

Iranian Journal of Physics Research, Vol. 25, No. 3, 2025

DOI: 10.47176/ijpr.25.3.71936

Raspberry Pi CMOS image sensor’s response to X-rays energy and intensity

change

Gholamreza Fardipour Raki1, Mohsen Khakzad1, Shehu AbdusSalam2, Milad Daneshnazar3
1School of particles and accelerator, Institute for Research in fundamental sciences (IPM), Tehran, Iran

2 Department of physics, Shahid Beheshti University, Tehran, Iran
3 Electrical Engineering and Computer Science Department, The University of Texas at Dallas, Richardson, TX, USA

E-mail: fardipour@ipm.ir

(Received 09 July 2024; in final form 17 November 2024)

Abstract

The Raspberry Pi is renowned for its compact design and essential features, coupled with a free Linux operating system,

making it an ideal platform for a myriad of scientific and research endeavors. Particularly noteworthy are the official

CMOS cameras tailored for Raspberry Pi, offering unique capabilities tailored for image data analysis purposes. The

Raspberry Pi's Linux operating system (Raspbian) boasts crucial attributes like binary image output and adjustable shutter

speed, rendering it highly conducive for scientific inquiries exploring the impact of particles and rays on CMOS sensors.

Indeed, it serves as a valuable tool for conducting X-ray studies. Leveraging Python on Raspberry Pi enables the execution

of camera operations, facilitating the generation of RAW image files that capture the effects of X-rays. By capturing

RAW images with a shutter speed set to three seconds and conducting subsequent analysis on the RAW image files, one

can derive insightful data, including the spot count diagram, the average area of spots diagram, and the average numerical

value stored in spots diagram. Through this experimental approach, the distinctive effects of varying energy and intensity

levels can be effectively discerned and elucidated.

Keywords: Half Heusler; Phase transition; dielectic function; Semiconductor; Bulk modulus; Band gap

1. Introduction

Raspberry Pi technology is extensively utilized across

educational, industrial, and scientific domains for a

multitude of applications. It encompasses micro-

controllers and ARM architecture-based computers, and

comes with a free operating system called Raspberry Pi

OS, which is based on Debian-Linux and optimized for

the hardware. The OS boasts over 35,000 pre-compiled

software packages [1]. Raspberry Pi manufactures camera

boards that are compatible with the Sony imx219 (version

2 camera), the Sony imx477, and an older version 1

camera board based on the Omnivision OV5647. These

Bayer sensors capture "raw" Bayer images, which have

not undergone any processing. The raw pixels are then

transmitted back to the system-on-chip in separate image

frames [2]. Image sensors integrated into circuits present

a promising option for developing low-power, compact

detectors with superior spatial resolution compared to

conventional detectors. This makes them particularly

suitable for ionizing particle detection [3].

In [4], the examination investigated the response of two

distinct Commercial Off-the-Shelf CMOS image sensors

when used as particle detectors. The sensors were

subjected to irradiation using X-ray photons, gamma

photons, beta particles, and alpha particles from various

sources. An algorithm was employed to compare and

assess the amount of charge generated by different

particles and the size of the spot recorded on the sensor

for classification purposes. Observable effects of these

particles on the CMOS image sensor were evident. In [5],

the electronic circuit integrates a CMOS sensor with an

area of 640x480 pixels for the purpose of detecting

ionizing radiation. The sensor was subjected to alpha

particles, beta particles, and gamma photons. The results

indicate that even after prolonged exposure (168 hours) to

irradiation, the sensor maintained full functionality.

Additionally, accurate detection of the energy from

charged particles and photons was achieved.

The effects of radiation on different types of CMOS image

sensors due to X-rays are discussed in [6], indicating that

the composition and design of CMOS cells significantly

impact their sensitivity to X-rays. Consequently, some

CMOS cameras exhibit high sensitivity to X-rays, while

others do not.

56 Gholamreza Fardipour Raki, Mohsen Khakzad, Shehu AbdusSalam, Milad Daneshnazar IJPR Vol. 25, No. 3

Figure 1. Official Raspberry Pi camera modules: (Left) 5-

mega-pixel, (Right) 12.3-mega-pixel.

Figure 2. (Left) Bayer bytes format. (Right) Image CMOS

sensor pattern of pixels.

This sensitivity is comparable to the detection of more

energetic particles such as gamma photons, electrons, and

alpha particles using CMOS technology.

The Raspberry Pi camera is capable of capturing images

in low-light environments, making it particularly well-

suited for identifying X-ray and gamma ray activity from

sources with low activity levels by allowing the image

sensor additional time to gather input light or particle

impacts.

In this article, we present the results of an experiment

assessing the response of the CMOS sensors in Raspberry

Pi cameras to changes in X-ray energy and intensity, using

the RAW [7] images recorded by the sensors.

2. Raspberry Pi Camera

Several official camera modules are now available for the

Raspberry Pi. The initial 5-megapixel model was

launched in 2013, followed by an 8-megapixel Camera

Module 2 in 2016, and a 12.3-megapixel Camera Module

3 in 2023. These cameras can be best utilized through

dedicated applications provided such as libcamera-still or

libcamera-vid software packages [8,9]. Figure1 shows

two types of camera modules.

A recent software library called libcamera has been

developed to provide direct support for advanced camera

systems within the Linux operating system. This open-

source project is designed to drive the Raspberry Pi's

camera system through open-source code on ARM

processors, effectively reducing reliance on proprietary

code running on the Broadcom GPU, to which users do

not have access. The libcamera library offers a C++

interface for applications, providing functionality for

configuring the camera and enabling applications to

request image frames. These image buffers are stored in

system memory and can be directly used by still image

encoders (e.g., JPEG) or video encoders (e.g., h.264). The

source code for the libcamera-apps is freely available at

[10].

Figure 3. (Left) A small cut of the negative image file took by

shutter speed of 3 seconds by 22 keV X-ray with the maximum

intensity coefficient equal to 8. (Right) A photo of x-ray

shadow of a screw and the screw itself. Both of these two

photos were recorded by the 12.3-megapixel camera.

When using a Raspberry Pi OS, the standard libcamera-

apps come pre-installed, ensuring that official Raspberry

Pi cameras are automatically recognized [1,8].

Another potential library for controlling Raspberry Pi

cameras is Picamera2. This Python library offers a

convenient way to access the Raspberry Pi camera

system, specifically designed for use with cameras

connected via flat ribbon cable directly to the connector

on the Raspberry Pi itself. Although it primarily supports

this type of connection, it also offers limited compatibility

with USB cameras.

Picamera2 is built on the open-source libcamera project,

which supports intricate camera setups in Linux.

Picamera2 is better suited for Raspberry Pi applications

compared to libcamera's native bindings. It is specifically

designed to optimize the capabilities of the Raspberry Pi's

integrated camera and imaging hardware, serving as a

replacement for the older PiCamera Python library. While

the functionalities offered are largely similar, they are

presented in a different manner. Picamera2 provides a

more precise and direct insight into the Pi's camera

system, streamlining its use for Python applications [9].

The data captured by CMOS image sensors and directly

stored in memory can also be accessed by applications as

RAW image files or Bayer data. These files contain

comprehensive and uncompressed information about the

image. A RAW format file preserves the unaltered data

from the camera sensor, allowing for greater flexibility in

post-processing and image editing. One issue with RAW

image files is the absence of a standard file format. Major

camera manufacturers each utilize their own unique RAW

image format, creating potential challenges for

collaboration or file sharing. One widely used universal

RAW image file format is .dng, introduced by Adobe in

2003 to establish a standardized RAW file for industry-

wide use. While it has not completely resolved the issue,

it is now the most widely used RAW file format for both

Raspberry Pi camera libraries and other applications [7].

IJPR Vol. 25, No. 3 Raspberry Pi CMOS Image Sensor’s Response to X-rays Energy and Intensity Change 57

Bayer data is consistently maintained at full resolution,

irrespective of the camera's output resolution and any

resizing parameter. In the V1 module, this data occupies

the final 6,404,096 bytes of the output file, while in the

V2 module it occupies the last 10,270,208 bytes. The

initial 32,768 bytes represent header data. Bayer data

comprises 10-bit values due to its compatibility with the

OV5647 and IMX219 sensors used in Pi's camera

modules. The 10-bit data is structured into four sets of 8-

bit values, and then the least significant 2 bits of these four

values are combined into a fifth byte.

To create an image that appears more typical from RAW

Bayer data, demosaicing is essential, along with possibly

applying some type of color correction [11]. Figure 2

(left) shows the structure of a RAW file data of Bayer

image, while figure 2 (right) shows the pattern structure

of the CMOS image sensor. Bitmap image files have a

format similar to the CMOS pattern. If all pixels in a

Bitmap image file are zero and there is no pixel affected,

the file size remains fixed based on resolution. Converting

a Bayer file to Bitmap can be beneficial because analysis

is more straightforward with a fixed pattern. Image file

data typically does not change during conversion using

software like Windows Paint.

Raspberry Pi cameras lack a physical shutter, making it

impossible to prevent light from reaching the CMOS

cells. The sensor allows only two operations: resetting or

reading a row of cells. By adjusting the delay between

resetting and reading a line, we can regulate the exposure

time for each frame. To prolong the exposure duration, it

is necessary to minimize the number of frames captured

per second by using a very low frame rate.

As a result, the maximum exposure time is influenced by

the camera's minimum frame rate, which largely depends

on how slowly the sensor can read lines. This hardware-

level capability relates to factors such as the register size

for holding line read-out times. In the Picamera2 module,

the exposure-speed parameter indicates the duration of

exposure for the most recent processed frame. This value

is essentially a multiple of the sensor's line read-out time

and is constrained by the camera's frame rate [9].

All libcamera-app allow the user to run the camera with

fixed shutter speed. The command below in Raspberry OS

terminal would capture a Bayer image with long exposure

(shutter open duration time) of 3 seconds [8]:

libcamera-still -r -o test.dng --shutter 3000000 --gain 1 --

awbgains 1,1 –immediate

In this command:

-r specifies that the output image will be in raw Bayer

format.

-o test.dng indicates the output file name and format (in

this case, a .dng file).

--shutter 3000000 sets the shutter open duration time to 3

seconds (3000000 microseconds).

--gain 1 and --awbgains 1,1 adjust the gain and white

balance gains, respectively.

--immediate initiates the capture immediately after

parameter configuration.

Energetic particles and different photon wavelengths

affect the CMOS sensor cells differently in terms of

sensitivity and lifespan. Adjusting the shutter open time is

important for optimizing detection levels during specific

experiments.

3. X-ray effect on 5.0- and 12.3-megapixels

cameras

We utilized the official Raspberry Pi cameras, including

5-megapixel and 12.3-megapixel models, positioned in

front of an X-ray source to capture Bayer image files with

a fixed shutter speed of 3 seconds. Additionally, we

conducted experiments with varying shutter speeds of 1

ms, 100 ms, 1 s, and 10 s. However, the results obtained

with shorter exposure times were less consistent

compared to those obtained with a 3-second exposure.

Conversely, results obtained with a longer exposure time

of 10 seconds did not yield better outcomes due to decay

of spots on the CMOS cells, emphasizing the optimal

performance achieved with the 3-second exposure

duration.

Furthermore, we systematically increased the energy of

the X-rays from 0 keV to 22 keV across five increments,

while also adjusting the radiation intensity at each step.

As anticipated, elevating both the quantity and energy of

photons effectively intensified the observable effects

recorded in the RAW image files. Consequently, there

was a proportional augmentation in the volume of data

requiring storage within the file as X-ray effects within

the RAW image file increased.

For visual reference, figure 3 presents a negative cut

example depicting the effects of X-rays captured by the

12.3-megapixel camera, alongside a photograph

showcasing the X-ray shadow of a screw. These visual

representations offer insight into the observed phenomena

resulting from our experimental setup and parameter

variations.

We conducted a Python-based analysis on the RAW

image files to detect and enumerate spots affected by X-

ray radiation, assigning each spot a unique identifier.

These spots represent clusters of adjacent pixels impacted

by X-rays. To accurately differentiate X-ray-affected

spots from the background and enhance the analysis

accuracy, we implemented a thresholding mechanism.

This involved setting a minimum pixel value, referred to

as a trigger, to classify pixels as affected by X-rays. For

the 12.3-megapixel camera, we established a trigger value

of 150. Notably, each pixel in the RAW image has a

recorded value ranging between 0 and 765.

The spot count, the average area of spots, and the average

numerical value stored in spots in the absence of X-rays,

as well as at the maximum energy and intensity of the X-

rays used in this experiment, are compared in Table 1. In

the absence of X-rays, the values in Table 1 represent the

background measurement, which is almost canceled by a

suitable trigger in the analysis.

The value of uncertainty, or more precisely, the standard

deviation between repeated measurements, is shown in

Table 1. This uncertainty might be considered background

noise; however, suitable analysis and a well-adjusted

trigger can mitigate this background noise. Error bars in

figure 5 to 7 also illustrate this uncertainty.

58 Gholamreza Fardipour Raki, Mohsen Khakzad, Shehu AbdusSalam, Milad Daneshnazar IJPR Vol. 25, No. 3

Table 1. Results from the analysis of the response of the Raspberry Pi 12.3-megapixel camera to the absence of X-rays and the

maximum energy and intensity of X-rays used in this experiment.

Absence of X-ray 22 keV, 8x intensity X-ray

No Trigger With Trigger No Trigger With Trigger

Spot count 33.75 ± 75.71 3.00 ± 0.01 833884.75 ± 7568.44
496010.25 ±

8150.14

The average area of spots 1.25 ± 0.16 pixels 1.00 ± 0.01 pixels 6.11 ± 0.06 pixels 2.84 ± 0.02 pixels

The average numerical value

stored in spots
56.90 ± 20.47 276.50 ± 17.21 826.81 ± 14.06 1000.67 ± 8.80

Figure 4. A cut of a negative RAW image file took by the

12.3-megapixel camera. (Left) Some spots with different sizes

and values. (Right) Two connected spots (ID2,ID3)

distinguished by the analysis.

Figure 5. The average area of spot variation interval for each

X-ray energy and intensity level.

Figure 6. The average numerical value stored in spots for each

X-ray energy level.

Figure 7. The spot count for each X-ray energy and intensity

condition.

Figure 8. (a) The LEYBOLD X-ray machine. (b) Collimator

and camera stand. (c) The experimental setup: 1: High-Voltage,

2: X-ray tube, 3: Collimator, 4: Raspberry Pi CMOS camera.

Figure 9. (Left) X-ray spectrum of the LEYBOLD Mo (554

861) molybdenum anode X-ray tube. (Right) Photograph of the

X-ray tube [13] [Error! Bookmark not defined.].

IJPR Vol. 25, No. 3 Raspberry Pi CMOS Image Sensor’s Response to X-rays Energy and Intensity Change 59

The variation in each measurement arises from the

distribution of X-ray photons' orientation and the strength

of each X-ray photon's effect on CMOS pixels. This

variation is more pronounced at lower intensities and

lower energies.

To ensure proper spot identification (ID), we devised a

priority scheme based on the pixel arrangement in the 2D

pixel array. Pixels exceeding the trigger value were

assigned a group ID. However, if a pixel had neighboring

pixels with existing IDs, we prioritized assigning the ID

of the top and left neighbors to maintain consistency in

spot identification. This approach lets connected spots to

receiving multiple IDs, even if they shared common

boundaries.

Figure 4 (left) presents a segment of a negative RAW

image file captured by the 12.3-megapixel camera,

depicting various spots with diverse sizes and intensity

values. In figure 4 (right), we illustrate an instance where

the analysis effectively distinguished two connected

spots, with each spot receiving its unique identifier. This

analysis methodology enabled accurate spot detection and

identification within the X-ray-affected regions of the

images, facilitating comprehensive characterization of the

X-ray effects on the CMOS sensor.

By assigning IDs to the pixels meeting the trigger criteria,

we construct a 3D array of data, facilitating convenient

processing. Each spot is represented by a unique ID in the

third axis of the array, enabling spot counting and

identification of the average area and the average

numerical value stored in spots. While all aspects (spot

count and average area of spots and average numerical

value stored in spots) tend to increase with higher X-ray

energy and intensity, their behavior differs. Consequently,

these three aspects serve to differentiate between the

effects of energy and intensity changes. In our

experiments, we observed that mostly, each different

radiation condition yields a unique set of values for spot

count, average area and average numerical value stored in

spots.

While we meticulously examined the 5-megapixel official

camera, we found that the consistency of the 12.3-

megapixel camera far exceeded that of its counterpart.

Therefore, we solely report the results obtained using the

12.3-megapixel camera. The enhanced consistency of the

second camera can be attributed to its higher pixel count

and larger CMOS chip size.

The diagram depicted in figure 5 illustrates the variation

interval of the average area of spots for each energy and

intensity level. It's noteworthy that the trigger level and

analysis structure employed in this experiment are

specific to our setup. If the same methodology were

applied to a different type of CMOS camera or X-ray

energy and intensity intervals, the analysis would require

modification to suit the new conditions. This underscores

the importance of calibration. The average area of spots,

and the average numerical value stored in spots are more

indicative of the energy level, as changes in spot size and

value are more significantly affected by variations in X-

ray energy than by intensity, and do not show a very good

increase in higher intensities at each energy level,

especially in lower energies.

Figure 6 shows the change in the average numerical value

stored in spots for each energy level, while figure 7

illustrates the spot count for each combination of energy

and intensity conditions.

We explored various aspects, such as the memory size of

each RAW image file, the number of affected pixels, the

total value recorded in the affected pixels, the maximum-

sized spot, the average area of spots, and the average

numerical value stored in spots. However, none of these

parameters exhibited the same level of consistency as the

spot count. Together with the average area of spots, and

the average numerical value stored in spots diagrams, this

chart serves to distinguish the effect of each energy and

intensity level in our experiment.

4. Experimental details

We used the LEYBOLD 55490 X-ray machine [12] to

study the effects of X-rays on the Raspberry Pi CMOS

cameras. Figure 8 shows a suitable space for placing the

Raspberry Pi camera in front of the X-ray beam. To test

the effect of X-rays on the Raspberry Pi camera, the

collimator provides a beam with a circular cross-section

with a diameter of one centimeter. We placed the camera

in front of the X-ray beam.

The X-ray tube used in this experiment is the LEYBOLD

Mo (554 861) [13]. This X-ray tube is a directly heated

hot cathode tube, with a molybdenum anode seated in a

copper block to dissipate heat. Technical data for this X-

ray tube is provided in Table 2.

Table 2. The LEYBOLD Mo (554 861) X-ray tube technical

data [13].

Anode material

Molybdenum

Kα = 17.4 keV (71.1 pm), Kβ = 19.6

keV (63.1 pm)

Max. anode voltage 35 kV

Max. emission

current
1 mA

Size of focal spot

approx.
2 mm2

Figure 9 shows the X-ray spectrum of the LEYBOLD Mo

(554 861) molybdenum anode X-ray tube.

To photograph objects like the one shown in figure 6, we

positioned the object between the collimator and the

camera, minimizing the distance between them.

5. Conclusion

The official 12.3-megapixel Raspberry Pi camera

demonstrates strong performance in capturing changes in

X-ray energy and intensity. By acquiring RAW images

with a 3-second shutter speed and analyzing them as

shown in figure 5 and 6 which display the average spots

area and the average numerical value stored in spots,

respectively and in figure 7’s spot count diagram, we

could assess the effects of energy and intensity levels in

this experiment.

The average spots area and the average numerical value

stored in spots are notably more affected by changes in X-

ray energy than by intensity. In contrast, the spot count is

almost equally sensitive to changes in both X-ray energy

and intensity. Lower X-ray energy levels (here, below 11

60 Gholamreza Fardipour Raki, Mohsen Khakzad, Shehu AbdusSalam, Milad Daneshnazar IJPR Vol. 25, No. 3

keV) have minimal impact on CMOS image sensors, even

at high intensities, while higher energy levels (here, above

16.5 keV) show a pronounced response to intensity

changes. Even at low intensities, higher energy levels

(such as 100 keV) can be detected due to this energy

level’s high efficiency on CMOS image sensors.

Using the presented analysis to distinguish spots, and

calculate their area and values with a suitable trigger level,

is essential for obtaining meaningful results from the

extensive data provided by CMOS image sensors. While

the image processing and analysis are complex, the entire

procedure from image acquisition to final result takes less

than two minutes, performed entirely on a Raspberry Pi 4

with a 12.3-megapixel camera using Python.

As shown in figure 7, the difference in spot count between

the absence of X-rays and low-energy, low-intensity X-

rays (3 vs. 4,703 spots, respectively) is striking. This

method is therefore highly effective in detecting X-rays,

particularly at higher energy levels.

We have presented accessible and suitable facilities and

methods tailored for young scientists, enabling them to

utilize a comprehensive, supported, and integrated

package. This package empowers them to employ CMOS

technology for detecting X-rays and other energetic

particles, and perform analysis using both C and Python

within a readily available Linux operating system.

6. Data Availability Statement

The data for this paper is quite large, but the data will be

shared in a repository, and the access link will be shared

by request from the reader.

7. Acknowledgment

G.F. Raki and M. Khakzad are grateful to the School of

Particles and Accelerator at IPM for their financial

support, assistance, and interest in this project.

References

1. Raspberry-Pi, Raspberry Pi Documentation, https://www.raspberrypi.com/documentation (2023).

2. Raspberry-Pi, Raspberry Pi Camera Algorithm and Tuning Guide,

https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf (2023).

3. Y Degerli, F Guilloux, and F Orsini, Journal of Instrumentation, 9 C05018 (2014).

4. M Pérez, J Lipovetzky, M Sofo Haro, I Sidelnik, J J Blostein, F Alcalde Bessia, and M G Berisso, Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 827

(2016) 171.

5. E Cruz-Zaragoza and I P López, Journal of Physics: Conference Series, 582 (2015) 012047.

6. J Tan, B Büttgen, and A Theuwissen, Proceedings of the 8th International Conference on Advanced Semiconductor

Devices and Microsystems (ASDAM 2010) (2010) 279.

7. Expert-Photography, What Is a RAW File? (And How to Open One), https://expertphotography.com/raw-file (2023).

8. LibCamera, LibCamera – A Complex Camera Support Library for Linux, Android, and ChromeOS,

https://libcamera.org/docs.html (2023).

9. Raspberry-Pi, The Picamera2 Library – A Libcamera-based Python Library for Raspberry Pi Cameras,

https://datasheets.raspberrypi.com/camera/picamera2-manual.pdf (2023).

10. GitHub, Raspberry Pi Libcamera Application Source Code, https://github.com/raspberryPi/libcamera-apps (2023).

11. GitHub, Picamera Release-1.13, Advanced Recipes, https://picamera.readthedocs.io/en/release-

1.13/recipes2.html#raw-bayer-data-captures (2023).

12. Leybold Shop, X-ray Apparatus 554800, https://www.leybold-shop.com/x-ray-apparatus-554800.html (2023).

13. Leybold Shop, X-ray Tube Mo 554861, https://www.leybold-shop.com/x-ray-tube-mo-554861.html (2023).

https://www.raspberrypi.com/documentation
https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf
https://expertphotography.com/raw-file
https://libcamera.org/docs.html
https://datasheets.raspberrypi.com/camera/picamera2-manual.pdf
https://github.com/raspberryPi/libcamera-apps
https://picamera.readthedocs.io/en/release-1.13/recipes2.html#raw-bayer-data-captures
https://picamera.readthedocs.io/en/release-1.13/recipes2.html#raw-bayer-data-captures
https://www.leybold-shop.com/x-ray-apparatus-554800.html
https://www.leybold-shop.com/x-ray-tube-mo-554861.html

