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Abstract 

This study explores the influence of deformation parameters on quantum information measures using the q-deformed 

Hulthén-quadratic exponential-type potential. By solving the Schrödinger equation with the parametric Nikiforov-Uvarov 

(pNU) method, the energy spectrum and wavefunctions were derived. Quantum information measures, including Shannon 

entropy and Fisher information, were analyzed for ground states in position and momentum spaces. The results validate 

the Berkner, Bialynicki-Birula, and Mycieslki, and Stam-Cramér-Rao inequalities, underscoring their consistency with 

quantum principles. These findings deepen our understanding of deformation effects on quantum systems and offer 

potential applications in astrophysics and quantum chemistry, advancing the exploration of molecular systems and 

quantum information theory. 
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1. Introduction 

Shannon entropy and Fisher information, which are 

rooted in foundational contributions to information theory 

[1], serve as essential metrics in quantum information 

theory. Their importance has increased notably in recent 

years due to their broad applications in physics and 

chemistry [2-4]. In addition to Shannon entropy, global 

measures such as Tsallis entropy, Rényi entropy, and 

Onicescu energy [5] play a crucial role in analyzing the 

uncertainties associated with probability distributions. 

The entropic relation in position and momentum spaces, 

derived by Berkner, Bialynicki-Birula, and Mycieslki, is 

expressed as ( ) ( ) (1 ln )S S D  +  + where D 

represents the spatial dimension [6]. This relation mirrors 

the Heisenberg uncertainty principle but accommodates 

higher-order considerations. In these spaces, Shannon 

entropy characterizes the system’s localization and 

delocalization behavior, while Fisher information, a local 

measure, captures changes in probability density [7]. For 

central potentials, Fisher information, expressed in terms 

of probability density, is validated through the Stam-

Cramér-Rao inequalities [8]. 

Quantum information-theoretic measures have been 

widely applied in molecular, atomic, and reactive 

systems. For example, Yamano [9] examined the intrinsic 

information of solitary wave profiles in nonlinear 

Schrödinger equations (SE), focusing on Shannon entropy 

and Fisher information. The study revealed soliton-

specific variations, providing novel insights into the 

structure and dynamics of solitons, emphasizing the utility 

of these measures in understanding solitary wave 

behavior. Similarly, Boumali et al. [10] studied the Fisher 

and Shannon information parameters for the Feshbach-

Villars oscillator (FVO), a model describing spin-0 

particles. Their research employed the Feshbach-Villars 

framework, which, unlike the Klein-Gordon equation, 

provides a positive probability density. This framework 

enabled them to analyze the sensitivity of probability 

distributions to changes in system parameters. 

Omugbe et al. [11] investigated bound-state solutions of 

the SE under a deformed hyperbolic potential, exploring 

correlations between information measures, and system 

variance. Their study revealed the inverse relationship 

between these measures, aligning with theoretical 

predictions and simplifying entropy calculations for 

complex potentials. 

Moreover, Onate et al. [8] extended these investigations 

by exploring the combined effects of pseudoharmonic and 

Kratzer potentials via the radial SE. Their supersymmetric 

and shape-invariance approach demonstrated how 

potential constants influence energy eigenvalues, 

expectation values, and Fisher information. Also, 

Santana-Carrillo et al. [12] studied Shannon entropies in 

position and momentum spaces within the fractional SE 

for a hyperbolic double-well potential. They found that 

decreasing fractional derivative values led to more 

localized position entropy density, offering insights into 

fractional quantum systems.   Njoku et al. [13] 

investigated quantum information measures and 

complexity in the modified Möbius squared plus Eckart 

(MMSE) potential. Using the parametric Nikiforov-

Uvarov (pNU) method, they demonstrated shifts in radial 



 

and momentum probability densities influenced by the 

screening parameter. The study validated several quantum 

measures, including Shannon entropy, Onicescu energy, 

Fisher information, and the Heisenberg uncertainty 

principle. Additionally, Njoku et al. [14] solved the Dirac 

equation under spin and pseudospin symmetry limits for 

the inversely quadratic Hellmann potential, advancing the 

understanding of spinor systems. Finally, Moreira and 

Ahmed [15] explored topological defects caused by spiral 

dislocations in a quantum harmonic oscillator. Their 

analysis of eigenvalues and entropy information revealed 

the significant impact of defect-induced perturbations on 

system properties, bridging quantum harmonic systems 

with broader physical contexts. Despite these 

advancements, exponential-type potential models remain 

underexplored, motivating this study. To the best of our 

knowledge, the q-deformed Hulthén-quadratic 

exponential-type potential (q-HQP) has not been 

investigated for quantum information-theoretic measures, 

which forms the basis of our work. 

The potential is defined as follows:[16] 
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where Vz and Vzz are the potential strengths, αz is the 

screening parameter, az, bz and cz are the adjusted 

parameter and q is the deformation parameter.  The q-

HQP has significant applications in physics, particularly 

in quantum mechanics, where it effectively models atomic 

and molecular interactions with remarkable precision. 

The inclusion of a deformation parameter provides 

flexibility for simulating bound-state properties, 

scattering phenomena, and quarkonium systems [17-20]. 

This capability enhances the study of energy spectra, 

thermodynamic properties, and quantum information 

measures. 

This research article focuses on two main objectives. 

First, the SE is solved for the q-HQP using the pNU 

method. Second, the effects of the deformation parameter 

on information metrics, such as Shannon entropy and 

Fisher information, are thoroughly investigated. 

2. The theory. 

To solve the radial SE for the q-HQP, we express the SE 

with the radial potential V(r) as follows [21,22]: 

( )
( )

( )

2

2

2 2 2

12 2

0

nl

z

z z
nl z

z

nl z

d

dr

l l
E V r

r

r



 



+

 +
− − 

 

=

 (2)

 

where l  is the angular momentum quantum number, z

is the reduced mass , zr is the particle distance, and  is 

the reduced Planck constant. 

Inserting Eq. (1) into (2) gives 
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To address the centrifugal term in Equation (3), the 

Greene-Aldrich approximation [23,24] is introduced. This 

method provides an accurate solution to the centrifugal 

problem for 1,z  , resulting in the following 

expression: 
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(4) 

We perform a convenient change of variables by setting 

z zr

zy e −
= and incorporate this ansatz, along with 

Equation (4), into Equation (3). After some 

simplifications, the resulting radial equation takes the 

Schrödinger form, and we obtain: 
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Tezcan and Sever [25] showed that the pNU method 

allows for the straightforward derivation of both the 



 

 

energy equation and the wave function. The pNU method 

is particularly effective due to its simplicity and has 

provided more accurate solutions for wave equations 

involving various potential energy functions. According 

to these authors, the standard equation is expressed as: 
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By applying Eq. (7), the authors derived the condition for 

the energy equation along with the associated wave 

function as: 
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The values of the parametric constants in Eqs. (8) and (9) 

are calculated as follows: 
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Upon Matching Eq. (5) with Eq. (7), the parametric 

constants in Eq. (10) take the form: 
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By inserting Eqs. (6) and (11) into Eqs. (8) and (9), 

respectively, the energy eigenvalue and its associated 

wave function are obtained as follows: 
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The wave function is obtain as; 
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where nlN  is normalization constant and can be 

evaluated using Eq.(14) 
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3. Shannon entropy 

The Shannon entropy, representing logarithmic 

probability density, offers insights into a system's 

probability distribution [1]. 

( ) ( ) ln ( )z z zS r r dr  = −
,

 (15) 

and 

( ) ( ) ln ( )S p p dp  = − , (16) 

In this context, ( )S   refers to the Shannon entropy in 

position space, and ( )S   represent the Shannon entropy 

in momentum space. Equations (17) and (18) describe the 

probability densities (PD) in the position and momentum 

spaces, respectively. 
2

( ) ( )z zr r =  (17) 

and 
2

( ) ( )p p =  (18) 

( )p represents the wave function in momentum space, 

which is derived by applying the Fourier transform (FT) 

to ( )zr . The concept was explored by Berkner, 

Bialynicki-Birula, and Mycieslki (BBM) [6], who 

established the connection between momentum and 

position spaces as (1 ln ) ( ) ( )D S S  +  + , with D 

representing the number of spatial dimensions. 

4. Fisher information 

In contrast, Fisher Information is a local measure of 

information entropy, factoring in differential components 

that make it sensitive to local variations in probability 

density. Recognized as a fundamental measure of 

information entropy, it is vital in determining the 

localization of probability densities. Additionally, Fisher 

information can be viewed as a measure of the oscillator's 

degree, relevant in quantum mechanical kinetic energy 

calculations. It is expressed in both position and 

momentum spaces as [7]: 
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In Fisher information theory, higher Fisher information 

indicates better precision in predicting the system's 

localization, leading to increased fluctuations. For any 

central potential model with an arbitrary angular 

momentum quantum number, the product of Fisher 

information in both position and momentum spaces must 

comply with the Stam-Cramér-Rao inequality 

( ) ( )I I  ≥ 4 [4,5,8]. 

We use Mathematica 13 software to solve Equations (19) 

and (20) because they are difficult to solve analytically 

due to the integral's complex form. 

5. Results and Discussion 

This study explores the approximate analytical solutions 

of the Schrödinger equation using the q-HQP. By 

applying Equations (15) and (16), the Shannon entropies 

in both position and momentum spaces are calculated, 

confirming the validity of the BBM uncertainty relation 

as presented in Table 1. A key implication of the BBM 

inequality is its establishment of a lower bound for the 

sum of Shannon entropies, reinforcing the quantum 

uncertainty principles that govern molecular behavior. 

Table 2 presents the numerical calculation of Fisher 

information in position and momentum spaces for various 

values of the deformation parameter (q = 10, 20, 30, 40, 

50, 60, 70, 80, 90, and 100), using Eqs. (19) and (20). The 

findings confirm the satisfaction of the Stam-Cramér-Rao 

inequality, illustrating the inverse relationship between 

Fisher information in both spaces. This alignment 

underscores the quantum mechanical constraints that 

govern these systems, offering a deeper understanding of 

how the strength of deformation affects the distribution of 

information in position and momentum spaces. Figures 

1(a) and 1(b) explore the behavior of Shannon entropy as 

a function of the screening parameter α in both position 

and momentum spaces, respectively. As α increases, 

Shannon entropy increases in position space, while 

simultaneously decreasing in momentum space. This 

inverse relationship between entropies in the two spaces 

reflects the uncertainty principle, where a decrease in 

uncertainty (or entropy) in one space results in an increase 

in the other. An increase in the screening parameter α 

leads to a rise in position-space entropy and a 

corresponding decline in momentum-space entropy. This 

behavior highlights the quantum mechanical uncertainty 

principle, with Shannon entropy serving as a measure of 

uncertainty in the system. The decrease in momentum-

space entropy, shown in Fig. 1(b), reflects greater 

uncertainty in momentum. Figures 2(a) and 2(b) analyze 

variations in Fisher information with respect to α. In both 

position and momentum spaces, Fisher information 

exhibits increasing and decreasing trends, respectively, as 

α increase. Fisher information, which measures the 

sensitivity of a system to parameter changes, suggests that 

the system becomes more responsive to changes in α. In 

Fig. 2(b), the increasing trend in Fisher information 

reveals the system’s heightened sensitivity to parameter 

variations, while in Fig. 2(a), the decreasing Fisher 

information suggests reduced sensitivity to these changes. 

Figures 3(a) and 3(b) illustrate the wave function and 



 

 

probability density in position space across various 

deformation parameters. In Fig. 3(a), the wave function 

exhibits an increase in amplitude and complexity for 

various deformation parameters, with multiple sinusoidal 

patterns representing distinct quantum states. This 

behavior reflects the quantum mechanical principle of 

wave function evolution with increasing energy levels. 

Figure 3(b) shows the probability density for various 

deformation parameters, displaying normal distribution 

curves with multiple peaks that correspond to distinct 

quantum states. These peaks reflect improved precision in 

predicting particle localization and suggest increased 

stability within the quantum system. 

 

6. Conclusions 

This study explores the influence of deformation 

parameters on quantum information measures, such as 

Shannon entropy and Fisher information, within the 

framework of the q-HQP. By solving the Schrödinger 

equation using the pNU method, energy eigenvalues and 

wavefunctions were determined. For ground states, 

Shannon entropy and Fisher information were calculated 

in both position and momentum representations. The 

findings validate the BBM inequality for Shannon entropy 

and the Stam-Cramér-Rao inequality for Fisher 

information, consistent with fundamental quantum 

mechanical principles. These results provide valuable 

insights, with potential applications in fields like 

astrophysics and quantum chemistry. 
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Table 1: Shannon entropy for the various deformation parameters in ground state 
0.009, 0.1, 0.1, 1,

0.1, 19.9, 0.001
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q S  
pS  

TS ≥ 2.14473 

    

10 1.91856 0.44885 2.36741 

20 1.92361 0.33608 2.25969 

30 1.95664 0.29196 2.24860 

40 1.97077 0.27345 2.24422 

50 1.97874 0.26311 2.24185 

60 1.98389 0.25649 2.24038 

70 1.98749 0.25187 2.23936 

80 1.99016 0.24847 2.23863 

90 1.99221 0.24585 2.23806 

100 1.99384 0.24378 2.23762 

    

Table 2: Fisher information for the various deformation parameters in ground state 0.009, 0.1, 0.1, 1,

0.1, 19.9, 0.001
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V V


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q I  
pI  

pI I ≥ 4 

10 0.30413 13.18549 4.01391 

20 0.30306 13.19501 4.00077 

30 0.30296 13.21285 4.00051 

40 0.29790 13.69283 4.08684 

50 0.29209 13.75304 4.01014 

60 0.27992 14.36422 4.01868 

70 0.26304 15.28201 4.01865 

80 0.24136 16.66674 4.01906 

90 0.21519 18.71638 4.02793 

100 0.20638 19.54378 4.02856 

    



 

  

Fig 1(a, b): Variations of Shannon entropies with 𝛼 parameter 

  

Fig.2 (a,b) Variations of Fisher information with 𝛼 parameter 

         

 (a)  (b) 
Fig. 3(a,b): The wave function and probability density in position space for different values of the deformation parameter. 
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