifth byte.

To create an image that appears more typical from RAW
Bayer data, demosaicing is essential, along with possibly
applying some type of color correction [11]. Figure 2
(left) shows the structure of a RAW file data of Bayer
image, while figure 2 (right) shows the pattern structure
of the CMOS image sensor. Bitmap image files have a
format similar to the CMOS pattern. If all pixels in a
Bitmap image file are zero and there is no pixel affected,
the file size remains fixed based on resolution. Converting
a Bayer file to Bitmap can be beneficial because analysis
is more straightforward with a fixed pattern. Image file
data typically does not change during conversion using
software like Windows Paint.

Raspberry Pi cameras lack a physical shutter, making it
impossible to prevent light from reaching the CMOS
cells. The sensor allows only two operations: resetting or
reading a row of cells. By adjusting the delay between
resetting and reading a line, we can regulate the exposure
time for each frame. To prolong the exposure duration, it
is necessary to minimize the number of frames captured
per second by using a very low frame rate.

As a result, the maximum exposure time is influenced by
the camera's minimum frame rate, which largely depends
on how slowly the sensor can read lines. This hardware-
level capability relates to factors such as the register size
for holding line read-out times. In the Picamera2 module,
the exposure-speed parameter indicates the duration of
exposure for the most recent processed frame. This value
is essentially a multiple of the sensor's line read-out time
and is constrained by the camera’s frame rate [9].

All libcamera-app allow the user to run the camera with
fixed shutter speed. The command below in Raspberry OS
terminal would capture a Bayer image with long exposure
(shutter open duration time) of 3 seconds [8]:

libcamera-still -r -0 test.dng --shutter 3000000 --gain 1 --
awbgains 1,1 —immediate

In this command:

-r specifies that the output image will be in raw Bayer
format.

-0 test.dng indicates the output file name and format (in
this case, a .dng file).

--shutter 3000000 sets the shutter open duration time to 3
seconds (3000000 microseconds).

--gain 1 and --awbgains 1,1 adjust the gain and white
balance gains, respectively.

--immediate initiates the capture immediately after
parameter configuration.

Energetic particles and different photon wavelengths
affect the CMOS sensor cells differently in terms of

sensitivity and lifespan. Adjusting the shutter open time is
important for optimizing detection levels during specific
experiments.

3. X-ray effect on 5.0- and 12.3-megapixels
cameras

We utilized the official Raspberry Pi cameras, including
5-megapixel and 12.3-megapixel models, positioned in
front of an X-ray source to capture Bayer image files with
a fixed shutter speed of 3 seconds. Additionally, we
conducted experiments with varying shutter speeds of 1
ms, 100 ms, 1 s, and 10 s. However, the results obtained
with shorter exposure times were less consistent
compared to those obtained with a 3-second exposure.
Conversely, results obtained with a longer exposure time
of 10 seconds did not yield better outcomes due to decay
of spots on the CMOS cells, emphasizing the optimal
performance achieved with the 3-second exposure
duration.

Furthermore, we systematically increased the energy of
the X-rays from 0 keV to 22 keV across five increments,
while also adjusting the radiation intensity at each step.
As anticipated, elevating both the quantity and energy of
photons effectively intensified the observable effects
recorded in the RAW image files. Consequently, there
was a proportional augmentation in the volume of data
requiring storage within the file as X-ray effects within
the RAW image file increased.

For visual reference, figure 3 presents a negative cut
example depicting the effects of X-rays captured by the
12.3-megapixel camera, alongside a photograph
showcasing the X-ray shadow of a screw. These visual
representations offer insight into the observed phenomena
resulting from our experimental setup and parameter
variations.

We conducted a Python-based analysis on the RAW
image files to detect and enumerate spots affected by X-
ray radiation, assigning each spot a unique identifier.
These spots represent clusters of adjacent pixels impacted
by X-rays. To accurately differentiate X-ray-affected
spots from the background and enhance the analysis
accuracy, we implemented a thresholding mechanism.
This involved setting a minimum pixel value, referred to
as a trigger, to classify pixels as affected by X-rays. For
the 12.3-megapixel camera, we established a trigger value
of 150. Notably, each pixel in the RAW image has a
recorded value ranging between 0 and 765.

The spot count, the average area of spots, and the average
numerical value stored in spots in the absence of X-rays,
as well as at the maximum energy and intensity of the X-
rays used in this experiment, are compared in Table 1. In
the absence of X-rays, the values in Table 1 represent the
background measurement, which is almost canceled by a
suitable trigger in the analysis.

The value of uncertainty, or more precisely, the standard
deviation between repeated measurements, is shown in
Table 1. This uncertainty might be considered background
noise; however, suitable analysis and a well-adjusted
trigger can mitigate this background noise. Error bars in
figure 5 to 7 also illustrate this uncertainty.
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Table 1. Results from the analysis of the response of the Raspberry Pi 12.3-megapixel camera to the absence of X-rays and the
maximum energy and intensity of X-rays used in this experiment.

Absence of X-ray 22 keV, 8x intensity X-ray
No Trigger With Trigger No Trigger With Trigger
Spot count 33.75+75.71 3.00+0.01 833884.75 + 7568.44 R
The average area of spots 1.25 + 0.16 pixels 1.00 + 0.01 pixels 6.11 + 0.06 pixels 2.84 +0.02 pixels
The average numerical value
stored in spots 56.90 £ 20.47 276.50+17.21 826.81 + 14.06 1000.67 + 8.80
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Figure 8. (a) The LEYBOLD X-ray machine. (b) Collimator
and camera stand. (c) The experimental setup: 1: High-Voltage,
2: X-ray tube, 3: Collimator, 4: Raspberry Pi CMOS camera.
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Figure 9. (Left) X-ray spectrum of the LEYBOLD Mo (554
861) molybdenum anode X-ray tube. (Right) Photograph of the
X-ray tube [13] [Error! Bookmark not defined.].
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The variation in each measurement arises from the
distribution of X-ray photons' orientation and the strength
of each X-ray photon's effect on CMOS pixels. This
variation is more pronounced at lower intensities and
lower energies.

To ensure proper spot identification (ID), we devised a
priority scheme based on the pixel arrangement in the 2D
pixel array. Pixels exceeding the trigger value were
assigned a group 1D. However, if a pixel had neighboring
pixels with existing IDs, we prioritized assigning the ID
of the top and left neighbors to maintain consistency in
spot identification. This approach lets connected spots to
receiving multiple IDs, even if they shared common
boundaries.

Figure 4 (left) presents a segment of a negative RAW
image file captured by the 12.3-megapixel camera,
depicting various spots with diverse sizes and intensity
values. In figure 4 (right), we illustrate an instance where
the analysis effectively distinguished two connected
spots, with each spot receiving its unique identifier. This
analysis methodology enabled accurate spot detection and
identification within the X-ray-affected regions of the
images, facilitating comprehensive characterization of the
X-ray effects on the CMOS sensor.

By assigning IDs to the pixels meeting the trigger criteria,
we construct a 3D array of data, facilitating convenient
processing. Each spot is represented by a unique ID in the
third axis of the array, enabling spot counting and
identification of the average area and the average
numerical value stored in spots. While all aspects (spot
count and average area of spots and average numerical
value stored in spots) tend to increase with higher X-ray
energy and intensity, their behavior differs. Consequently,
these three aspects serve to differentiate between the
effects of energy and intensity changes. In our
experiments, we observed that mostly, each different
radiation condition yields a unique set of values for spot
count, average area and average numerical value stored in
spots.

While we meticulously examined the 5-megapixel official
camera, we found that the consistency of the 12.3-
megapixel camera far exceeded that of its counterpart.
Therefore, we solely report the results obtained using the
12.3-megapixel camera. The enhanced consistency of the
second camera can be attributed to its higher pixel count
and larger CMOS chip size.

The diagram depicted in figure 5 illustrates the variation
interval of the average area of spots for each energy and
intensity level. It's noteworthy that the trigger level and
analysis structure employed in this experiment are
specific to our setup. If the same methodology were
applied to a different type of CMOS camera or X-ray
energy and intensity intervals, the analysis would require
modification to suit the new conditions. This underscores
the importance of calibration. The average area of spots,
and the average numerical value stored in spots are more
indicative of the energy level, as changes in spot size and
value are more significantly affected by variations in X-
ray energy than by intensity, and do not show a very good
increase in higher intensities at each energy level,
especially in lower energies.

Figure 6 shows the change in the average numerical value
stored in spots for each energy level, while figure 7
illustrates the spot count for each combination of energy
and intensity conditions.

We explored various aspects, such as the memory size of
each RAW image file, the number of affected pixels, the
total value recorded in the affected pixels, the maximum-
sized spot, the average area of spots, and the average
numerical value stored in spots. However, none of these
parameters exhibited the same level of consistency as the
spot count. Together with the average area of spots, and
the average numerical value stored in spots diagrams, this
chart serves to distinguish the effect of each energy and
intensity level in our experiment.

4. Experimental details

We used the LEYBOLD 55490 X-ray machine [12] to
study the effects of X-rays on the Raspberry Pi CMOS
cameras. Figure 8 shows a suitable space for placing the
Raspberry Pi camera in front of the X-ray beam. To test
the effect of X-rays on the Raspberry Pi camera, the
collimator provides a beam with a circular cross-section
with a diameter of one centimeter. We placed the camera
in front of the X-ray beam.

The X-ray tube used in this experiment is the LEYBOLD
Mo (554 861) [13]. This X-ray tube is a directly heated
hot cathode tube, with a molybdenum anode seated in a
copper block to dissipate heat. Technical data for this X-
ray tube is provided in Table 2.

Table 2. The LEYBOLD Mo (554 861) X-ray tube technical
data [13].

Molybdenum
Anode material Ko =17.4 keV (71.1 pm), Kp = 19.6
keV (63.1 pm)
Max. anode voltage 35 kV
Max. emission 1mA
current
Size of focal spot 2 mm2
approx.

Figure 9 shows the X-ray spectrum of the LEYBOLD Mo
(554 861) molybdenum anode X-ray tube.

To photograph objects like the one shown in figure 6, we
positioned the object between the collimator and the
camera, minimizing the distance between them.

5. Conclusion

The official 12.3-megapixel Raspberry Pi camera
demonstrates strong performance in capturing changes in
X-ray energy and intensity. By acquiring RAW images
with a 3-second shutter speed and analyzing them as
shown in figure 5 and 6 which display the average spots
area and the average numerical value stored in spots,
respectively and in figure 7°s spot count diagram, we
could assess the effects of energy and intensity levels in
this experiment.

The average spots area and the average numerical value
stored in spots are notably more affected by changes in X-
ray energy than by intensity. In contrast, the spot count is
almost equally sensitive to changes in both X-ray energy
and intensity. Lower X-ray energy levels (here, below 11
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keV) have minimal impact on CMOS image sensors, even
at high intensities, while higher energy levels (here, above
16.5 keV) show a pronounced response to intensity
changes. Even at low intensities, higher energy levels
(such as 100 keV) can be detected due to this energy
level’s high efficiency on CMOS image sensors.

Using the presented analysis to distinguish spots, and
calculate their area and values with a suitable trigger level,
is essential for obtaining meaningful results from the
extensive data provided by CMOS image sensors. While
the image processing and analysis are complex, the entire
procedure from image acquisition to final result takes less
than two minutes, performed entirely on a Raspberry Pi 4
with a 12.3-megapixel camera using Python.

As shown in figure 7, the difference in spot count between
the absence of X-rays and low-energy, low-intensity X-
rays (3 vs. 4,703 spots, respectively) is striking. This
method is therefore highly effective in detecting X-rays,
particularly at higher energy levels.
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