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Abstract 

Depending on the basic assumptions of the Shell Model and by using suitable potentials, we found a new formula to 

calculate nuclear binding energies for some nuclei around the closed core, which are
49 58

20 Ca−
, 

57 78

28 Ni−
and 

101 132

50Sn−
 . 

This formula is related to the mass number and number of valence nucleons outside the closed core. We found the value 

of standard deviation is better than that calculated by the Semi-Empirical Mass Formula, it is also better than that estimated 

by the Integrated Nuclear Model, and better estimated by the Modified Nuclear Integrated Model. This indicates that our 

inferred formula is better than the most important formulas, which were used to calculate nuclear binding energies for 

studied nuclei. 
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1. Introduction 

One of the purposes of nuclear physics is to provide 

nuclear models, which explain the properties and behavior 

of atomic nuclei. the most important of these nuclear 

properties is the density of the nucleus which  is almost 

constant, so the size of nuclei is proportional to their mass 

number [1]. 

We find that the same applies to liquids, so one of the first 

nuclear models was the Liquid Drop Model (LDM), 

which was presented by Carl Friedrich Von Weizsacker 

in 1935 and Bohr established its basic hypotheses [2]. 

Depending on this model, the values of nuclear binding 

energies is calculated using the Semi-Empirical Mass 

Formula (SEMF), which is known as the Bethe-

Weizsäcke formula. [3] . In 2011, a new model called the 

Integrated Nuclear Model (INM) was introduced to 

calculate the nuclear binding energies, which were 

deduced by Nader Ghahramany and his group [4]. This 

model is based on the theory of Quantum 

Chromodynamics, where nuclear matter is treated as a 

plasma composed of a soup of quarks and gluons.  

This model was developed in 2020 by Hezekiah K. 

Cherop and Kapil M. Khanna   and it is called the Modified 

Integrated Nuclear Model (MINM) [5]. 

In these types of nuclear models, nucleons are not dealt 

with separately, it is considered as a static system. 

Therefore, these models succeeded in calculating some 

properties of nuclei, such as the average nuclear binding 

energy for each nucleon, as they failed to calculate other 

nuclear properties such as excited states and magnetic 

moments. 

On the other hand, the Shell Model(SM) developed by 

Mayer and Jensen was proposed   in 1948 [6], on the 

assumption this model, each nucleon in any nucleus 

moves independently in a median potential resulting from 

the rest of the nucleons which is called valance field, 

expressing a "central field" . This field adds to a potential 

resulting from the mutual effects between every two 

nucleons of the nucleons, called residual interaction. 

According to this model, nucleons are located on separate 

energy levels called single-particle levels, which are 

determined by solving the Schrödinger equation by 

choosing an appropriate potential. This model succeeded 

in calculating many nuclear properties, such as predicting 

magic numbers, spin-parity, excited states, and their 

magnetic moments, but it did not give a good value for 

nuclear binding energies for most nuclei especially far 

from the stability line.  

2. Methods 

In this study, we found a new formula to calculate values 

of nuclear binding energy in terms of mass number and 

number of valence nucleons in the ground state depending 

on basic assumptions of the Shell Model and selection of 

suitable potentials.  We apply this new approach to 

calculate Thirty-two  odd- isotopes and Thirty-two even - 
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even isotopes, whose valence nucleons are located outside 

the closed cores 
48

20 28Ca , 
56

28 Ni and
100

50Sn . 

The LAB fit program was used to obtain the value of 

average binding energy for each valence nucleon in the 

ground state by best fitting for experimental single-

particle energies, and the MATLAB program was used to 

perform the rest of the calculations and analyze the data. 

3. Nuclear Shell Model  

The basic assumption of the nuclear shell model is that to 

a first approximation, each nucleon moves independently 

in a potential that represents average interaction with 

other nucleons in a nucleus. This independent motion can 

be understood qualitatively from a combination of the 

weakness of long-range nuclear attraction and the Pauli 

exclusion principle.  

In a non-relativistic approximation, nuclear properties are 

described by the Schrodinger equation for A nucleons, i.e.  

[7]. 

Ĥ E =   (1) 

where  is an A-body wave function, and Ĥ contains 

nucleon kinetic energy operators and interactions 

between nucleons of a two-body, and a three-body 

character, in the present study we will consider only the 

two-body interaction, i.e 
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=
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Where (0)Ĥ  is zero Hamiltonian and it is a sum of single-

particle Hamiltonians, and expresses average potential of 

all nucleons. 
(1)

1 1

ˆ ( , ) ( )
A A

i j i

H W i j U i V
 = =

= −   is 

called a residual interaction.   

It is clear that when the number of nucleons is large, the 

Hamiltonian matrix becomes a huge, so we use an 

approximating valence space or model space [8], which 

consists of all single-particle orbitals actively involved in 

the generation of configurations of a many-nucleon 

system considered, and assumes the existence of a closed 

core is the closest doubly magic nucleus to studied 

nucleus, therefore the nucleus studied is limited to valence 

nucleons (nucleons that lie outside closed core) instead of 

being between all nucleons. 

The reason for defining a core is that the computational 

effort increases very rapidly with an increasing number of 

single-particle orbitals included in the valence space. 

We can re-write the Hamiltonian (3) according to Valance 

Space as [8]  

(1)

1

ˆ ˆˆ ˆ( ) ( ) ( )
A

i

H E CORE n n U i H
=

= + + +  (4) 

Where ( ) ( )E CORE BE CORE= −  is the nuclear 

binding energy of the closed core,   the average nuclear 

binding energy of valance nucleons, and n̂ is the particle 

number operator, U is a mean - field potential and 
(1)Ĥ  is a residual interaction.  

Now we will describe how each term in the last equation 

was calculated. 

3.1. Average nuclear binding energy per nucleon of 

valance nucleons   

We can obtain the value of average binding energy for 

each valence nucleon in the ground state by best fitting for 

experimental single-particle energies [9].  

The valence nucleons fall within pfg shell, and outside 

the closed core  
48

20 28Ca , which has the following energy 

levels, respectively [10] 

3/2

1/2

5/2

9/2

1 5.15 ,

1 3.12 ,

0 1.20 ,

0 0.45

p MeV

p MeV

f MeV

g MeV

= −

= −

= −

= +

 

And the valence nucleons fall within pfg shell, and 

outside the closed core  
56

28 Ni , which has the following 

energy levels, respectively 

3/2

5/2

1/2

9/2

1 10.25 ,

0 9.48 ,

1 9.14 ,

0 6.55

p MeV

f MeV

p MeV

g MeV

= −

= −

= −

= −

 

In addition, the valence nucleons fall within dgs shell, 

and outside the closed core 
100

50Sn , which has the 

following energy levels, respectively 

5/2

7/2

1/2

3/2

11/2

1 11.15 ,

0 11.07 ,

2 9.60 ,

1 9.50 ,

0 8.60

d MeV

g MeV

s MeV

d MeV

h MeV

= −

= −

= −

= −

= −

 

By performing best fitting (using the LAB fit program), 

we got the best form of the equation which represents the 

average energy of single particle energy in valence levels 

in terms of the number of valence nucleons, which takes 

the following form 

ˆ ˆ( ) ( )n a b n MeV = +  (5) 

Where a  and  b  constants that take the values 

-4.47 , 0.272a MeV b MeV= = for Calcium 

isotopes, and take the values 
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-10.94 , 0.2323a MeV b MeV= = for Nickel 

isotopes, Where that take the values 

-11.73 , 0.1128a MeV b MeV= = for Tin 

isotopes. 

3.2. Mean Field Potential U  

This potential is central; it is produced by all valence 

nucleons, so that each nucleon of valence space is moving 

independently in this central potential resulting from the 

rest of all the nucleons. This potential can take different 

forms, such as the Harmonic Oscillator, Woods-Saxon 

potential, and Paring potential. 

Assuming that the valence nucleons are all in the ground 

state and are paired with each other, the most appropriate 

potential to describe this system is the Paring potential, 

which takes the following form [11]  

PAIRV G A A 



+= −   (6) 

Where 

1

( )
p

i

A A i 

+ +

=

=   and 
1

( )
p

i

A A i 

=

= is pair 

creation operators and   is the number of j-orbits in 

mean-field potential considered, and 0G   is a isovector 

paring strength, which is giving in terms of mass number 

as follows 
20

G
A

=  [9, 12] . 

Depending on Paring potential, Paring energy is given by 

the following equation when all the nucleons are in the 

ground state as [8] 

1
( ) ( ) (2 2)

4
E N G N N  = − − − − +  (7) 

Where   is the Seniority quantum number, which is the 

number of nucleons not pairwise coupled to angular 

momentum zero, in short, the number of unpaired 

nucleons, N indicates the number of nucleons in the 

ground state (which represents a number of valence 

nucleons), and   indicates the maximum number of 

paired pairs that given level fits into nucleons, it is given 

by
1

(2 1)
2

j = + . 

When Increase the number of neutrons N over the 

number of protons Z in nucleus it causes decreases their 

stability and thus decreases their total nuclear binding 

energy, so we will add another term to mean field 

potential that results from the Symmetry Effect, which 

takes the following equation [4]  

1 2
1 1

1,2

.
100 ( )sym

t t
V V V MeV

A
=   (8) 

Where 1t and 2t  Isospin for two nucleon interaction. 

Depending on previous Symmetry potential, the energy 

from this potential is given by following equation 

1( )Asy

V
E N Z

A
= −  (9) 

In our study, the amount ( )N Z−  represents a number 

of valence nucleons outside the closed core. 
(1)Ĥ  3.3. Residual Interaction 

The effect of residual interaction only occurs between 

valence nucleons, and its contribution to total 

Hamiltonian is small compared to mean field potential, so 

it is treated as a perturbation, and this interaction takes 

different forms. In this study, we choose the Surface Delta 

Interaction (SDI) because it is easy to deal with, and it is 

a separable potential, which allows for obtaining an 

analytical solution to the Schrödinger equation. This form 

of interaction was postulated in 1966 by Moszkowski 

et.al. [14]. This is based on the Pauli principle, which 

forbids collisions occur at full levels and allows collisions 

to occur mainly at valance levels. This interaction was 

developed by Glaudesmans [15], and is called the 

Modified Surface Delta Interaction (MSDI). The matrix 

element of residual interaction for one of the interacting 

valence-nucleon pairs is  

 

MSDI

1
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c d
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J T
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c dT
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T
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j j

j jA

J

j j J

j j J

j j J j j J

B T T

 



+ + +

+ + +

=

+ + 
 

+ +
 

+  + + 
 
 

− −

− − −

− + −

+ + − bd

 (10) 

Where TA ,
TB is two constants represents a strength 

interaction of MSDI, 
1 1

( | 0)
2 2

j j J−  indicates to 

Clebsch-Gordan coefficients, and j  is angular 

momentum of nucleon, and J is total angular 

momentum of two nucleon interaction, and T refers to 

total isospin produced by isospin coupling of two 

interacting nucleons. When valence nucleons are in 

ground state, the formula(10) turns out to be 



50 Nawras Ghazi Alhoulami IJPR Vol. 25, No. 3 
 

 

2

2

, ,

(2 1)(2 1)

2(2 1)(1 )

1 1
{ ( | 0) [1 ( 1) ]

2 2

1 1
( | 1)

2 2

[1 ( 1) ] } 2 ( 1) 3

a b

a b MSDI a b
J T

a b
T

ab

J T

a b

b a

T

T

j j JT V j j JT

j j
A

J

j j J

j j J

B T T



+ + +

=

+ +
−

+ +

 
− − − + 

 

 
 
 

+ − + + −

 (11) 

When two valence nucleons fall within same level, the 

previous formula becomes as follows              
2 2

1

2
2

, 1 , 1

(2 1) 1 1
( | 0)

2(2 1) 2 2
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J T

T T

j J V j J
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J
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=

+
− +
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If valence nucleons are pairwise coupled to angular 

momentum zero, the previous formula becomes after 

parameter  is substituted as follows 

2 2

0 1
,01 ,01

1
(2 1)

2
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J T
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j V j

A j B A B

= =
=
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We benefit from following transformation[8] 
1

,
ˆ( | 00) ( 1) j m

m mjj m j m − −

−− =  (14) 

The value of MSDI strengths can be obtained by fitting 

with experimental values, it is also approximated in terms 

of mass number as follows
25

T TA B MeV
A

 

[16], so we can rewrite the formula(13) as  

(1) 2 2

0 1
,01 ,01

25
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H j V j

A

= =

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 (15) 

The previous formula can also be written in terms of 

isovector paring strength as  

(1) 2 2

0 1
,01 ,01

1.25 ( 1)

MSDI
J T

H j V j

G

= =
 =

+

 (16) 

4. Results    

The nuclear binding energies were calculated for some 

nuclei around the closed core that valance nucleons lie 

outside the closed cores
48

20 28Ca , 
56

28 Ni and
100

50Sn . 

Thirty-two of them are odd-nuclei and Thirty-two are 

even - even nuclei depending on the new formula (4), and 

that is after compensating the equation (5), (7), (9), and 

(16) in them, and making some calculation to take the 

following form 

2

1 2 3( )

E BE

E CORE C n C n C

= − =

+ + +
 (17) 

where
48 100

20 28 50( [ ]) 416.001 ( ), ( [ ]) 825.298( )E CORE Ca MeV E CORE Sn MeV= − = −

and 56

28( [ ]) 483.98811 ( )E CORE Ni MeV= −  [17], 1C , 2C  

and 3C  takes the following values 

 

1 2

3

1 1
, ( 11),

4 2

(2 2) 5( 1)
4

C b G C a G

G
C  

= + = − +

= − + + +

 (18) 

When nucleons located in ground state, the  seniority 

quantum number takes 0 =  for even - even nuclei and 

the value 1 =  for odd nuclei [8]. 

Since   indicates the maximum number of pairs of 

nucleons that each level of shell accommodates, so in our 

case it takes certain values as follows 

1 67 68, 119 120

2 49 52, 57 60, 115 118

3 53 58, 61 66, 109 114

4 101 108

5 69 77

12 121 132

for A A

for A

for A

for A

for A

for A

= → = →


= → → →

 = → → →


= →

 = →


= →

 (19) 

The value of isovector paring strength G can be obtained 

in terms of mass number, then parameter 1C , 2C  and 3C   

will be 

 

1 2

3

5 10
, ( 11),

5
(2 2) 5( 1)

C b C a
A A

C
A

 

= + = − +

= − + + +

 (20) 

When we calculate standard deviation for nuclear binding 

energy between our model and experimental values by 

using standard deviation equation 

exp.

2

1

1 N
i i

SM

i

BE BE
N


=

 = −
   (21) 

We found the standard deviation for studied nuclei are 

2.745 ( )1 MeV = for Calcium isotopes,

6.575 ( )8 MeV = for Nickel isotopes, and 

0.044 ( )5 MeV = for Tin isotopes. 

5. Discussion 

To confirm our results, we calculated the values of 

binding energies of the studied nuclei using the most 

important used formula by calculated the value of the 

standard deviation, and compared it with our value. 

When we calculate nuclear binding energies using SEMF, 

which is the most popular formula for finding nuclear 

binding energies, which is given as [3] 
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2/3

2 2

1/3

( 2 )

V S

C AS

BE a A a A

Z A Z
a a

A A


= − −

−
− 

 (22) 

Where , , , ,V S C AS pa a a a a  are the coefficients of 

SEMF, which takes many sets of values. We choose the 

most common and used ones, which are [18] 

15.78( ), 18.34( ),

, 0.71( ), 23.21( ),

12( )

0

V S

C Sym

p

a MeV a MeV

a MeV a MeV

MeV for even even
a

for odd even

= =

= =

−
= 

−

 

We found the standard deviation value for studied nuclei 

by SEMF are 14.374 ( )3 MeV =  for Calcium 

isotopes, 11.744 ( )0 MeV = for Nickel isotopes, 

and 0.1366( )MeV = for Tin isotopes. 

When we calculated nuclear binding energies using INM, 

which are given by the following formula [4] 

22 2
2

( , )

( ) ( )
3 3 ,

100

5

u

BE A Z

m cN Z N Z
A

Z

for A



=

  − + −
− +  
  



 (23) 

Where 
2 330( )um c MeV=  is the nucleon mass, and   

is related to stability of nuclei against beta decays and 

takes the following two values 

0
( )

1

for N Z
N Z

for N Z



− 

=
 

We found the standard deviation value for studied nuclei 

by INM are 62.802 ( )9 MeV =  for Calcium 

isotopes, 54.530 ( )7 MeV = for Nickel isotopes, 

and 0.608 ( )3 MeV = for Tin isotopes. 

When we calculated nuclear binding energies using 

MINM, which are given as formula [5] 

2 2

2

( , )

( ) ( )
3

, 5
100

u

BE A Z

N Z N Z
A

NZ

m c
for A




=

  − + −
− +  
  



 (24) 

Where the parameter  take the constant value 9 =  

for 30Z  , and take the value 0.4Z for 31Z =  to

59Z = .  

We found the standard deviation value for studied nuclei 

by MINM are 33.259 ( )6 MeV = for Calcium 

isotopes, 31.222 ( )6 MeV = for Nickel isotopes, 

and 0.439 ( )4 MeV = for Tin isotopes.  

Therefore, the value of standard deviation in our model is 

better than calculated by SEMF, it is also better than 

calculated by INM and better than calculated by MINM.  

This indicates that our inferred formula is better than the 

most important formulas, which is previously used to 

calculate nuclear binding energies for studied nuclei . 

The binding energies of our model (in black circle), 

SEMF (in blue inverse triangle), INM (in green diamond), 

and MINM (in pink square) compared to experimental 

values (in red star) are shown in figure (1) for Calcium 

isotopes, figure (2) for Nickel isotopes, and Figure (3) for 

Tin isotopes. 

 

Also, we calculated a value 
( ) (exp.) ( )theBE BE BE MeV = −  

,which represents the difference between calculated 

binding energies per nucleon and experimental binding 

energies per nucleon for each studied nuclei.  

The ( )BE MeV  value in our model are shown in figure 

(4)  for Calcium isotopes, figure (5) for Nickel isotopes, 

and figure (6) for Tin isotopes, SEMF is shown in a blue 

inverse triangle, INM is shown in a green diamond, and 

MINM is shown in the pink square. 

4.  Conclusion 

Depending on the basic assumptions of the Shell Model 

and by using suitable potentials, we found a new simple 

formula to calculate nuclear binding energy for some 

nuclei around the closed core in terms of mass number and 

number of valence nucleons. We calculated by this 

formula, the nuclear binding energies of sixty-four nuclei 

for Calcium isotopes
49 58

20 Ca−
, Nickel isotopes

57 78

28 Ni−
, 

and Tin isotopes
101 132

50Sn−
, thirty-two are odd- nuclei 

and thirty-two are even-even nuclei, which valence 

nucleons are located outside the closed core, 
48

20 28Ca , 

56

28 Ni and
100

50Sn .  

We found the standard deviation between calculated 

nuclear binding energies by our model is better than the 

standard deviation calculated by SEMF, it is also better 

than the value by INM, and by MINM. This indicates that 

our formula is better than the most important formulas 

used to calculate nuclear binding energies for studied 

nuclei. We expect an improvement in the values of the 

nuclear binding energies of studied nuclei compared to the 

experimental values when adding another term to mean 

field potential related to the deformation of a nucleus, 

especially when the number of valence nucleons increases 

significantly outside the closed core, as in the case of the 

last three isotopes
130 132

50Sn−
. We believe the results 

obtained from our model are not only simple to 

understand but also more physical and relatively closer to 

the experimental data than other models. Other 

characteristics of nuclei, such as calculating the excitation 

energy of these nuclei are being studied in the framework 

of our model. 
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Figure 1. nuclear binding energies calculated in our model of Tin isotopes
49 58

20 Ca−
 (in black circle), SEMF (in blue inverse triangle), 

INM(in green diamond) and MINM(in pink square) compared to experimental values (in red star). 

 

Figure 2. nuclear binding energies per nucleon calculated in our model of Nickel isotopes
57 78

28 Ni−
 (in black circle), SEMF (in blue 

inverse triangle), INM (in green diamond) and MINM (in pink square) compared to experimental values (in red star). 

 

Figure 3. nuclear binding energies per nucleon calculated in our model of Tin isotopes
101 132

50Sn−
 (in black circle), SEMF (in blue 

inverse triangle), INM (in green diamond) and MINM (in pink square) compared to experimental values (in red star). 



IJPR Vol. 25, No. 3 A New Formula to Calculate Nuclear Binding Energies for … 53 
 

 

Figure 4. ( )BE MeV Values calculated using our model for Tin isotopes 
49 58

20 Ca−
 (in black circle), SEMF (in blue inverse 

triangle), INM (in green diamond), and MINM (in pink square ). 

 

Figure 5. ( )BE MeV Values calculated using our model for Tin isotopes 
57 78

28 Ni−
 (in black circle), SEMF (in blue inverse 

triangle), INM (in green diamond), and MINM (in pink square ). 

 

Figure 6. ( )BE MeV Values calculated using our model for Tin isotopes 
101 132

50Sn−
 (in black circle), SEMF (in blue inverse 

triangle), INM (in green diamond), and MINM (in pink square ). 



54 Nawras Ghazi Alhoulami IJPR Vol. 25, No. 3 
 

List of abbreviations 

SM: Shell Model. 

SEMF: Semi-Empirical Mass Formula 

INM: Integrated Nuclear Model.  

MNIM: Modified Nuclear Integrated Model.  

LDM: Liquid Drop Model. 

SDI: Surface Delta Interaction. 

MSDI: Modified Surface Delta Interaction. 

OM: Our Model. 
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