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Abstract

This study explores the influence of deformation parameters on quantum information measures using the q-deformed
Hulthén-quadratic exponential-type potential. By solving the Schrddinger equation with the parametric Nikiforov-Uvarov
(pNU) method, the energy spectrum and wavefunctions were derived. Quantum information measures, including Shannon
entropy and Fisher information, were analyzed for ground states in position and momentum spaces. The results validate
the Berkner, Bialynicki-Birula, and Mycieslki, and Stam-Cramér-Rao inequalities, underscoring their consistency with
quantum principles. These findings deepen our understanding of deformation effects on quantum systems and offer
potential applications in astrophysics and quantum chemistry, advancing the exploration of molecular systems and

quantum information theory.
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1. Introduction

Shannon entropy and Fisher information, which are
rooted in foundational contributions to information theory
[1], serve as essential metrics in quantum information
theory. Their importance has increased notably in recent
years due to their broad applications in physics and
chemistry [2-4]. In addition to Shannon entropy, global
measures such as Tsallis entropy, Rényi entropy, and
Onicescu energy [5] play a crucial role in analyzing the
uncertainties associated with probability distributions.

The entropic relation in position and momentum spaces,
derived by Berkner, Bialynicki-Birula, and Mycieslki, is
expressed as  S(p)+S(y)=D@+Inz)where D

represents the spatial dimension [6]. This relation mirrors
the Heisenberg uncertainty principle but accommodates
higher-order considerations. In these spaces, Shannon
entropy characterizes the system’s localization and
delocalization behavior, while Fisher information, a local
measure, captures changes in probability density [7]. For
central potentials, Fisher information, expressed in terms
of probability density, is validated through the Stam-
Cramér-Rao inequalities [8].

Quantum information-theoretic measures have been
widely applied in molecular, atomic, and reactive
systems. For example, Yamano [9] examined the intrinsic
information of solitary wave profiles in nonlinear
Schradinger equations (SE), focusing on Shannon entropy
and Fisher information. The study revealed soliton-
specific variations, providing novel insights into the

structure and dynamics of solitons, emphasizing the utility
of these measures in understanding solitary wave
behavior. Similarly, Boumali et al. [10] studied the Fisher
and Shannon information parameters for the Feshbach-
Villars oscillator (FVO), a model describing spin-0
particles. Their research employed the Feshbach-Villars
framework, which, unlike the Klein-Gordon equation,
provides a positive probability density. This framework
enabled them to analyze the sensitivity of probability
distributions to changes in system parameters.

Omugbe et al. [11] investigated bound-state solutions of
the SE under a deformed hyperbolic potential, exploring
correlations between information measures, and system
variance. Their study revealed the inverse relationship
between these measures, aligning with theoretical
predictions and simplifying entropy calculations for
complex potentials.

Moreover, Onate et al. [8] extended these investigations
by exploring the combined effects of pseudoharmonic and
Kratzer potentials via the radial SE. Their supersymmetric
and shape-invariance approach demonstrated how
potential constants influence energy eigenvalues,
expectation values, and Fisher information. Also,
Santana-Carrillo et al. [12] studied Shannon entropies in
position and momentum spaces within the fractional SE
for a hyperbolic double-well potential. They found that
decreasing fractional derivative values led to more
localized position entropy density, offering insights into
fractional quantum systems. Njoku et al. [13]
investigated quantum information measures and
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complexity in the modified Mobius squared plus Eckart
(MMSE) potential. Using the parametric Nikiforov-
Uvarov (pNU) method, they demonstrated shifts in radial
and momentum probability densities influenced by the
screening parameter. The study validated several quantum
measures, including Shannon entropy, Onicescu energy,
Fisher information, and the Heisenberg uncertainty
principle. Additionally, Njoku et al. [14] solved the Dirac
equation under spin and pseudospin symmetry limits for
the inversely quadratic Hellmann potential, advancing the
understanding of spinor systems. Finally, Moreira and
Ahmed [15] explored topological defects caused by spiral
dislocations in a quantum harmonic oscillator. Their
analysis of eigenvalues and entropy information revealed
the significant impact of defect-induced perturbations on
system properties, bridging quantum harmonic systems
with  broader physical contexts. Despite these
advancements, exponential-type potential models remain
underexplored, motivating this study. To the best of our
knowledge, the g-deformed  Hulthén-quadratic
exponential-type potential (q-HQP) has not been
investigated for quantum information-theoretic measures,
which forms the basis of our work.

The potential is defined as follows [16]

V()=
Vze—%rZ VZZ (az +bze—azl’z _|_Cze—20:zrZ )
1-ge ™" g | o

where V; and V; are the potential strengths, «, is the
screening parameter, a, b, and c, are the adjusted
parameter and q is the deformation parameter. The g-
HQP has significant applications in physics, particularly
in quantum mechanics, where it effectively models atomic
and molecular interactions with remarkable precision.
The inclusion of a deformation parameter provides
flexibility for simulating bound-state properties,
scattering phenomena, and quarkonium systems [17-20].
This capability enhances the study of energy spectra,
thermodynamic properties, and quantum information
measures.

This research article focuses on two main objectives.
First, the SE is solved for the g-HQP using the pNU
method. Second, the effects of the deformation parameter
on information metrics, such as Shannon entropy and
Fisher information, are thoroughly investigated.

2. The theory

To solve the radial SE for the g-HQP, we express the SE
with the radial potential V/(r) as follows [21,22]
2
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where | is the angular momentum quantum number, e,
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is the reduced mass , I, is the particle distance, and 7 is
the reduced Planck constant.

Inserting Eq. (1) into (2) gives
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To address the centrifugal term in Equation (3), the
Greene-Aldrich approximation [23, 24] is introduced.
This method provides an accurate solution to the
centrifugal problem for ¢, <<1,, resulting in the

following expression
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We perform a convenient change of variables by setting
y,=¢ ““%and incorporate this ansatz, along with

Equation (4), into Equation (3). After some
simplifications, the resulting radial equation takes the
Schrédinger form, and we obtain
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Tezcan and Sever [25] showed that the pNU method
allows for the straightforward derivation of both the
energy equation and the wave function. The pNU method
is particularly effective due to its simplicity and has
provided more accurate solutions for wave equations
involving various potential energy functions. According
to these authors, the standard equation is expressed as

(x,—x,8) 1
s(l—xas)l// (S)+sz(1—x3s)2
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By applying Eq. (7), the authors derived the condition for
the energy equation along with the associated wave
function as
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The values of the parametric constants in Egs. (8) and (9)
are calculated as follows

X =X =% =1X%=05(1-x),% =0.5(x,-2x),
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Upon Matching Eq. (5) with Eq. (7), the parametric
constants in Eq. (10) take the form
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By inserting Egs. (6) and (11) into Egs. (8) and (9),
respectively, the energy eigenvalue and its associated
wave function are obtained as follows
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The wave function is obtain as;
. O
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where N is normalization constant and can be

nl

evaluated using Eq.(14)
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3. Shannon entropy

The Shannon entropy, representing logarithmic
probability density, offers insights into a system's
probability distribution [1]

S(p)=—[ p(r,)In p(r,)dr, (15)
and ’
S(7)==[7(p)Iny(p)dp, (16)

In this context, S(p) refers to the Shannon entropy in

position space, and S(;/) represent the Shannon entropy

in momentum space. Equations (17) and (18) describe the
probability densities (PD) in the position and momentum
spaces, respectively

o) =|w ) (17)
and
7(p) =|w (p)[* (18)

w () represents the wave function in momentum space,
which is derived by applying the Fourier transform (FT)
to y(r,). The concept was explored by Berkner,
Bialynicki-Birula, and Mycieslki (BBM) [6], who
established the connection between momentum and
position spaces as D(1+1In z) > S(p) + S(y), with D
representing the number of spatial dimensions.

4. Fisher information

In contrast, Fisher Information is a local measure of
information entropy, factoring in differential components
that make it sensitive to local variations in probability
density. Recognized as a fundamental measure of
information entropy, it is vital in determining the
localization of probability densities. Additionally, Fisher
information can be viewed as a measure of the oscillator's
degree, relevant in quantum mechanical kinetic energy

calculations. It is expressed in both position and
momentum spaces as [7]
Vou (1)
|(P)=I%drz (19)
nI
P (P)
1(y) = == ey | (20)

P (P)

In Fisher information theory, higher Fisher information
indicates better precision in predicting the system's
localization, leading to increased fluctuations. For any
central potential model with an arbitrary angular
momentum quantum number, the product of Fisher
information in both position and momentum spaces must
comply with the Stam-Cramér-Rao inequality

1(P)1(7) = 4 14581,

We use Mathematica 13 software to solve Equations (19)
and (20) because they are difficult to solve analytically
due to the integral's complex form.

5. Results and Discussion

This study explores the approximate analytical solutions
of the Schrddinger equation using the g-HQP. By
applying Equations (15) and (16), the Shannon entropies
in both position and momentum spaces are calculated,
confirming the validity of the BBM uncertainty relation
as presented in Table 1. A key implication of the BBM
inequality is its establishment of a lower bound for the
sum of Shannon entropies, reinforcing the quantum
uncertainty principles that govern molecular behavior.
Table 2 presents the numerical calculation of Fisher
information in position and momentum spaces for various
values of the deformation parameter (q = 10, 20, 30, 40,
50, 60, 70, 80, 90, and 100), using Egs. (19) and (20). The
findings confirm the satisfaction of the Stam-Cramér-Rao
inequality, illustrating the inverse relationship between
Fisher information in both spaces. This alignment
underscores the quantum mechanical constraints that
govern these systems, offering a deeper understanding of
how the strength of deformation affects the distribution of
information in position and momentum spaces. Figures
1(a) and 1(b) explore the behavior of Shannon entropy as
a function of the screening parameter o in both position
and momentum spaces, respectively. As a increases,
Shannon entropy increases in position space, while
simultaneously decreasing in momentum space. This
inverse relationship between entropies in the two spaces
reflects the uncertainty principle, where a decrease in
uncertainty (or entropy) in one space results in an increase
in the other. An increase in the screening parameter o
leads to a rise in position-space entropy and a
corresponding decline in momentum-space entropy. This
behavior highlights the quantum mechanical uncertainty
principle, with Shannon entropy serving as a measure of
uncertainty in the system. The decrease in momentum-
space entropy, shown in figure 1(b), reflects greater
uncertainty in momentum. Figures 2(a) and 2(b) analyze
variations in Fisher information with respect to a. In both
position and momentum spaces, Fisher information
exhibits increasing and decreasing trends, respectively, as
o increase. Fisher information, which measures the
sensitivity of a system to parameter changes, suggests that
the system becomes more responsive to changes in a. In
figure 2(b), the increasing trend in Fisher information
reveals the system’s heightened sensitivity to parameter
variations, while in figure 2(a), the decreasing Fisher
information suggests reduced sensitivity to these changes.
Figures 3(a) and 3(b) illustrate the wave function and
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probability density in position space across various
deformation parameters. In figure 3(a), the wave function
exhibits an increase in amplitude and complexity for
various deformation parameters, with multiple sinusoidal
patterns representing distinct quantum states. This
behavior reflects the quantum mechanical principle of
wave function evolution with increasing energy levels.
Figure 3(b) shows the probability density for various
deformation parameters, displaying normal distribution
curves with multiple peaks that correspond to distinct
quantum states. These peaks reflect improved precision in
predicting particle localization and suggest increased
stability within the quantum system.

6. Conclusions

This study explores the influence of deformation
parameters on quantum information measures, such as
Shannon entropy and Fisher information, within the
framework of the g-HQP. By solving the Schrédinger
equation using the pNU method, energy eigenvalues and
wavefunctions were determined. For ground states,
Shannon entropy and Fisher information were calculated
in both position and momentum representations. The

Table 1: Shannon entropy for the various deformation parameters in ground state 4

findings validate the BBM inequality for Shannon entropy
and the Stam-Cramér-Rao inequality for Fisher
information, consistent with fundamental quantum
mechanical principles. These results provide valuable
insights, with potential applications in fields like
astrophysics and quantum chemistry.
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=0.009,b, =0.1c, =-0.1, u, =1 =1,

a, =0.1V,, =199V, =-0.001

q S, S = 214473
10 1.91856 0.44885 2.36741
20 1.92361 0.33608 2.25969
30 1.95664 0.29196 2.24860
40 1.97077 0.27345 2.24422
50 1.97874 0.26311 2.24185
60 1.98389 0.25649 2.24038
70 1.98749 0.25187 2.23936
80 1.99016 0.24847 2.23863
90 1.99221 0.24585 2.23806
100 1.99384 0.24378 2.23762

Table 2: Fisher information for the various deformation parameters in ground state & =0.009.b, =0.1¢, =-01 4, =h=1,

a, =0.1V,, =19.9V, =-0.001

q I;/ |}, | 04
10 0.30413 13.18549 4.01391
20 0.30306 13.19501 4.00077
30 0.30296 13.21285 4.00051
40 0.29790 13.69283 4.08684
50 0.29209 13.75304 4.01014
60 0.27992 14.36422 4.01868
70 0.26304 15.28201 4.01865
80 0.24136 16.66674 4.01906
90 0.21519 18.71638 4.02793
100 0.20638 19.54378 4.02856
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Figure 3 (a,b). The wave function and probability density in position space for different values of the deformation parameter.
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