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Abstract

Depending on the basic assumptions of the Shell Model and by using suitable potentials, we found a new formula to

. . . . 49-58 57-T8 N[ 101-132
calculate nuclear binding energies for some nuclei around the closed core, which are 5, Ca, 28NI and 503n .

This formula is related to the mass number and number of valence nucleons outside the closed core. We found the value
of standard deviation is better than that calculated by the Semi-Empirical Mass Formula, it is also better than that estimated
by the Integrated Nuclear Model, and better estimated by the Modified Nuclear Integrated Model. This indicates that our
inferred formula is better than the most important formulas, which were used to calculate nuclear binding energies for

studied nuclei.
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1. Introduction

One of the purposes of nuclear physics is to provide
nuclear models, which explain the properties and behavior
of atomic nuclei. the most important of these nuclear
properties is the density of the nucleus which is almost
constant, so the size of nuclei is proportional to their mass
number [1].

We find that the same applies to liquids, so one of the first
nuclear models was the Liquid Drop Model (LDM),
which was presented by Carl Friedrich Von Weizsacker
in 1935 and Bohr established its basic hypotheses [2].
Depending on this model, the values of nuclear binding
energies is calculated using the Semi-Empirical Mass
Formula (SEMF), which is known as the Bethe-
Weizsdcke formula. [3] . In 2011, a new model called the
Integrated Nuclear Model (INM) was introduced to
calculate the nuclear binding energies, which were
deduced by Nader Ghahramany and his group [4]. This
model is based on the theory of Quantum
Chromodynamics, where nuclear matter is treated as a
plasma composed of a soup of quarks and gluons.

This model was developed in 2020 by Hezekiah K.
Cherop and Kapil M. Khanna and it is called the Modified
Integrated Nuclear Model (MINM) [5].

In these types of nuclear models, nucleons are not dealt
with separately, it is considered as a static system.
Therefore, these models succeeded in calculating some
properties of nuclei, such as the average nuclear binding

energy for each nucleon, as they failed to calculate other
nuclear properties such as excited states and magnetic
moments.

On the other hand, the Shell Model(SM) developed by
Mayer and Jensen was proposed in 1948 [6], on the
assumption this model, each nucleon in any nucleus
moves independently in a median potential resulting from
the rest of the nucleons which is called valance field,
expressing a "central field" . This field adds to a potential
resulting from the mutual effects between every two
nucleons of the nucleons, called residual interaction.
According to this model, nucleons are located on separate
energy levels called single-particle levels, which are
determined by solving the Schrddinger equation by
choosing an appropriate potential. This model succeeded
in calculating many nuclear properties, such as predicting
magic numbers, spin-parity, excited states, and their
magnetic moments, but it did not give a good value for
nuclear binding energies for most nuclei especially far
from the stability line.

2. Methods

In this study, we found a new formula to calculate values
of nuclear binding energy in terms of mass number and
number of valence nucleons in the ground state depending
on basic assumptions of the Shell Model and selection of
suitable potentials. We apply this new approach to
calculate Thirty-two odd- isotopes and Thirty-two even -
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even isotopes, whose valence nucleons are located outside
48 56 N[ ; 100
the closed cores ,,Ca,g, 55 NI and 5,SN .

The LAB fit program was used to obtain the value of
average hinding energy for each valence nucleon in the
ground state by best fitting for experimental single-
particle energies, and the MATLAB program was used to
perform the rest of the calculations and analyze the data.

3. Nuclear Shell Model

The basic assumption of the nuclear shell model is that to
a first approximation, each nucleon moves independently
in a potential that represents average interaction with
other nucleons in a nucleus. This independent motion can
be understood qualitatively from a combination of the
weakness of long-range nuclear attraction and the Pauli
exclusion principle.

In a non-relativistic approximation, nuclear properties are
described by the Schrodinger equation for A nucleons, i.e.
[7}.

HIY)=E|¥) 1)

where V' is an A-body wave function, and H contains
nucleon kinetic energy operators and interactions
between nucleons of a two-body, and a three-body
character, in the present study we will consider only the
two-body interaction, i.e
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We can re-write the Hamiltonian (2), ad/ging and

subtracting a one-body potential of the form >_U (i) as

i=1

[7]
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Where H @ is zero Hamiltonian and it is a sum of single-
particle Hamiltonians, and expresses average potential of
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all nucteons, H® = ZW @i,] )—ZU @)=V is
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called a residual interaction.

It is clear that when the number of nucleons is large, the
Hamiltonian matrix becomes a huge, so we use an
approximating valence space or model space [8], which
consists of all single-particle orbitals actively involved in
the generation of configurations of a many-nucleon
system considered, and assumes the existence of a closed
core is the closest doubly magic nucleus to studied
nucleus, therefore the nucleus studied is limited to valence
nucleons (nucleons that lie outside closed core) instead of
being between all nucleons.

The reason for defining a core is that the computational
effort increases very rapidly with an increasing number of
single-particle orbitals included in the valence space.

We can re-write the Hamiltonian (3) according to Valance
Space as [8]

A
H =E(CORE)+z(M)A+> U(@i)+H® (1
i=1
Where E (CORE)=-BE(CORE) is the nuclear
binding energy of the closed core, & the average nuclear

binding energy of valance nucleons, and 1 is the particle
number operator, U is a mean - field potential and

H @ s aresidual interaction.
Now we will describe how each term in the last equation
was calculated.

3.1. Average nuclear binding energy per nucleon of
valance nucleons &

We can obtain the value of average binding energy for
each valence nucleon in the ground state by best fitting for
experimental single-particle energies [9].

The valence nucleons fall within pfg shell, and outside
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the closed core ,g Cazg , which has the following energy

levels, respectively [10]
1p,, =-5.15MeV ,

1p,, =-3.12MeV ,

of,, =-1.20MeV ,

0g,,, =+0.45MeV

And the valence nucleons fall within pfg shell, and
outside the closed core 5268 Ni , which has the following

energy levels, respectively
1p,, =-10.25MeV ,

of,, =-9.48MeV ,

1p,, =-9.14MeV ,

09y, =—6.55MeV

In addition, the valence nucleons fall within dgs shell,
and outside the closed core 1233!’1 , which has the
following energy levels, respectively

1d,, =-11.15MeV ,

0g,,, =-11.07MeV

2s,, =—9.60MeV ,

1d,,, =-9.50MeV ,

Oh,,,, = —8.60MeV

By performing best fitting (using the LAB fit program),
we got the best form of the equation which represents the
average energy of single particle energy in valence levels
in terms of the number of valence nucleons, which takes
the following form

z()=a+bnA (MeV) 5)
Where @ and b constants that take the values
a=-4.47MeV ,b =0.272MeV for Calcium
isotopes, and take the values
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a=-10.94MeV ,b =0.2323MeV for Nickel
isotopes, Where that take the values
a=-11.73MeV , b =0.1128MeV for Tin
isotopes.

3.2. Mean Field Potential U

This potential is central; it is produced by all valence
nucleons, so that each nucleon of valence space is moving
independently in this central potential resulting from the
rest of all the nucleons. This potential can take different
forms, such as the Harmonic Oscillator, Woods-Saxon
potential, and Paring potential.

Assuming that the valence nucleons are all in the ground
state and are paired with each other, the most appropriate
potential to describe this system is the Paring potential,
which takes the following form [11]

Vour :—GZA;Ap (6)
P

P P e )
Where A;:ZA;(i) and AP=ZAP(I)|S pair
i=1 i=1
creation operators and L is the number of j-orbits in

mean-field potential considered, and G > 0 is a isovector
paring strength, which is giving in terms of mass number

as follows G = % [9, 12].

Depending on Paring potential, Paring energy is given by
the following equation when all the nucleons are in the
ground state as [8]

EV(N)=—%G(N 1) (2Q-N —v+2) )

Where V' is the Seniority quantum number, which is the
number of nucleons not pairwise coupled to angular
momentum zero, in short, the number of unpaired

nucleons, N indicates the number of nucleons in the
ground state (which represents a number of valence

nucleons), and €2 indicates the maximum number of

paired pairs that given level fits into nucleons, it is given
1,..

byQ:E(ZJ +1).

When Increase the number of neutronsN over the

number of protons Z in nucleus it causes decreases their
stability and thus decreases their total nuclear binding
energy, so we will add another term to mean field
potential that results from the Symmetry Effect, which
takes the following equation [4]

V. :Z% _V,~100 (MeV) ®
1,2

Where tland tz Isospin for two nucleon interaction.

Depending on previous Symmetry potential, the energy
from this potential is given by following equation

Ery (N -2) 2 ©

In our study, the amount (N —2Z ) represents a number
of valence nucleons outside the closed core.

H @ 3.3. Residual Interaction

The effect of residual interaction only occurs between
valence nucleons, and its contribution to total
Hamiltonian is small compared to mean field potential, so
it is treated as a perturbation, and this interaction takes
different forms. In this study, we choose the Surface Delta
Interaction (SDI) because it is easy to deal with, and it is
a separable potential, which allows for obtaining an
analytical solution to the Schrddinger equation. This form
of interaction was postulated in 1966 by Moszkowski
et.al. [14]. This is based on the Pauli principle, which
forbids collisions occur at full levels and allows collisions
to occur mainly at valance levels. This interaction was
developed by Glaudesmans [15], and is called the
Modified Surface Delta Interaction (MSDI). The matrix
element of residual interaction for one of the interacting
valence-nucleon pairs is

<J'a Jo TV wisor| e Ja T >JT =

1
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_(JbEJ El‘]l)(Jd EJCE|31)[1+(—1) 1}
+B, [2T (T +1)-3]5,.6,

Where AT , B, is two constants represents a strength

interaction of MSDI, (j—%'%UO) indicates to

Clebsch-Gordan  coefficients, and J is angular

momentum of nucleon, and J is total angular

momentum of two nucleon interaction, and T refers to
total isospin produced by isospin coupling of two
interacting nucleons. When valence nucleons are in
ground state, the formula(10) turns out to be
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2
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When two valence nucleons fall within same level, the
previous formula becomes as follows
<J %, 1}‘/MSDI | i %, 1>JT =

=1

j+)°>,. 1.1 2

——(j-=]=|J0)" +B
ATZ(ZJ +1)(J 212| ) T
If valence nucleons are pairwise coupled to angular
momentum zero, the previous formula becomes after

parameter €2 is substituted as follows

<j2'01r\/MSDI|j2101> =

J=0T =1

(12)

1 (13)
EAT 2 +)+B; =A;, Q+B

We benefit from following transformation[8]
(jmjm'00)=(-1 "*mjflémy_m, (14)

The value of MSDI strengths can be obtained by fitting
with experimental values, it is also approximated in terms

of mass number as foIIowsAT ~ B; zéMeV

[16], so we can rewrite the formula(13) as
H® = (2,01 oo | 12,01

J=0T =1
(15)

25
=22(Q+1
A D

The previous formula can also be written in terms of
isovector paring strength as

H® E<J-2’01}‘/N|SDI |j2’01>3:0T:1: (16)
1.25G (Q+1)

4. Results

The nuclear binding energies were calculated for some
nuclei around the closed core that valance nucleons lie

. 48 56 N\ 100
outside the closed cores 5, Ca 28 28 NI and 503n .

Thirty-two of them are odd-nuclei and Thirty-two are
even - even nuclei depending on the new formula (4), and
that is after compensating the equation (5), (7), (9), and
(16) in them, and making some calculation to take the
following form

E =-BE =
E (CORE)+C,n?+C,n+C,

where

A7)

E(CORE[“Ca ,,]) =-416.001 (MeV), E(CORE[X Sn]) = -825.298 (MeV')

and E(CORE[% Ni]) = —483.98811 (MeV) [17], Cl,Cz

and C3 takes the following values

C,=b +EG, C, =a—lG (Q+11),
4 2 1)

C, =%{v(2§2—v+2)+5(§2+1)}

When nucleons located in ground state, the seniority
quantum number takesv =0 for even - even nuclei and
the value v =1 for odd nuclei [8].

Since ) indicates the maximum number of pairs of
nucleons that each level of shell accommodates, so in our
case it takes certain values as follows

1 forA=67—>68, A=119—->120

2 forA =49 52,57 —-60,115—118

3 for A =53 58, 61— 66,109 —»114 (19
4 for A =101—-108

5 forA=69—>77

12for A =121 132

The value of isovector paring strength G can be obtained

in terms of mass number, then parameter C1 ’Cz and C3

will be

C,=b +E, C, =a—E(Q+11),
A A (20)

C,= %{v (2Q—v+2)+5(Q+1)}

When we calculate standard deviation for nuclear binding

energy between our model and experimental values by
using standard deviation equation

1 i i TP
az\/W;[BESM —BEexp] (21)
We found the standard deviation for studied nuclei are
o =2.7451(MeV ) for Calcium isotopes,
o =6.5758(MeV ) for Nickel isotopes, and
o =0.0445 (MeV ) for Tin isotopes.

5. Discussion

To confirm our results, we calculated the values of
binding energies of the studied nuclei using the most
important used formula by calculated the value of the
standard deviation, and compared it with our value.
When we calculate nuclear binding energies using SEMF,
which is the most popular formula for finding nuclear
binding energies, which is given as [3]
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BE =a,A-a, A%~
z? (A-22) (22)
a- E—aAS — 15

Wherea\, 1a5 1ac ’aAS 1ap
SEMF, which takes many sets of values. We choose the
most common and used ones, which are [18]

a, =15.78(MeV ), a, =18.34(MeV ),
a.,=0.71(MeV ), &, =23.2(MeV ),
. _{lZ(MeV) for even —even
=

are the coefficients of

0 for odd —even

We found the standard deviation value for studied nuclei
by SEMF are o =14.3743(MeV ) for Calcium

isotopes, o =11.7440(MeV ) for Nickel isotopes,
and o =0.1366 (MeV ) for Tin isotopes.

When we calculated nuclear binding energies using INM,
which are given by the following formula [4]
BE(A,Z)=

{3A_[(N 2_72)+8(N —Z)}rsz}mu_cz, 23)

Z 100
for A >5

Where m,c®=330(MeV ) is the nucleon mass, and &

is related to stability of nuclei against beta decays and
takes the following two values

0 for N =2Z
Oo(N -2)
1 for N=Z

We found the standard deviation value for studied nuclei
by INM are o =62.8029(MeV ) for Calcium

isotopes, o =54.5307(MeV )for Nickel isotopes,
and o =0.6083(MeV ) for Tin isotopes.

When we calculated nuclear binding energies using
MINM, which are given as formula [5]

BE(A,Z)=
2 2
an [(N?=Z7)+5(N —Z)]M 24)
JNZ
2
m,c , for A>5
100

Where the parameter A take the constant value A =9
forZ <30, and take the value0.4Z for Z =31 to
Z =59.

We found the standard deviation value for studied nuclei
by MINM are o =33.2596(MeV ) for Calcium
isotopes, o = 31.2226(MeV ) for Nickel isotopes,
and o = 0.4394(MeV ) for Tin isotopes.

Therefore, the value of standard deviation in our model is
better than calculated by SEMF, it is also better than
calculated by INM and better than calculated by MINM.

This indicates that our inferred formula is better than the
most important formulas, which is previously used to
calculate nuclear binding energies for studied nuclei.

The binding energies of our model (in black circle),
SEMEF (in blue inverse triangle), INM (in green diamond),
and MINM (in pink square) compared to experimental
values (in red star) are shown in figure (1) for Calcium
isotopes, figure (2) for Nickel isotopes, and Figure (3) for
Tin isotopes.

(MeV)

,which represents the difference between calculated
binding energies per nucleon and experimental binding
energies per nucleon for each studied nuclei.

The ABE(MeV) value in our model are shown in figure

(4) for Calcium isotopes, figure (5) for Nickel isotopes,
and figure (6) for Tin isotopes, SEMF is shown in a blue
inverse triangle, INM is shown in a green diamond, and
MINM is shown in the pink square.

Also, we calculated a value ,gg — |BE

(the) — BE(exp.)

4. Conclusion

Depending on the basic assumptions of the Shell Model
and by using suitable potentials, we found a new simple
formula to calculate nuclear binding energy for some
nuclei around the closed core in terms of mass number and
number of valence nucleons. We calculated by this
formula, the nuclear binding energies of sixty-four nuclei

Co 49-58 . . 57-78 [ i
for Calcium isotopes  ,,Ca, Nickel isotopes” NI |,

0

L 101-132 . .
and Tin isotopes 5031’1 , thirty-two are odd- nuclei

and thirty-two are even-even nuclei, which valence

nucleons are located outside the closed core, 2408C6128,
2586N| and 12%Sn )

We found the standard deviation between calculated
nuclear binding energies by our model is better than the
standard deviation calculated by SEMF, it is also better
than the value by INM, and by MINM. This indicates that
our formula is better than the most important formulas
used to calculate nuclear binding energies for studied
nuclei. We expect an improvement in the values of the
nuclear binding energies of studied nuclei compared to the
experimental values when adding another term to mean
field potential related to the deformation of a nucleus,

especially when the number of valence nucleons increases
significantly outside the closed core, as in the case of the

. 130-132 .
last three isotopes 505”- We believe the results

obtained from our model are not only simple to
understand but also more physical and relatively closer to
the experimental data than other models. Other
characteristics of nuclei, such as calculating the excitation
energy of these nuclei are being studied in the framework
of our model.
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. o SDI: Surface Delta Interaction.
List of abbreviations MSDI: Modified Surface Delta Interaction.
SM: Shell Model. OM: Our Model.
SEMF: Semi-Empirical Mass Formula
INM: Integrated Nuclear Model.
MNIM: Modified Nuclear Integrated Model.
LDM: Liquid Drop Model.
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