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Abstract 

Physical quantities in continuously distributed matter in curved spacetime, and equations for matter and fields are 

considered both from the point of view of tensor theory of gravitation and on the basis of vector theory of gravitation. An 

example in the first case is the general theory of relativity (GTR), which uses a scalar pressure field and a scalar 

acceleration field. In the second case, relativistic vector fields are taken into account, including the covariant theory of 

gravitation, the pressure vector field and the acceleration vector field. To analyze and compare the results in each 

approach, formulas derived from the principle of least action and from the corresponding Lagrangian are used. The 

problem of correlating scalar pressure with the principle of least action in the general relativity is considered. The 

conclusion is drawn that results of the general relativity, when scalar pressure is taken into account, are valid for 

relativistic uniform systems, but in a more general case, they require correction. Three versions of general relativity were 

analyzed: GTR1, GTR2 and GTRm. The GTR1 version is the closest version to the standard general theory of relativity, 

the GTR2 version follows exactly the principle of least action, and the GTRm version is characterized by the fact that the 

acceleration field and pressure field are represented not as scalar fields but as vector fields. Equations for metric, equations 

of motion, equations for fields, formulas for the energy and momentum, which follow from the Lagrangian formalism, 

are presented for all versions of general relativity. An explanation is given of where dark energy comes from and what it 

is whithin general relativity. 
 

Keywords: Lagrangian formalism; integral of motion; vector field; general theory of relativity; covariant theory of gravitation. 

1. Introduction 

The general relativity theory is one of the most developed 

tensor theories of gravitation. In the general relativity, the 

metric tensor is considered as a characteristic of a special 

metric field that completely describes gravitational field. 

Thus, the properties of the gravitational field and its action 

are reduced to the geometry of spacetime and the metric 

field. If in a physical system it is necessary to take into 

account the action of some other field, then this other field 

must make its contribution to the metric tensor and to the 

metric field. Each subsequent field changes the metric 

tensor and through it changes the observed action of other 

fields in the system. Thus, it turns out that all fields 

influence each other through the metric. 

Due to inclusion of gravitational field in the metric field, 

a feature appears in general theory of relativity in how the 

principle of general covariance and the principle of 

correspondence are understood. The principle of general 

covariance implies that physical equations should be 

written in such a way that the form of these equations does 

not depend on the choice of reference frame and on the 

choice of coordinate system. According to the 

correspondence principle, covariantly written equations in 

a gravitational field tending to zero should transform into 

corresponding equations of special theory of relativity. In 

most situations, it is the gravitational field that makes the 

maximum contribution to the curvature of spacetime. 

More generally, and especially in alternative theories of 

gravitation, where gravitation is determined 

independently of the metric and several different fields act 

simultaneously, the correspondence principle should be 

formulated as follows: in weak fields that make a 

negligible contribution to the curvature of spacetime, 

covariantly written equations should pass into the 

corresponding equations of special relativity. 

As a rule, the principle of general covariance is fulfilled if 

the equations are written in terms of invariant scalar 

functions, four-vectors and four-tensors. To fulfill 

conditions of the correspondence principle, the total mass 

of particles of a system is reduced and the system removed 

from the sources of external gravitational fields so that 
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non-gravitational forces prevail and behave in the same 

way as in special theory of relativity. In this case, the 

effects of spacetime curvature become insignificant and 

gravitational phenomena in moving systems must comply 

with Newton's law, taking into account the Lorentz 

transformations for gravitational force. 

Let there be covariant equations of some small-sized 

physical system, and a reference frame is chosen in which 

gravitational phenomena in the system disappear. In 

general relativity, this situation leads to the principle of 

equivalence of gravitational forces and inertial forces, and 

to the equality of gravitational mass and inertial mass for 

point-sized bodies. 

However, in general case, the equivalence principle 

cannot be considered as a single general principle for 

every theory of gravitation, and especially in the case 

when large bodies are considered. In large bodies, the 

gravitational acceleration is different at each point and 

directed in different directions. Therefore, locally inertial 

reference frames, which can be represented at each point 

of the body, will be accelerated relative to each other in 

different directions. This means that for each other, 

locally inertial reference frames are not inertial systems 

and cannot be connected to each other by Lorentz 

transformations. This situation does not meet the 

conditions of the correspondence principle. 

Since it is impossible to reduce the masses of large 

systems, significant gravitational fields remain in such 

systems. Therefore, the equivalence principle holds only 

locally, in small regions of spacetime, but not for the 

entire system as a whole. Therefore, the equality of 

gravitational and inertial mass postulated for point bodies 

cannot be considered accurate for large massive bodies. In 

this case, the inertial mass of a system of interacting 

particles is determined by the internal properties of the 

system and is measured through acceleration of the center 

of momentum of the system at a given force. The 

gravitational mass of the system is found in another way, 

through interaction of the system with a small test body of 

known mass located at some distance from the system. 

Due to difference in definition of these masses, the 

supposed equality of gravitational and inertial masses of a 

system, as well as definition of the inertial mass of the 

system itself, remains a subject of discussion in general 

relativity. 

Unlike the general relativity, in covariant theory of 

gravitation, which is a vector theory, gravitational 

interaction is not completely reduced to the curvature of 

spacetime. Moreover, even in ideal case, in flat 

Minkowski spacetime, when the metric tensor does not 

depend on time and coordinates, the gravitational force is 

assumed to be the same independently existing physical 

force as the electromagnetic force. 

The covariant theory of gravitation proceeds from the 

four-potential ,D
c



 
= − 
 

D , which is described in 

terms of the scalar potential   and the vector potential 

D  of gravitational field. The gravitational field tensor 

Φ
 is found using the four-curl 

D D D Φ        = − = , which allows us to 

determine the stress-energy tensor of gravitational field, 

including the energy and energy flux of the field [1]. 

Instead, in general relativity, we proceed not from the 

four-vector in the form of the four-potential, but from the 

four-tensor, namely, from the metric tensor g . The 

Christoffel symbols and curvature tensor are expressed in 

terms of derivatives of the metric tensor with respect to 

coordinates and time, with the help of which all the 

gravitational effects are then specified. 

In the case of a continuous distribution of matter, in many 

works in general relativity difficulties arise due to the fact 

that either a non-covariant Lagrangian is used, or non-

four-dimensional coordinates and momenta are used. In 

order to overcome these difficulties and express the 

Hamiltonian in covariant form, it is proposed in [2] to use 

the DeDonder-Weyl formalism. In this case, four 

additional axioms are taken into account. 

Analysis of general relativity and comparison of it with 

the theory of vector fields leads to the following. Direct 

inclusion of the scalar pressure 
0

 into Lagrangian 

density in general relativity is difficult, since there is no 

direct relationship between the variation 
0  and other 

variables. In this regard, there is no standard expression 

for the Lagrangian density in the general relativity, from 

which covariant expressions follow both for 
0

 in four-

dimensional form, and for the stress-energy tensor in 

continuous matter. Instead, various forms of such 

Lagrangian densities have been proposed [3-5]. 

Unfortunately, the relationships between gravitation and 

geometry, as well as reduction of physics to mathematics, 

create additional significant problems in general 

relativity. Among the latest works aimed at solving these 

problems, one can point to article [6], which analyses 

methods for determining the energy and momentum of 

gravitational field. An attempt is made to explain the 

problem of cosmological constant and find the law of 

conservation of the energy-momentum in general 

relativity. In [7], the energy and momentum of a star were 

estimated, using the model of matter as an ideal fluid in 

which a scalar pressure field acts. 

The main drawback of general relativity is that energy and 

momentum of a system are usually not expressed by 

standard formulas of Lagrangian formalism, but rather 

volume integration of time components of stress-energy 

tensor summed up with gravitational pseudotensor 

components. It is believed that a four-dimensional 

quantity (integral pseudovector) obtained in this way 

makes it possible to find four-momentum of a system. 

However, if one calculates an integral pseudovector in the 

theory of vector fields, it turns out that such a 

pseudovector describes distribution of energy and energy 

fluxes of fields of the system and is not a four-vector [8]. 

Indeed, in a closed stationary system with a constant 

metric not only the energy, momentum and angular 

momentum are conserved, but also configuration of 

spatial distribution of the field energy. Moreover, the 

general relativity includes at least 7 different forms of 
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gravitational pseudotensors [9], which leads to different 

integral pseudovectors with noncoincident spatial 

distributions of the fields’ energy and to the problem of 

interpreting an integral pseudovector as a uniquely 

defined integral of motion.  

When building cosmological models in general relativity, 

we are faced with a number of problems associated with 

cosmological constant, singularities, and anomalies of 

cosmic microwave background radiation, as well as with 

the need to introduce concepts such as dark matter, and 

dark energy. To solve these problems, such works appear, 

in which, among other things, vector-tensor theories of 

gravitation are considered [10-16], and the prospects of 

these theories for future research are shown. This may 

also apply to covariant theory of gravitation, which is a 

vector theory. In particular, in [17] the metric outside a 

massive body was calculated, which characterizes 

spacetime within the framework of covariant theory of 

gravitation, and in [18] the metric inside the body was 

found. Similar calculations can be used to determine the 

metric in cosmology. In covariant theory of gravitation, 

the Pioneer effect is explained, which should not exist 

according to general relativity [19]. 

A physical system, consisting of particles with the same 

charge-to-mass ratio, cannot radiate in a dipole manner. 

The same applies to radiation of gravitational waves by a 

system of neutral massive particles. In covariant theory of 

gravitation, gravitational dipole radiation is possible from 

any accelerated mass, however, the total dipole radiation 

from a closed physical system is close to zero due to 

mutual cancellation of oppositely directed radiation from 

the system’s parts. The quadrupole radiation remains the 

same as is in the general relativity. Thus, both the 

covariant theory of gravitation and the general relativity 

predict quadrupole-type gravitational waves from 

massive cosmic objects; these waves were recently 

discovered and presented in [20-21]. 

As a rule, when calculating using the general relativity, 

pressure in matter is considered as a scalar field. In the 

simplest case of stationary matter, it is assumed that the 

scalar isotropic pressure 
0

 does not influence the 

energy density in time component of stress-energy tensor 

of matter. In contrast, when calculating using covariant 

theory of gravitation, pressure is considered as a vector 

field, so that the energy density turns out to be dependent 

on the scalar potential of pressure field [22]. A similar 

situation arises in relation to acceleration field, which in 

general relativity is represented as a scalar field. Thus, the 

Lagrangian of general relativity with scalar fields in 

matter differs significantly from the Lagrangian for vector 

fields and covariant theory of gravitation. 

In [23] it was shown how vector fields are combined into 

a single general field. In the concept of vector fields, it 

was possible to find formulas for kinetic energy and for 

distribution of particle velocities inside a relativistic 

uniform system [24], as well as to derive the generalized 

virial integral theorem [25], the Navier–Stokes equation 

[22], the equations of motion of matter particles [26], 

expressions for covariant additive integrals of motion 

[27], derive the generalized Poynting theorem and give a 

solution to the 4/3 problem [28], estimate the parameters 

of planets and stars [29], prove the integral field theorem 

[30], find the generalized four-momentum [31] and four-

momentum of a physical system [8] in curved space-time 

in continuously distributed matter. 

The purpose of this work is to use the Lagrangian 

formalism [32] to analyze the general relativity, indicating 

the difficulties that arise from the point of view of 

theoretical approach. In particular, the well-known 

problem of general relativity with determining the mass, 

energy and momentum of a system in gravitational field 

is solved by using auxiliary quantities that represent the 

gravitational field as a vector field. 

The principle of least action makes it possible to study 

physical systems and find equations of motion not only in 

the Lagrangian, but also in the Hamiltonian formulation 

[33], [34]. However, the Lagrangian formulation is 

considered more fundamental [35], while the well-known 

Lagrangian for vector fields is not difficult to adapt for 

general relativity. This makes it quite easy to compare the 

results obtained in general relativity and in the theory of 

vector fields. 

In our calculations, we will everywhere use the metric 

signature of the form (+,–,–,–). 

2. Methods 

Let us consider the particulars of application of 

Lagrangian formalism in general relativity. Having 

studied a great number of papers, we have not ever found 

a Lagrangian density, which allows us to uniquely express 

the scalar isotropic pressure in a four-dimensional form 

while providing the standard stress-energy tensor of the 

general relativity for continuous matter. As a result, we 

had to construct such a Lagrangian density 

p f= +  by ourselves, which consisted of two 

parts 

 

0 0

0 0

( , )

1 1

( , ).

p

q q

A j c J J g

K J g

u u
c c

c J J g K J g

  

 





  

 

  

= − −

− =

= − +  −

−

A v
 (1) 

0

0

1
2

4

1
2

4

f F F c k R c k

F F g g c k R g c k





  

  





= − + −  =

− + − 

, (2) 

 

where ,A
c



 
= − 
 

A  is the four-potential of 

electromagnetic field, given by the scalar potential   and 

the vector potential A  of this field, 0qj u =  is the 

charge four-current, 0q  is invariant charge density in 
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the particle’s comoving reference frame, u


 is the four-

velocity of a point particle or element of matter, 
0u is time 

component of four-velocity, v is three-dimensional 

velocity of a particle or element of matter, c is the speed 

of light, 0J u = is the mass four-current, 
0  is 

invariant mass density in the particle’s comoving 

reference frame, ( , )K J g

 is scalar function 

depending on the four-current J 
 and the metric tensor 

g
,

0  is the magnetic constant, 

F A A A A        = − =  −  is the electromagnetic 

tensor, 
3 1

16 2

c
k

G c 
= − = − , where ϰ is Einstein's 

gravitational constant, R
is the Ricci tensor, R  is the 

scalar curvature,   is the cosmological constant. 

 

The Lagrangian density 
p f= +  with components 

p
 (1) and 

f
 (2) has a slight difference from the 

standard Lagrangian density of general relativity in [36-

38], taking into account matter and electromagnetic field. 

This difference lies only in the fact that a scalar function 

( , )K J g

  is introduced in (1). Given the function 

( , )K J g

 , based on the principle of least action, those 

terms appear in equation for the metric and in equation of 

motion of matter that can be associated with scalar 

pressure 
0

 and with the pressure force in matter. 

The four-currents j  and J 
 in (1) are four -vectors, as 

defined in [36-37], where the variations of these four -

currents, necessary in the principle of least action, are also 

calculated. In this case, the continuity equations have the 

form 0j = , 0J 

 = . Covariant expressions 

for four-currents 0qj u =  and 0J u =  

correspond exactly to four-vector algebra, since they are 

obtained by multiplying the invariant scalars 
0q  and 

0  

by the four-velocity u
.  

A feature of 
p

 (1) is the direct dependence on the four-

currents j  and J 
, whereas in 

f
 (2) there is no such 

dependence. Note that the term c J J g 

−  in (1), 

when integrated over the invariant four-volume in the 

action function and with subsequent variation, gives the 

same result in the principle of least action as the 

corresponding term ( )
1 2

p p

−  in [37]. 

In (1). it is essential that the mass four-current J 
 in the 

radical J J g 

  should always be used in the form 

of a contravariant four-vector, and the metric tensor 

should be taken as a doubly covariant tensor g
. It is 

due to this choice that the stress-energy tensor of matter 

in the general relativity is obtained with a positive sign. 

Next, we will need the Lagrangian density 
p f= +  

for four vector fields according to [1] and [22] 

 

0 0 0
0

0 0 0

0 0

.

p

q q

A j D J U J J

u

c

   

   

    

   

 

= − − − − =

− +  − + 
 

=  − +  − 
 +  

A v

D v U v

Π v

. 

2

0

2 2

1

4 16

16 16

2

f

c
F F Φ Φ

G

c c
u u f f

c k R c k

 

 

 

 

 

 

= − + −

− +

− 

, (3) 

where ,D
c



 
= − 
 

D  is the four-potential of 

gravitational field, described in terms of the scalar 

potential   and the vector potential D  within the 

framework of covariant theory of gravitation, 

,U
c



 
= − 
 

U  is the four-potential of acceleration 

field, where   and U  denote the scalar and vector 

potentials, respectively, ,
c


 

= − 
 

Π  is the four-

potential of pressure field, consisting of the 

scalar potential  and the vector potential Π , 

G  is the gravitational constant, 

Φ D D D D        = − =  −  is the 

gravitational tensor,  is the acceleration field coefficient, 

u U U U U        = − =  −  is the 

acceleration tensor, calculated as the four-curl of the four-

potential of acceleration field,  is the pressure field 

coefficient, 

f           = − =  −  is the 

pressure field tensor. 

Similar to electromagnetic field equations, the 

gravitational field equations connect the gravitational 

tensor Φ
 with the mass four-current J


 and allow one 

to calculate the components of gravitational tensor [1]. 

The equation for calculating the four-potential D
 has 

the following form [26] 

2

4 G
D J D R

c

 

    


  = − − , 

where R 
 is the Ricci tensor.  
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According to (1-2), the electromagnetic field is fully taken 

into account in the Lagrangian density as a vector field, 

and the gravitational field manifests itself exclusively 

through the metric tensor g
; therefore, it is defined as 

a tensor field. The acceleration field has the energy 

density of 
2

0 0c J J g с u u u J   

   = = =  

and is represented as a scalar field. This is evident from 

the fact that in the Lagrangian density (1-2) there is no 

additional tensor invariant 

2

16

c
u u




− , associated 

with the acceleration field, while in the Lagrangian 

density for vector fields (3) this tensor invariant is present. 

One of the reasons that the electromagnetic field is 

represented in Lagrangian densities (1-3) is that in both 

the covariant theory of gravity and the general theory of 

relativity, the terms with the electromagnetic field have 

the same form. On the other hand, electromagnetic fields 

are of great importance in the physics of relativistic 

charged particles and in the astrophysics of stars, 

especially for white dwarfs and neutron stars. Thus, the 

results obtained in this work can be useful in the analysis 

of phenomena involving electromagnetic fields. 

Note that the four-velocity u
 is a special and limiting 

case of the four-potential U
 of acceleration field, when 

each particle is considered as a point solid body moving 

by inertia. The expression c J J g u J  

 =  in (1) 

in its meaning corresponds to the term U J 

  in the 

Lagrangian density (3) for vector fields. Thus. the vector 

acceleration field in the Lagrangian density (3) for vector 

fields includes the scalar acceleration field of general 

relativity in (1) as a special case. 

The mass density 
0 , charge density 0q , and scalar 

function ( , )K J g

  in (1) are invariant quantities, 

since they are given in the reference frame that comoves 

with the matter element under consideration. This means, 

for example, that the mass density 0 2

1
u J

с



 =  is 

expressed in terms of the tensor invariant and therefore is 

a scalar function. Although in each reference frame, the 

four-current J 
 and the four-velocity u

 of a matter 

element have their own values, the tensor invariant of 

these quantities always defines the mass density as equal 

to the mass density 
0  in the comoving reference frame. 

A similar reasoning applies to the function ( , )K J g

 . 

Our goal will be to find the equation for the metric in 

general relativity, to derive the formulas for the energy 

and momentum, to obtain the equation of motion and to 

relate the function ( , )K J g

  with the scalar isotropic 

pressure 
0

 in matter. 

First, we consider the equation for the metric. Since four-

currents j  and J 
 , four-potential A

, and the metric 

tensor g
 are independent variables when varied, 

variation 
p

 (1) with respect to the metric tensor g
 

can be written as follows 

 

( )

0

2

1

2

p g

cJ J g K
g

gJ J g

K
u u g g

g



 



 


 

 




 

  


= − − =




− −



. (4) 

Since in (4) g g g g 

    = − , the variation 
p

 

with respect to the metric tensor g
 and the 

corresponding functional derivative are equal to 

 

( ) 0

1

2
p g

u u g

K
g g g

g

 

 

 

 

  



  



= +





. 

0

1

2

p K
u u g g

g g
    

 


 

= +
 

. (5) 

For variation 
f

 (2) with respect to the metric tensor 

g
 and for the corresponding functional derivative, we 

can write similarly [36], [38] 

( )
0

1

2
f g

F F g

c k R g



 

 





 




= +
 

0

1

2

f
F F ckR

g



   


= +


. (6) 

Taking (5-6) into account, we find the derivative of the 

entire Lagrangian density 
p f= +  with respect to 

the metric tensor in the general relativity 

 

0

0

1

2

1

2

K
u u g g

g g

F F c k R

    

 


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



 
= + +

 

+

. (7) 

According to the principle of least action, to find the 

equations of motion of particles and fields, variation of the 

action 

2

1

t

t

S L dt=   should be equated to zero 
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( )

2

1

2

1

1 2 3 0

t

t

t

t V

S L dt

g dx dx dx dt

 



= =

 
− = 

 



 

. (8) 

In (8) there is the Lagrangian 
1 2 3

V

L g dx dx dx= −

, found by integrating the Lagrangian density  over the 

moving volume of the system. Since 

1

2
g g g g 

 − = − − , from (8) follows the 

expression 

2

1

2

1

1 2 3

1 2 31
0

2

t

t V

t

t V

S g dx dx dx dt

g g g dx dx dx dt



 



= − −

− =

 

 

. (9) 

The metric tensor g
 is included in the set of 

independent variables by which the Lagrangian density is 

varied. We can assume that the Lagrangian density 

p f= +  in (1-2) depends on the following 

variables 

( , , , , )j J A F g  

 = . (10) 

Hence, 

j J
j J

A F g
A F g

 

 



  

 

  

  

 
= + +
 

  
+ +

  

. (11) 

Substituting (11) into (9) gives:  

2

1

2

1

1 2 3

1 2 3

1

2

0.

1

2

t

t V

t

t V

g g
S dt

g dx dx dx

j J
j J

A F
A F dt

g g
g

g dx dx dx





 

 

 

 





 


 

 



 
− 

= = 

−

 
 

 + +
  
 
 

 + +
  = =
 
  

+ −    

−

 

 

 (12) 

The equation for metric follows from the equality to zero 

the last term in square bracket in (12) 

1
0

2
g

g



− =


. (13) 

Substituting (1-2) and (7) into (13) gives the following 

0

0

0

1

2

1

2

1
.12 2

4

K
u u g g

g

F F c k R

A j c J J g K

g
F F c k R c k

    

 



  

  

  

  

 








+ +


+ =

 + + +
 

= −  
− +  

 

 (14) 

Let us write the standard expression for stress-energy 

tensor W
 of electromagnetic field, as well as the 

expression for stress-energy tensor 
  of matter 

considering the scalar pressure 
0

 which is used in 

general relativity in the limit of continuous matter: 

0

1 1

4
W F F g F F  

     


 
= + 

 
. (15) 

0
0 02

u u g
c

    
 

= + − 
 

. (16) 

Substituting (15-16) into (14) taking into account the 

equality 
2

0c J J g c 

  =  gives  

( )2

0 0

0

2

2

2

2 .

c k R c k R g

g A j c K c k

K
g g u u W

g c

 



 

      

 





− =

= − + + + + 


− + − −



 (17) 

We apply contraction of equation (17) by multiplying by 

g
 and take into account expression 

  (16), as well 

as the equalities 4g g 

 = , 
2g u u c

  = , 

0g W

 =  : 

2

02 5 4

4 2 8

c k R c A j

K
K g c k

g





 

 

= + +


+ + 



. (18) 

In Sections 3.1 and 3.2 we turn to equations (17-18) in 

connection with the problem of energy gauging and 

definition of the meaning of cosmological constant  . 

According to [8], the energy of a physical system is 

written as follows 

( )

0 1 2 3

0

1 2 3

1

p

V

p f

V

N
f

n

n n

E u g dx dx dx
u

g dx dx dx

L

=

 
=  − − 

  

+ − +

 
 
 







v
v

v
v

. (19) 
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In (19) 
nv  is the velocity of a particle or element of 

matter of the system with number n , the quantity 

1 2 3

f f

V

L g dx dx dx= −  is the Lagrangian 

associated with the Lagrangian density 
f

. Substituting 

p
 (1) and 

f
 (2) into (19), taking into account the 

equality 
2

0c J J g c 

  = , we find: 

( )

0

2

0

0

0

0 1 2 3

0 2

0 0

0

1 2 3

1

1

1

1

1
2

4

.

q

V
q

q

V

N
f

n

n n

c

c K

uE

c

u g dx dx dx

u c K
c

F F c k R c k

g dx dx dx

L





 





  



=

  
+  

  − +
 +  

   =  
 

 
 

 −

 
+ + 

 
 + + − +  
 

−

 
+  

 







v

A
v

v

v

v
v

 (20) 

If the electromagnetic field potentials   and A depend 

on the velocity, then the terms with partial derivatives 



v
 in (20) will not be equal to zero. In some cases, we 

can assume that the sum 2

0с K +  does not directly 

depend on the particle velocity v ; however, the time 

component 
0u  of the particles’ four-velocity in the 

general case depends on the velocity v . Indeed, in the 

limit of the special theory of relativity 

0

2 21

c
u c

c
= =

− v
. 

According to [8], the relativistic momentum of a system 

is expressed by the formula: 

0 1 2 3

0

1

p

V

N
f

n n

u g dx dx dx
u

L

=

 
= − 

  


+







P
v

v

. (21) 

Substitution into (21) 
p

 (1) and 
f

 (2) taking into 

account the equality 
2

0c J J g c 

  =  gives 

( )

0

2

0
0 0

0

0 1 2 3

1

1

1

1

.

q

q

V

q

N
f

n n

c

c K

c u

c

u g dx dx dx

L




 



=

 
 −
 
 

 + + + 
 =  
 

 
 

 

−


+







A

vP

A
v

v

v

 (22) 

To obtain the equation of particles’ motion, it is necessary 

to calculate the action variation in (9), which contains 

only variations of the four-currents, and to equate this 

variation to zero. Consequently, in (9) it is necessary to 

use only the first integral on the right side 

2

1

1 2 3

1 0

t

t V

S g dx dx dx dt = − =  . (23) 

The variation of Lagrangian density 
p f= +  with 

respect to four-currents reduces to the variation of 
p

, 

since 
f

 (2) does not depend on the four-currents. 

Taking into account (1) for variation 
p

 over four 

currents we find 

( )
2

.

p A j

c J J g J J g K
J

JJ J g

K
A j u J J

J





   

  

 



  

  

 

 


  

= − −

+ 
− =



− − −



 (24) 

According to [36], the variations of four-currents are 

equal to 

( )

( )
1

j j x j x

g j x j x
g

    



   



  

 

=  − =

  − −
 −

, 

( )

( )
1

J J x J x

g J x J x
g

    



   



  

 

=  − =

  − −
 −

. (25) 

Let's substitute into (24) j  and J   from (25), and 

then substitute  
p  into (23) instead of   
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( )

( )

2

1

1

1 2 3

1

0.

t

t V

A
g

g

j x j x
S dt

K
u

J

J x J x

g dx dx dx

 

   

 

   

 


 

 
 −

 
  −
   + 

−   = − = 
  + +    

 
−  

−

   (26) 

Acting as in [36], a variation of the action and the equation 

of motion were found in Appendix A in (A11) 

2

1

1

1 2 3

0

t

t V

K
j F J u

J

S dtK
J

J

x g dx dx dx

 

    



 







   
+  +    

= = 
−   

−

  . 

K K
J u J j F

J J

  

     

  
 + =  − 

  
. (27) 

In (27), taking into account expression for the four-current 

0J u = , we write the equation of motion in terms of 

operator of proper-time-derivative 
D

u
D






 =  

0

D K K
u J j F

D J J

 

    




  
+ =  − 
  

. (28) 

In general relativity the stress-energy tensor 

T W  = +  of matter with pressure 
0

 is used. In 

this case, the equation of motion is found by taking the 

divergence of this tensor: 0T  = . Considering the 

expressions for W
 (15) and for 

  (16), using the 

known equation for electromagnetic field 

W j F 

   = , we express the equation of motion 

0T  =  in terms of the pressure 

0
0 02

u u j F
c

 

    
  

 + =  −  
  

. (29) 

Equation (29) is the equation of motion in general 

relativity for charged matter in scalar pressure field 
0

, 

in electromagnetic field with the tensor F 
 and in 

gravitational field, defined in terms of the metric tensor. 

In derivation of equation of motion (27), we used the 

variations j  and J   from (25). According to [36], 

the expressions for these variations are valid on the 

condition that the continuity equations hold for the four-

currents: 0J 

 = , 0j = . Using the continuity 

equation 0J 

 = , we substitute j F

   from ((29) 

into (27). This leads to the following 

( )0 02

1

K K
J J

J J

u u
c

 

  



  

 
 − 

 

=  −

. (30) 

If we multiply (30) by u
, the left side in (30), taking into 

account the equalities 
0J u = , 

0J u = , 

vanishes 

0

K K
u J u J

J J

K K
u J u J

J J

   

  

   

  

 
 − 

 

 
=  −  =

 

. (31) 

For the right side of (30) after multiplication by u
 taking 

into account the equalities 0u u 

 = , 
2u u c

 = , 

the following is obtained 

( )

( )

( )

( )

0 02

02

0 02

0
0 2

0

0
02

1

1

1

.

u u u u
c

u u u
c

u u u u
c

u u u u
c

u

u u u u
c

  

  

 

 

  

  

  

  





  

  

 − 

=  +

 −  =

=  + 

−  =

 = 

 (32) 

From (30-32) it follows that the equations of motion (27) 

and (29) are consistent provided that in (32) 0u  = . 

Taking into account the continuity equation 

( )0 0u

 = , we can see that in the system under 

consideration the condition 
0

0 0
d

u
d









 = =  must 

be satisfied, that is, the mass density 
0  must be constant 

in the comoving reference frame of each matter element. 

This means that 
0  should not depend on the time and 

coordinates within each matter element. 

These restrictions on the consistency of equations of 

motion (27) and (29) show that equation (29) in the 

general case does not represent a full description of 

motion of real matter. The same applies to the stress-

energy tensor 
  (16), which in this case must contain 

additional specifying terms. 

Equation (30) can be considered an equation for 

determining the value of K . Thus, provided that 
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0 0  = , the particular solution of (30) is 

0

0

0

J J g
K

c

 




= = . To prove this, we must take 

into account 
0

0

J J g
K

c

 




= , the condition 

0 0  =  and the following relations in (30) 

0 0

2

00

2

2

J g uK

J cc J J g



 

  





= =


,           

0u u 

 = ,            0J

 = . (33) 

The condition 
0 0  =  is equivalent to the condition 

0
0 0

x
 





 = =


, which corresponds to matter with 

uniform density, for example, an incompressible liquid or 

a body densely composed of identical solid particles of 

constant mass density. 

For free matter without an electromagnetic field and 

without considering the pressure, it follows from (29) 

( )0

0 0

u u u J

Du
J u

D

 

   



 






 =  +

 = =
. 

0

Du
a u u

D

u u u u

du
u u

d

 

  

  

    

  

  





= =  =

 − =

− =

. 

0

Du
a u u

D

u u u u

du
u u

d


  



    

  


  

 





= =  =

 + =

+ =

. (34) 

Equations (34) for the covariant four-acceleration a
 and 

the contravariant acceleration a
 show that the free 

matter, in the absence of external fields and without taking 

into account the internal pressure, moves with zero four-

acceleration along the so-called geodesic line. This means 

that the gravitational field changes synchronously with 

changing metric tensor in such a way that the small test 

particles move in the same way regardless of their mass, 

when all other conditions being equal. However, in the 

presence of external nongravitational fields, taking into 

account the pressure and sufficiently large test particles, 

the equations (34) will no longer hold true. 

The latter follows from the fact that the metric inside a test 

particle arises not only from the action of external 

gravitational field, in which the particle is moving but also 

from the particle’s own gravitational field. Gravitation 

inevitably changes the internal pressure 
0

 in matter, the 

pressure gradients create internal forces, and the four-

acceleration becomes nonzero. Equations (34) are 

equations of motion for a single point particle, but not for 

real matter, for which (27) should be used together with 

(30) to determine the relationship of the function 

( , )K J g

  with pressure 
0

. 

The presence of an electromagnetic field manifests itself 

in general relativity in two ways – on the one hand, the 

metric tensor and corresponding gravitational field 

change; on the other hand, the charged particles 

experience the Lorentz force and generate 

electromagnetic radiation. Thus, in the general case, the 

motions of neutral and charged particles differ 

significantly from each other. 

The results obtained above will not change, if we use as 

p
 the following expression 

0

0 0

0 0

0

( , )

1 1

( , ).

p

q q

A j

c u u g K J g

u u
c c

c u u g K J g





  

 

  

 



  



= − −

− =

= − +  −

−

A v
 (35) 

In (35) the quantity 0c u u g 

  is used instead of 

c J J g 

  in (1); moreover, the result of variation in 

the action remains the same. 

3. Results 

3.1. GTR1 version 

In this Section we consider the GTR1 version, which is the 

closest version to standard general relativity. In the 

analysis of GTR1 we rely on the results of Section 2, 

obtained from the principle of least action. 

The equation for the metric in general relativity, which 

contains the cosmological constant 
GR , has the 

following form [36-39] 

( )4

1 1

2 2

8

GRR R g g T
c k

G
T W

c

   

  




− + = −

= = +

, (36) 

where the tensor T W  = +  is the sum of stress-

energy tensor (16) of matter and stress-energy tensor (15) 

of electromagnetic field, 

3 1

16 2

c
k

G c
= − = − . 

It should be noted that the left side of (36) consists of 

geometric quantities associated with the spacetime metric, 

and physical quantities are concentrated in the right side 
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of  )36). The coefficient 
4

8 G

c


=  in front of stress-

energy tensor T
 in (36) was chosen so that the general 

relativity in the weak field limit reproduces Newton's law 

of gravitation. However, this eliminates in advance those 

small additives that may be present in the value of 

coefficient . This means that in fact the coefficient  

should be considered an unknown quantity, which should 

be derived from the general relativity itself and from 

experiment, without relying on a less accurate Newton 

theory. In this regard, in the theory of vector fields, which 

will be discussed in Section 3.4, it is assumed that 

4

8 G

c

 
= , where   is a constant coefficient to be 

determined. 

Let us equate the identical terms in (36) and (17) and 

multiply the result by g
. Hence it follows that both 

equations coincide under the following condition 
2

0

0

8 4 4

3 4 2 8

GRc k A j c

K
K g c k

g





 

 

 = + +


+ + + 



. (37) 

We apply contraction of equation (36) by multiplying by 

g
 and by taking into account the tensor expressions 

(15-16) 
2

0 02 8 3GRckR ck c=  + − . (38) 

Substitution of 8 GRck  from (37) into ((38) allows us 

to express the scalar curvature R  inside matter of the 

physical system in terms of  : 
2

02 5 4

4 2 8

c kR c A j

K
K g c k

g





 

 

= +


+ + + 



. (39) 

Equation (39) coincides with )18). We substitute 
GR  

from (38) into (36): 

( )

4

2

0 04

1 8

4

2
3

G
R R g T

c

G
c g

c

  








− =

− −

. (40) 

By solving equation (40), we can calculate the metric 

tensor inside matter and determine scalar curvature R . 

Next, with the known value R , we find 
GR  from (38). 

If equation (30) is solved and the function K  is 

determined, then from (39) we obtain the expression for 

 . 

Let us consider the situation outside matter. In this case, 

according to (37), the following equality holds true: 

GR = . Then, the equality 4 4GRR =  =   follows 

from (38). The equation for the metric (36), as well as 

equation (17), take the following form: 

4

1 8

4

G
R Rg W

c
  


− = . (41) 

In (41) the stress-energy tensor W
 of electromagnetic 

field changes the spacetime curvature outside matter. The 

solution of equations (40-41) is a dependence of the 

metric tensor on coordinates and time, while at the points 

on the surface surrounding matter, the metric tensor 

components in both equations, due to their equality, must 

coincide with each other. This allows us to determine part 

of the unknown constants in solutions for the metric tensor 

inside and outside matter. 

We now turn to the formula for the system’s energy (20) 

and we substitute   with R  with the help of (39). 

Considering that 
0 0

0 0

1 1
q qA j u u

c c



   = − A v , 

we find the following for the energy inside matter 

( )

0

0 2

0

0

0

0 1 2 3

2

0

0

1 2 3

1

1

1

1

1

4 2

1 1

4 2

.

q

q

i

V
q

V

N
f

n

n n

c

c c K

uE

c

u g dx dx dx

c K
g

g

F F c kR

g dx dx dx

L

 

 





 










=

  
+  

  − +
 +  

   =  
 

 
 

 −

 
− − + 

 
 +

−  
 

−

 
+  

 







A
v

A
v

v

v

v
v

 (42) 

Outside matter, according to (39), 4R =  , so that the 

energy (20) is written as follows: 

0

1 2 3

1

1 1

4 2
o

V

N
f

n

n n

F F c k R
E

g dx dx dx

L






=

 
− 

=  

−

 
+  

 



 v
v

. (43) 

To determine the system’s energy with the help of (42-

43), we need to know the dependence of the scalar 

curvature R  on the coordinates and time; that is, first, we 

need to solve equations for the metrics (40-41). When 

calculating the total relativistic energy of a physical 

system, it is necessary to sum up the energies (42) and 

(43): 
i oE E E= + . Since (43) can be obtained from (42) 
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at 
0 0 = , 0K =  and 

0 0q = , that is, in the absence 

of matter, (42) is the general formula for the energy in 

standard general relativity. 

The presence of the scalar curvature R  in the formulas 

for energy (42-43) is necessary to take into account 

contribution of gravitational energy to the total system’s 

energy with the help of metric. 

The relativistic momentum P  of a system, according to 

(22), depends on the scalar curvature R  and the 

cosmological constant   only through the sum 
1

N
f

n n

L

=






v

. After calculating the energy E  and the momentum P , 

it is possible to determine the system’s four-momentum 

of the system, defined in [8] as ,
E

P
c



 
= − 
 

P . The 

equation for determining the motion of matter in GTR1 is 

equation (29). 

 

3.2. GTR2 version 

In this Section we proceed not from equation (36) for the 

metric of standard general relativity, but rather from the 

derivation of general relativity with the help of 

Lagrangian formalism in Section 2. This will lead us to a 

new version of general relativity, which we denote GTR2. 

Let us express   from (18) and 
  from (16), and 

substitute them into (17) 

2

0

0

2

1 1 1

2 4 2

2 .

c k R c k R g

K
g c k R c g

g

K
g g u u W

g

 

  

 

     

 





− =

 
= − − − 

  


− − −



. (44) 

Transposing the term containing R  from the right-hand 

side (44) to the left-hand side, taking into account the 

coefficient 

3

16

c
k

G
= − , we obtain equation for the 

metric 

2

04

04

1

4

2
2

8
2 .

R R g

G K
c g g

c g

G K
g g u u W

c g

 

  

 

     

 







− =

 
= − + + 

  

 
+ + 

  

 (45) 

The left-hand side of (44) contains the Einstein tensor 

1

2
G R Rg  = −  multiplied by 2ck . The well-

known property of this tensor is that its divergence is 

equal to zero: 0G

 = . Consequently, the 

divergence of the right-hand side of (44) must also be 

equal to zero 

( )

2

0

0

1 1 1

2 4 2

2

0

K
c k R c g

g

K
g

g

u u W

  

 

 

 

 

  





 
 − − + 

  


 +



 + =

. (46) 

In (46) we used expression g 

  =   and the fact 

that under covariant differentiation the metric tensor 

behaves as a constant. We substitute the equation of 

motion (27) into (46) and take into account the equality 

for electromagnetic field W j F 

   = , the 

continuity equation ( )0 0u

 =  and the equality 

02 2u u J u 

     =   

2

0

1

2

4

2 2 .

K
c k R c g

g

K
g

g

K K
J J

J J

   

 

 

 

 

  


 

 =  + − 
  


 +



 
 − 

 

 (47) 

Now we take the covariant derivative 
  of both sides of 

(17) and take into account the fact that for the 

cosmological constant it must be 

( ) 0g

   =  = . Using in the right-hand side 

of (17) 
  from (16) and equality W j F 

   = , 

we find 

( )

( )

2

0

0

2

0

A j c K

K
g

g

u u j F



 

 

 

 

   





 + + +

 
 + 

  

 + =

. (48) 

A comparison of (48) with equation of motion (27) gives  

( )2

0

2

A j c K

K
g

g

K K
J J

J J



 

 

 

 

  

 + + +


 =



 
 − 

 

. (49) 

Multiplication (49) by the four-velocity u
 leads to the 

following 
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( )2

0

2 0

u A j c K

K
u

g

 

 

 

 

 + +


+  =



. (50) 

We can assume that (45), (47) and (49-50) are the system 

of equations that allows us to simultaneously find the 

function K  and the metric tensor g 
. After K  and 

g 
 are found, we can use them in the equation of motion 

(27). 

If we express   from (18) and substitute it into (20), we 

obtain an expression coinciding with the energy (42) in 

the GTR1 version. Similarly, the expression for the 

momentum (22) is remain unchanged. 

Outside matter, it follows from (18) that 4R =  , and 

the equation for metric (44) becomes the same as that in 

(41) in the GTR1 version. In this case, according to (47), 

0R R  =  = , and we can assume that the scalar 

curvature R  is a constant. However, inside matter, the 

scalar curvature is a scalar function of the coordinates and 

time. 

3.3. Discussion of GTR1 and GTR2 versions 

Let's first consider the GTR1 version. By definition, the 

cosmological constant   does not depend on time or 

coordinates, which are taken into account during variation 

in the principle of least action. It follows from (37) that 

the quantity 
GR  is equal to the cosmological constant 

  only outside matter. However, inside matter, 
GR  is 

no longer constant and becomes a certain scalar function, 

depending on the coordinates and time, such that 

0GR   . The latter also applies to the scalar 

curvature R , according to (38). 

We rewrite the equation for the metric (40) in terms of the 

Einstein tensor 
1

2
G R Rg  = − , for which 

purpose we subtract the quantity 
1

4
Rg  from both 

parts of (40), taking into account the coefficient 
4

2
8

c
ck

G
= −  

2

0 0

2

1 1 3

2 4 4

c k G

c kR c g T



 

=

 
− − + − 
 

. (51) 

Let us take the covariant derivative 
  of both sides of 

(51). The covariant derivative of the left-hand side will be 

equal to zero, since 0G

 =  due to the property of 

the Einstein tensor. On the other hand, the covariant 

derivative of stress-energy tensor is equal to zero, 

0T  = , which leads to equation of motion (29). 

Taking into account the additivity of covariant derivative 

with respect to the sum of tensors, for remaining terms on 

the right-hand side (51) we have: 

( )2

0 02 3 0ckR c  − + = . (52) 

The equation (52) represents an additional limitation on 

the value of the scalar curvature R  inside matter in GTR1 

version and relates R  to the matter’s density and 

pressure. 

In standard general relativity it is assumed that the 

equation for metric (36) is the primary equation. 

However, we agree with the validity of (36) only in the 

case of uncharged dust-like matter in the absence of 

pressure between the particles and at constant mass 

density 
0 , when the stress-energy tensor of matter has 

the form 
0 u u    = . In this case, according to (37), 

2

02 2GRck c ck = +  , and the equation of motion 

0

  =  follows from the vanishing of divergence of 

the right-hand side of (36); this equation coincides with 

the equation of motion (34) of the free matter. 

In the case of continuously distributed matter with scalar 

pressure, we could not find a Lagrangian density that 

would give, as a result of applying the principle of least 

action, equation (36) for the metric in general relativity, 

while fulfilling two conditions: 1) The stress-energy 

tensor 
0

0 02
u u g

c
    

 
= + − 
 

 must be 

present in (36); 2) 
GR  must not be a scalar function, but 

rather a constant value and a real cosmological constant. 

The analysis of the literature gives the impression that the 

stress-energy tensor 
0

0 02
u u g

c
    

 
= + − 
 

 

is inserted into the equation for the metric (36) 

“manually”, simply by analogy with the case of uncharged 

dust-like matter, without accurate derivation from the 

principle of least action. 

To be more precise, we will remember that in 

hydrodynamics, the following Lagrangian density is 

sometimes used 

0

2

0

20
0 0 0 0

00

m c

d
c



  


= − −

+ = − − 
. (53) 

In [36], the quantity 

0

0 0

0 00

d

 
 = −  is the potential 

energy of a fluid elastic compression, which refers to the 

mass unit, while 
2

0 0

0

d

d





= . In [40] an isentropic 

perfect fluid was considered, and instead of  , a similar 

quantity 
2/ c =  was used. Variation in the 
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Lagrangian density 
m

 (53) gives the stress-energy 

tensor 

0

0 0
0 02

00

d
u u g

c
   


 



 
= + −  
 

  (54) 

and the equation of motion 

0

0 0
0 2

00

0 02

d
u u

c

u u

c



 

  








 
+   

 

=  − 


. (55) 

If in (54-55) we assume that the mass density 
0  does 

not depend on the pressure 
0

, take into account the 

continuity equation ( )0 0u J 

  =  =  and 

condition 0u  = , then (54-55) would coincide, 

respectively, with the stress-energy tensor (16) and 

equation of motion (29), taken without regard to 

electromagnetic field. Thus, for the Lagrangian density 

m
 (53) to actually lead to the stress-energy tensor and 

the equation of motion required in general relativity, it is 

necessary to satisfy the condition of constant mass density 

in the form 
0 0  = . In the general case, when 

0 0   , the Lagrangian density 
m

 cannot be the 

Lagrangian density of general relativity. 

To understand this problem, we constructed Lagrangian 

density 
p f= +  (1-2) and introduced the function 

( , )K J g

 , which leads to the emergence of pressure 

force in matter and is present in the equation of motion. 

Now, suppose that the cosmological constant 
GR  is still 

a constant value in general relativity. Then, (37) is an 

equation of the state of matter, since it relates, with an 

accuracy of up to a constant, the mass density, the 

pressure, and the energy density of electromagnetic 

current. 

The equation of motion (29), which is a consequence of 

equation 0T  = , is consistent with equation of 

motion (27), which is derived from the principle of least 

action, only when 0u  = ,  
0 0

d

d




= , which is 

equivalent to the relation 
0 0

0 0
d

dt t

 



= +  =


v . 

In this case the function ( , )K J g

  becomes equal to 

the pressure 
0

: 
0

0

0

J J g
K

c

 




= = . With this 

in mind, we take the derivative 
K

g




 and substitute it 

into (37): 

0 0

2

0
22

J JK
u u

g cc J J g

 
 

 
 


= =


,        

2

0 0

2 2GR

c A j

c k c k const



 + + =

 −  =
. (56) 

The last equality in (56), as an equation of state of matter, 

cannot be considered the general expression, which limits 

the applicability of general relativity approach with its 

equation for metric (36), stress-energy tensor of matter 

(16), and equation of motion (29). 

As a result, we are faced with a number of paradoxical 

conclusions about general relativity, the validity of which 

appears to be questionable and which we suggest taking 

on faith. For example, let us assume that in (36) 
GR  is a 

constant value and that 

0
0 02

u u g
c

    
 

= + − 
 

, as is assumed in 

general relativity in (16). Then, the divergence of the left-

hand side of (36) is zero, and the equality to zero of 

divergence of the right-hand side (36) in form 

0T  =  gives us equation (29), which can be written 

as follows 

0
0 2

0
0 02

0

u u u
c

u j F
c

 

  



   





 
+  +  

 

  
+ − + =  

  

. (57) 

By multiplying (57) by the four-velocity u
 and taking 

into account that 0qj u = , 0u u 

 = , 

2u u c

 = , and  

0

0 0 0

q

q q

j F u u F u

u F u u F u

   

  

   

   



 

= =

− = − =
 

as a consequence of the antisymmetry of tensor F 
, then 

we obtain the following result: 

( )2

0 0 0 0c u u 

   + −  =
  . (58) 

Thе equation (58) can be simplified by permutation and 

substitution of the indices: 

( ) ( )2 2

0 0 0 0c u c u 

      + = +
    . This 

gives us the following: 

( ) 0
0 2

0u u
c

 

  +  = . (59) 

The expression (59) is considered in general relativity as 

a relativistic definition of continuity equation. However, 

(59) contradicts the continuity equation in the form 

( )0 0u

  = , which was used for the action variation 

and finding equation of motion (27). In addition, as 

mentioned above, for the consistency of equations (27) 
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and (29); the following conditions should be met: 

0u

 = , 
0 0  = . If these conditions are not met, 

then equation of motion (29) of general relativity cannot 

be derived from the principle of least action; 

consequently, (29) becomes an assumed but unproved 

equation.  

The condition 
0 0  =  corresponds to the condition 

of constancy of the mass density, which is possible, for 

example, in the relativistic uniform model. In this case, 

the models of compact stars using the general relativity 

will need correction if they are applied to matter with 

nonuniform density 
0 . 

Given that the standard general relativity is derived from 

the equation for metric (36), and not from the principle of 

least action, neither formula (19) for the energy E , nor 

formula (21) for the momentum P  are used in general 

relativity. 

Instead, a different approach is used in general relativity. 

It is assumed in [36-38] that the time components of 

stress-energy tensor T W  = +  in (36) during 

integrating them over the four-volume can fully replace 

the system’s four-momentum and give the energy E  and 

the momentum P  for matter and nongravitational fields. 

As a consequence, the system mass is related to the 

volume integral of the energy density in the time 

component of stress-energy tensor of matter. 

For the energy and momentum of gravitational field itself, 

the pseudotensor t  is supposed to be used for 

calculation. A well-known problem of this approach is 

that the pseudotensor of the gravitational field is not a 

uniquely determined value. For example, in [9], seven 

different pseudotensors were referenced. It is pointed out 

that the problem of impossibility of unambiguous spatial 

localization of gravitational energy and the emergence of 

a pseudotensor instead of an energy-momentum tensor is 

due to the fact that gravitational field is "hidden" in the 

metric tensor. 

In [41] it was emphasized that the gravitational field 

energy, found with the help of a pseudotensor under 

condition of constant matter density, is consistent with 

physical expectations, but differs if other equations of 

state of matter are used. In [42-43], it was proven that in 

general relativity, it is impossible to uniquely calculate the 

energy and mass of any arbitrarily chosen small part of the 

system. To the best of our knowledge, the questions of 

whether the system’s energy and momentum, calculated 

in general relativity for continuously distributed matter 

taking into account the pressure and the pseudotensor of 

gravitational field, are truly equal to their values in 

formula (19) for energy E  and in formula (21) for 

momentum P  have not yet been studied. 

In cosmology, the equation (36) of general relativity for 

the metric is sometimes written as follows 

4

1 8

2
GR

G
R Rg T g

c
   


− = − . (60) 

Here, the cosmological constant 
GR  is used to describe 

dark energy, the nature of which is unknown but which 

modifies the equation for metric in accordance with 

observations. Let us substitute 
GR  (56) into (60) 

( )

4

2

0 04

1 8

2

8
2

G
R Rg g T

c

G
c A j g

c

   



 






− + = +

+ +

. (61) 

In (61) a value is added to the stress-energy tensor T
, 

which is proportional to rest energy density of 

cosmological matter 2

0 c , the energy density of 

particles’ four-current A j  and the pressure 
0

 . This 

allows us to explain the meaning of mysterious dark 

energy – it appears on the right side of (61) in the form of 

a term ( )2

0 02 c A j g

  + +  as a consequence of 

the fact that the equation for metric (36) is actually not 

derived from the principle of least action, and 
GR  

according to (37) turns out to be a scalar function and is 

not a real cosmological constant. 

We now turn to characteristics of GTR2. In this version, 

equation for metric (45) and equation of motion (27) are 

used, derived from the principle of least action with the 

help of function ( , )K J g

 . The GTR2 version is more 

accurate and consistent than the GTR1 version. One 

drawback of GTR2 is the need to determine specific form 

of its function ( , )K J g

 . The disadvantage of both 

versions of general relativity is that we first need to solve 

equation for the metric and to find the scalar curvature R  

so that we can calculate the energy E  and momentum P  

of a system using formulas (19) and (21), respectively. 

This is a consequence of the fact that gravitational field is 

included in the metric tensor. 

We can achieve even greater accuracy in GTR2 if, instead 

of the function ( , )K J g

 , which specifies the scalar 

pressure in Lagrangian density, we use corresponding 

terms for pressure as for a vector field, that is, use the four-

potential and the pressure field tensor. 

3.4. GTRm version 

In this Section we consider modernized general theory of 

relativity, which we have designated GTRm. Our goal will 

be to derive from the principle of least action equations of 

the theory for continuous matter, taking into account 

pressure and electromagnetic field in curved spacetime. 

As mentioned in the previous Section, representation of 

the pressure as a scalar field has the disadvantage that it 

becomes necessary to determine the function 

( , )K J g

  simultaneously with calculating spacetime 

metric tensor in a system of coupled equations. Moreover, 

the transition from the scalar pressure field to the vector 

pressure field increases accuracy of calculations and 

simplifies solution of equations. The same applies to 
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acceleration field. Thus, our modernization of standard 

Lagrangian density of general relativity will consist of 

introducing the terms that turn the scalar fields into vector 

fields. This means that Lagrangian density will now 

include the four-potentials of acceleration field and 

pressure field, as well as corresponding tensor invariants 

of these fields. In this case, the Lagrangian density 

p f
  = +  of GTRm version differs from the 

Lagrangian density (3) for vector fields only because of 

the absence of terms 

2

16

c
D J Φ Φ

G

 

 


+  for 

gravitational field 

0
0 0

0 0 0 0

p

q q

A j U J J

u

c

  
  

  

    

 = − − − =

− +  − 
 

+  − +  

A v

U v Π v

. (62) 
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 

 

 = − − −

+ − 

 (63) 

The main characteristic feature of general relativity is that 

the spacetime curvature plays the role of gravitational 

field, which is taken into account with the help of metric 

field given by the metric tensor and its derivatives with 

respect to x
. While deriving GTRm, we can almost fully 

use the results obtained for vector fields. Thus, the 

standard equations of electromagnetic field and similar 

equations for acceleration field and pressure field, 

presented in [1], remain in force. Moreover, after varying 

the Lagrangian density 
p f

  = +  (62-63) with 

respect to the metric tensor in the principle of least action, 

the equation for metric is obtained in the following form: 

2

2

c k R c k R g

A j U J
g T

J c k

 

 

 

 



− =

 + +
− − 

 +  

. (64) 

In (64) there is a total stress-energy tensor 

T W B P   
 = + +  that takes into account the 

stress-energy tensors of electromagnetic field W
, 

acceleration field B
 and pressure field P . The only 

difference between (64) and equation for the metric for 

vector fields in [1] is that in (64) there is no contribution 

from the four-potential and from the stress-energy tensor 

of gravitational field. This is due to the fact that in the 

Lagrangian density (62-63) there are no terms that define 

gravitational field, except for scalar curvature  R and the 

metric tensor. 

Contracting equation (64) with the metric tensor g
 

gives the following 

2
2

A j U J
c k R

J c k

 

 





 +
=  

 + +  

. (65) 

Equation (65) allows us to simplify the equation for metric 

(64). Considering the equality 

4

2
8

c
ck

G 
= − , where 

  is a coefficient of the order of unity, we find: 

4

1 8

4

G
R Rg T

c
  

 
− = . (66) 

It is not at first clear in general relativity if the 

cosmological constant   can be used to gauge energy, 

as was done for vector fields in [1]. Let us turn to general 

expression for the energy of a system (19), into which we 

substitute the Lagrangian density (62-63). This for energy 

in GTRm version gives the following: 
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 (67) 

In (67), there is a quantity 
1 2 3

2
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 
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 

−




 (68) 

which is that part of Lagrangian for which 
f
  (63) is 

used. 

The difference 2ck ckR−  in (67) must define the 

contribution of gravitational field to energy of the system, 

while the quantities   and R  must satisfy (65); 

therefore, they can no longer be chosen arbitrarily for 

energy gauging. With the help of (65) we can exclude   

in (67). Taking into account relations of the type 
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0 0

0 0

1 1
q qA j u u

c c



   = − A v   for all the fields, 

we find: 
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 (69) 

By solving equation (66), we can determine the metric 

tensor g
, then calculate the scalar curvature R  and, 

with its help, find the system’s energy 
iE  (69) in matter. 

However, there still remains the problem of gauging the 

undetermined coefficients in the metric tensor in such a 

way that R  correctly and uniquely defines the energy in 

(69). Usually. in general relativity, the metric tensor is 

defined taking into account the fact that in the limit of a 

weak field the gravitational force transforms into the 

Newtonian force of gravitation. But in the general case, 

this may not be enough for the value R  obtained through 

such metric tensor to exactly satisfy the expression for 

energy (69). 

We can avoid this problem in the following way. Let us 

suppose that the theory of vector fields developed in [1] is 

valid just like the general relativity is. Then we can equate 

the energy of general relativity (69) to the corresponding 

energy in the theory of vector fields. 

For the part of the Lagrangian 
fL  associated with 

f
 

(3), under the gauge condition 2R =  , which is applied 

to vector fields for the purpose of calculating energy and 

momentum in continuously distributed matter, we can 

write 
1 2 3
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 (70) 

If we substitute Lagrangian density 
p f= +  (3) 

into (19) under condition 2R =  and 
fL  (70), we 

obtain the energy 
iE  for vector fields inside matter [8], 

[32] 
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 (71) 

Let's equate energy 
iE  (69) and energy 

iE  (71): 

i iE E = . (72) 

The equality of energies in (72) allows us to impose 

additional conditions on the values of uncertain 

coefficients in the metric tensor in matter and on the value 

of scalar curvature R present in energy (69). In this case, 

one should take into account the difference between 

metric tensors in GTRm and in the theory of vector fields, 

which follows from the difference in equations for metric. 

This leads to the fact that the tensors F


, u
 and f 

 

in (69), depending on the metric tensor, differ from the 

same tensors in (71). Therefore, similar terms in the left 

and right sides of (72), associated with tensors, cannot 

cancel with each other. 

Let us now consider the situation outside of matter, where, 

according to general relativity, there is only an 

electromagnetic field and a metric field, and four-currents 

are equal to zero. In this case, the equation for metric (64) 

is simplified 
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2 2ckR ckRg ck g W   − = −  − . (73) 

Contraction of equation (73) with the metric tensor g
 

leads to relation 4R =  , so that if   is constant, then 

the scalar curvature R  would also be constant. 

Substitution 4R =   into (73) taking into account the 

equality 

4
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c
ck
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= −  leads to equation for metric 

outside of matter 
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Outside matter, the mass density 
0  and charge density 

0q  are equal to zero, and expressions (62-63), (68) have 

the following form 

0p
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Taking into account the relation 4R =   in (76), the 

expression for energy outside matter in GTRm version in 

(67) is also simplified 

0

1 2 3

0

1

1 2 3

1 1

4 2

1

4

.1

2

o

V

N

n

n n V

F F c k R
E

g dx dx dx

F F

c k R

g dx dx dx













=

 
− 

 = + 

−

  
−  

  
  + 

+   
  

 − 



 v
v

 (77) 

For vector fields outside matter, there are only 

electromagnetic and gravitational fields, and the relation 

4 0R =  =  according to [1], [44] is valid. Instead of 

(71), the energy becomes equal to the following 

expression: 
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 (78) 

By solving equation (74), one can find expressions for the 

metric tensor and scalar curvature R . Equality of 

energies in (77) and in (78) in the form 

o oE E = . (79) 

makes it possible to clarify the value of scalar curvature 

R  in energy (77), as well as to clarify the values of 

uncertain coefficients in the metric tensor outside matter. 

In addition, the equality of internal and external metrics 

on the surface of massive body also allows us to more 

precisely define the undetermined coefficients in the 

metric tensor. 

In a similar way as with the energy we can proceed with 

the system’s momentum. A comparison of energies and 

momentums in ОТОm and in vector fields, taking into 

account the formulas for momentum in Appendix B, leads 

to two relations (72) and (B8) for R  in matter, and to two 

relations (79) and (B11) for R  outside matter. After 

clarifying the value R  in ОТОm , it becomes possible to 

use formulas for energy in matter (69) and beyond matter 

(77). At the same time, according to (B7) and (B10) in 

Appendix B, the formulas for momentum in ОТОm, 

respectively, in matter and outside matter have the 

following form 

0

2

1 2

1 2 3

1

4

16

1

16 2

N

i

n n V

F F

c
u u

c
f f c k R

g dx dx dx

















 

=

 
− 
 
 
− − 

 =  
  

 + 
 

−

 P
v

. (80) 
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2
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o
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F F

c k R

g dx dx dx


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

=

 
− 
 

  =
+  
 

−

 P
v

. (81) 



78 Sergey G. Fedosin IJPR Vol. 25, No. 3 
 

By summing the energies inside and outside matter (69) 

and (77), we find the energy E  of a physical system; 

similarly, the sum of the momenta inside and outside 

matter (80) and (81) gives the momentum P  of the 

system. 

After the energy E  and the momentum P  are found, we 

can determine the four-momentum of the system, defined 

in [8] in the form ,
E

P
c



 
= − 
 

P . The energy 

determined in the center-of-momentum frame represents 

the rest energy 
0E , with the help of which the system’s 

inertial mass in accordance with [32] is calculated as 

0

2

E

c
= . 

In vector field theory, the gravitational mass of a system 

is calculated after the gravitational tensor Φ
 is found, 

the time components of which include the gravitational 

field strength Γ . Near the surface of a spherical massive 

body, the strength Γ , according to Newton’s law, is equal 

to the free fall acceleration, found in terms of the 

gravitational mass of the body. Thus, a connection 

between Φ
 and the gravitational mass appears. Since 

the methods for determining the inertial and gravitational 

masses are completely different, these masses can equal 

each other only approximately. As a result, the principle 

of equivalence of the inertial and gravitational masses, 

which contributed to the development of general 

relativity, is not satisfied for vector fields. 

Let us now consider the equation of motion of typical 

particles in matter in GTRm. Using the principle of least 

action for the Lagrangian density 
p f

  = +  (62-63) 

and varying over four-currents, we arrive at the equation 

of motion, which differs from the equation of motion for 

vector fields in [1] only in the absence of a gravitational 

term 

0J u J f j F  

     + + = . (82) 

Equation (82) is also obtained from the expression 

0T 
 = , where the total stress-energy tensor of non-

gravitational fields is presented in (66) in the form 

T W B P   
 = + + . 

Let us express the tensors of acceleration field and 

pressure field in terms of the fields’ four-potentials and 

substitute them into (82) 

u U U     = − ,                

f      = − , 

0

J U J U

J J j F

 

   

  

      

 − 

+  −  + =
. (83) 

We apply (83) to a relativistic uniform system of a 

spherical shape with chaotically moving particles, which 

is kept in equilibrium by its proper fields. The root-mean-

square velocity of the particles’ motion in such a system 

depends only on the radius and reaches its maximum at 

the center [24], [29]. If the particles do not have proper 

vector potentials in the comoving reference frames of 

these particles, then, due to the chaotic character of the 

particles’ motion in such a system, the global vector 

potentials of all the fields would be equal to zero. This 

leads to the absence of solenoidal vectors of the fields, 

similar to the magnetic field in the case of an 

electromagnetic field. To a first approximation, for the 

four-potential of acceleration field, describing the motion 

of an arbitrary typical particle of the system, the following 

relation holds true: ,U u
c

 

 
= − = 
 

U , where u
 is 

the four-velocity of the particle,   and U  represent the 

scalar and vector potentials of the acceleration field, 

respectively. In the same approximation, the four-

potential of the particle pressure field will equal 

0

2

0

, u
c c

 


 
= − = 
 

Π  [45]. Let us substitute 

these potentials into (83) 

0 0

2 2

0 0

0

J u J u

J u J u
c c

j F

 

   

 

   



 

 

 −  +

   
 −  +   

   

=

. (84) 

Next, we use the continuity equation 0J

 =  and the 

following obvious relations 

( )

( )0

J u u J

u J u u

 

   

 

   

 = 

−  =
,       

0 0J u u u 

    =  = , 

0 0
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0 0

0 0

2 2

0

J u u J
c c

u J u u
c c

 

   

 

   

 



   
 =    

   

 
−  =   

 

, 

0 0

2 2

0 0

0 0
02

0 0

J u J u
c c

u J
c

 

   



  

 


 

 
 =  + 

 

   
 =    

   

. (85) 

Taking into account (85), the equation (84) is written as 

follows 

0
0 2

0
0

0

u u
c

j F



 



  






  
 + =  

  

 
 − 

 

. (86) 
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In relativistic uniform system, the equality 

0
0 0 0

1
, 0

c t
 


  

 
 =  =  = 

 
 holds true; the 

invariant mass density 
0 const = , that is, the density 

0  does not depend on either time or coordinates and is 

the same for all the particles in the system. In such a 

physical system 
0

0 0

0

 


 
 =  

 
, and we can see 

that equation (86) coincides with the equation of motion 

(29) in general relativity when taking scalar pressure 
0

 

into account. 

On the other hand, as we indicated in Section 2, the 

equation of motion (29) of general relativity will be 

consistent with the principle of least action and (27) if 

0
0 0

d
u

d









 = = ; that is, the mass density 

0  must 

be constant in the comoving reference frame of each 

matter element. Since in this case 
0

0 0 0 0
d d ddt u

d d dt c dt

  

 
= = = , where 

0u  is the time 

component of the four-velocity, then the condition 

0 0
0 0

d

dt t

 



= +  =


v  must also be satisfied. All 

this is satisfied by the equality 
0 const =  for the 

relativistic uniform system. Thus, within the framework 

of general relativity, calculations of equation of motion of 

matter inside massive objects, such as compact stars, can 

be performed with condition 
0 const = . In all the other 

cases, for greater accuracy, it is better to use not equation 

(29), but rather the equation of motion in the form of (82-

83), where the field tensors are found through the 

corresponding field equations. 

Let us apply the covariant derivative 
  to both sides of 

equation (64) for the metric. On the left-hand side, we 

obtain zero as a consequence of the properties of the 

Einstein tensor. The right-hand side of (64) contains the 

total stress-energy tensor T W B P   
 = + +  of the 

three fields, for which the following equations hold 

W j F 

   = , B J u 

   = ,              

P J f 

   = . (87) 

Taking (87) into account, the following equation follows 

from (64) 

( )2

0

A j U J J c k

J u J f j F

  

   

  

     

 + + + 

+ + + =
. (88) 

If we take into account equation of motion (82) in (88), 

then using (65) we obtain for scalar curvature: 

0
22

A j U J c k
R

J c k

 

 

 



 +
 =  = 

 + +  

. (89) 

Condition (89) imposes an additional limitation on the 

quantity R  in matter in GTRm. 

3.5. Discussion of GTRm version 

The GTRm version presented in the previous Section is 

more accurate than standard general relativity due to the 

use of vector acceleration field and vector pressure field 

instead of corresponding scalar fields. Indeed, it is 

difficult to directly include the scalar pressure 
0

 in 

Lagrangian density because we need to make additional 

assumptions about the variation 
0  to apply it into the 

principle of least action. As a result, the equation of 

motion (29) of general relativity is not derived from the 

principle of least action itself, but rather by equating the 

divergence of stress-energy tensor to zero in the form 

0T  = .  

However, from the standpoint of Lagrangian formalism, 

derivation of equation of motion from the principle of 

least action is preferable and necessary for completeness 

of the theory. The use of scalar function ( , )K J g

  

allows us to derive the equation of motion (27) and to 

show that, on the condition that 
0 0  = , this function 

actually becomes equal to pressure 
0

 since in this case 

0

0

0

J J g
K

c

 




= = . The problem of this 

approach is associated with the need to define a precise 

expression for the function ( , )K J g

  in general case, 

which requires solving the system of equations (45), (47) 

and (49-50) in GTR2 version. 

Achieving greater accuracy in GTRm version is possible 

due to the additional terms in Lagrangian density 

p f
  = +  (62-63), which include the tensor 

invariants u u

  of acceleration field and f f 

  of 

pressure field. The addition of these terms leads to the 

emergence of independent equations of corresponding 

fields and allows us to quickly find all the characteristics 

of these fields in standard form. 

Substitution of gravitation by the spacetime curvature, 

and reduction of physical force of body attraction to 

geometry were fully justified in general relativity for the 

case of motion of small test bodies near massive objects, 

as happens in the case of motion of planets and rays of 

light near the Sun. However, in obtaining solutions for the 

case of continuous matter with pressure and 

electromagnetic field, as was shown above, we face 

various problems. One of these problems is related to the 

system’s energy and momentum, and the other is related 

to the ambiguity of solutions for the metric. The fact is 

that the energy and momentum cannot be determined 

without considering the contribution of gravitational field. 



80 Sergey G. Fedosin IJPR Vol. 25, No. 3 
 

However, since gravitation is included in the metric, it is 

first necessary to solve the equations for metric (66) and 

(74) inside and outside matter, to find the metric tensor 

and scalar curvature R , and through them evaluate the 

contribution of gravitation in energy and momentum. If 

we use the Lagrangian formalism, energy and momentum 

inside matter in GTRm can be found using formulas (69) 

and (80), respectively, and energy and momentum outside 

matter can be found using formulas (77) and (81). 

With this method, ambiguity arises in the definition of 

energy and momentum, since the solutions for the metric 

tensor contain undefined coefficients resulting from the 

integration of the equations. To avoid such ambiguity, we 

proposed to use energy and momentum, calculated in the 

theory of vector fields, as auxiliary quantities. 

Comparison of these quantities with the energy in GTRm 

in (72), (79), and momentum in (B8) and (B11) in 

Appendix B makes it possible to clarify the values R  

inside and outside matter and thereby unambiguously 

determine the energy and momentum of the system. 

However, it should be noted that the scalar curvature 

inside matter must simultaneously satisfy both equality 

for energy (72) and equality for momentum (B8). 

Similarly, the scalar curvature outside matter must 

simultaneously satisfy both the equality for energy (79) 

and the equality for momentum (B11). In this case, at the 

boundary of a body, the scalar curvature inside matter 

must be equal to the scalar curvature outside matter. 

The proposed approach is a consequence of Lagrangian 

formalism with respect to energy and momentum. 

Therefore, this approach has an advantage over standard 

general relativity approach, where the energy and 

momentum are defined in terms of volume integral of time 

components of stress-energy tensor summed with 

gravitational pseudotensor components. 

Let us consider, as an example, the symmetric Landau–

Lifshitz pseudotensor of gravitational field t  [38], for 

which, in view of stress-energy tensor of matter and non-

gravitational fields, the coefficient 
4

8 G

c


=  and the 

cosmological constant 
GR , the following equation holds 

( ) 0GRg T t g  



   
 − + − =  

  
. (90) 

Integrating (90) over infinite volume gives the following 

0 0

1 2 3

( )

1
LL

GR

g

T t
P

dx dx dxc
g

 




−

 +
=  

 − 
 

 . (91) 

It is asserted that the integral vector 
LLP

 (91) represents 

the four-momentum of a system. 

We noted some drawbacks of standard general relativity 

approach in Section 3.3, while discussing GTR1 and GTR2 

. We can add that an additional drawback is the lack of 

mathematical proof that volume integral (91) of time 

components of stress-energy tensor summed with 

gravitational pseudotensor components precisely gives 

the four-momentum of a system, not any other value. At 

least such a proof does not follow from the Lagrangian 

formalism [8]. 

Indeed, treatment of 
LLP  (91) as a four-momentum starts 

with the fact that stress-energy tensor T 
 is expressed 

through the stress-energy tensor 
  (16) in sum with the 

stress-energy tensor W
 (15) of electromagnetic field. 

Next, the weak gravitational field approximation is used 

when we can assume that 0t   in comparison with 

T 
. Then, to a first approximation, the value 

LLP  is 

close to the value of the system’s four-momentum.  

Hence, it is assumed that in the general case, 
LLP  is also 

the four-momentum. 

In response to such argumentation, we would like to 

remember that the equation of motion (29) in standard 

general relativity is consistent with the equation of motion 

(27), derived from the principle of least action, and is 

valid only on the condition that 
0

0 0
d

u
d









 = = . 

This condition is equivalent to the fact that a relativistic 

uniform system is always under consideration. As was 

shown in [24], [29], equilibrium in a relativistic uniform 

system reduces to equilibrium in gravitational and 

electromagnetic fields.in acceleration field and in 

pressure field. If we consider the situation not from the 

standpoint of general relativity, but from the standpoint of 

vector fields, then instead of (90) we must proceed from 

the equation of matter’s motion in the form  

( )1

0

T
T T

x

gT
T

xg

T


   

 



 

 

 




 = + +



 −
 =

−

+ =

, (92) 

In (92), stress-energy tensor 

T W U B P    = + + +  includes stress-

energy tensors of all four fields; therefore, there is no need 

for any gravitational field pseudotensor. 

Let's choose a reference frame in which the Christoffel 

symbols 


  in some element of matter are zero. In this 

case, multiplying (92) by the element of covariant volume 
0 1 2 3g dx dx dx dx−  and integrating over the four-

dimensional volume of this element, taking into account 

the divergence theorem, we have: 
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( )
0 1 2 3

0 1 2 3

1 2 3 0

2 1 3 0

3 1 2 0 0.

gT
dx dx dx dx

x

T g dx dx dx

T g dx dx dx

T g dx dx dx

T g dx dx dx













 −
=



− +

 − +
 

 + − +
 

 − 
 





 

 

 

 (93) 

Let's make the notation: 

0 1 2 31
I T g dx dx dx

c

 = − . (94)  

1 2 3 2 1 3

3 1 2 k

k

S

T g dx dx T g dx dx

T g dx dx T n g dS

 

 

− + −

+ − = −

 

 
. (95) 

In (95), the sum of the three integrals is a surface integral 

over a two-dimensional surface S , surrounding the 

volume element, 
kn  is a unit vector perpendicular to the 

surface S  and directed outward, 1,2,3k = . Substituting 

(94-95) into (93) and differentiating by variable 
0x ct=

, we find 

0k

k

S

dI
T n g dS

dt


+ −  . (96) 

The smaller the volume element in question is selected, 

the more precisely expressions (93) and (96) tend to zero. 

At 0 =  (96) describes the generalized Poynting 

theorem in integral form, according to which energy 

fluxes flowing into a certain volume increase the energy 

of fields in this volume [28]. When 1,2,3 =  the values 

kT 
 taken with a minus sign are components of a three-

dimensional stress tensor. In this case (96) can be 

considered as integral equations for the rates of change of 

energy fluxes in an element of matter. Such changes in 

energy fluxes are caused by forces acting on the element 

of matter from the fields. 

Suppose that the volume element in question is in such an 

equilibrium state that there are no energy fluxes through 

its surface or the fluxes are on average zero. In this case, 

according to (96), I


 becomes a certain constant in time, 

I const = . 

It is not difficult to verify that at equilibrium the integral 

over the three-dimensional volume in matter in (94) 

vanishes [8], [28]. This is a consequence of equation of 

motion in the form 0T  = , that is, the consequence 

of balance of all the forces in matter at equilibrium. If in 

(96) the volume element is taken not in matter, but outside 

it, then in (96) only the total energy of gravitational and 

electromagnetic fields outside matter and the fluxes of 

these energies remain. It turns out that the integral vector 

I 
 does not set the four-momentum of the element of 

matter, and even more so does not set the four-momentum 

of entire system consisting of many particles and fields. 

Instead, the vector I


 shows that in each volume element 

of a closed equilibrium system, another value associated 

with the energy of fields must be preserved. 

To obtain the vector I 
, we had to use the weak field 

approximation by choosing a suitable reference frame in 

which the Christoffel symbols in the volume element in 

question become zero. But in the general case I 
 turns 

out to be a four-dimensional pseudovector, since the 

equation of motion 0T  =  in covariant form does 

not integrate over four-dimensional volume and does not 

give a true four-vector. 

The presented picture shows that the integral vector 
LLP  

in (91), like I 
 in (94), is not the system’s four-

momentum, but an integral pseudovector. In this case, 

there is no other way in general relativity to find the 

energy and momentum, than to use the formulas derived 

from the Lagrangian mechanism and presented above. 

We analyzed in more detail the problem of four-

momentum and integral vector in general relativity and in 

theory of vector fields in [8] and [27] where references 

were also provided to papers showing inadequacy of 

general relativity approach for defining of energy and 

momentum. For example, in [37] indicated that the energy 

of a closed system in general relativity is either not 

conserved or depends on the choice of reference frame. It 

can be seen from (91) that tensor T


 and pseudotensor 

t  have different transformation laws; therefore, the 

system’s inertial mass, which should be obtained from 

LLP , will not be the same in different reference frames. 

This is confirmed in [46], which also indicates the 

inequality of inertial and gravitational masses of a 

physical system in general relativity. Moreover, according 

to [47], the principle of correspondence does not hold in 

general relativity. 

In addition, even if t  is a tensor, 
LLP  cannot be an 

actual four-vector. This follows from the fact that the 

right-hand side of (91) contains the time tensor 

components that are transformed into another reference 

frame in a different way than the components of a four-

vector should be transformed [28]. The difference in 

transformation of tensor components and four-vector 

components leads to the so-called 4/3 problem for a 

moving body, when the mass-energy in volume integral 

of the time component of stress-energy tensor for 

electromagnetic or gravitational fields is not equal to the 

mass-energy in integral of the space components of this 

tensor. 

From a philosophical standpoint, noncoincidence of four-

momentum and integral pseudovector I 
 in (94) is 

associated with the duality of matter and field and with the 

difference in their definitions in terms of four-currents and 

field tensors, respectively. The conservation of four-

momentum in a closed system is associated with the 
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conservation of energy and momentum of the matter’s 

particles that generate fields and act on each other through 

these fields. At the same time, the conservation of integral 

pseudovector I 
 leads only to conservation of energy 

and energy flux of fields in the system. 

4. Conclusions 

In order to covariantly describe the pressure effect, we 

introduced the scalar function ( , )K J g

 , which 

depend on the four-current J 
 and the metric tensor 

g
, into the Lagrangian density (1) of general relativity. 

Next, we found the equation for metric (17), derived the 

formulas for energy (20) and momentum (22), obtained 

equations of motion (27-29) and in (30) related the 

function ( , )K J g

  to scalar isotropic pressure 
0

 in 

matter. 

With this in mind, in Section 3.1 we arrived at GTR1 

version, which is the closest to the standard general 

relativity, and in Section 3.2 at GTR2 version, which was 

fully derived from the principle of least action. One of the 

results is that the equation of motion (29) in GTR1 is 

consistent with equation (27) only on the condition that 

0
0 0

d
u

d









 = = . This means that general relativity 

can be used to study relativistic uniform systems, where 

0 0  = , but it may be inaccurate in general cases.  

The situation can be improved by using GTR2; however, 

the analysis of both versions of general relativity in 

Section 3.3 revealed the presence of other notable 

drawbacks. For example, in general relativity, the 

expression of continuity equation (59) differs from the 

standard expression ( )0 0u

  = . As we show when 

deducing from the principle of least action in ОТО2 

version, the equation of motion (27) agrees with (29) only 

under the condition 0u

 = . If we accept both the 

conditions 
0 0  =  and 0u

 =  in general 

relativity, then only in this case (59) passes into standard 

continuity equation 

( )0 0 0 0u u u  

     =  +  = . 

With the help of (61), we explain the meaning of dark 

energy, which emerges from the cosmological model of 

general relativity, and is expressed as 

( )2

0 02 c A j g

  + +  in terms of rest energy 

density of cosmological matter 
2

0 c , energy density of 

particles’ four-current A j  and pressure 
0

 in matter. 

In this case, the dark energy emerges because the equation 

for the metric (36) in general relativity is not derived from 

the principle of least action; and according to (37) 
GR  

turns out to be a scalar function and is not a real 

cosmological constant. 

In Section 3.4 we present modernized general theory of 

relativity, which we designate GTRm. Unlike in standard 

general relativity, in GTRm acceleration field and pressure 

field are considered not as scalar fields, but as vector 

fields. Thus, for these fields it becomes possible to write 

their own equations and to find four-potentials, tensors 

and stress-energy tensors at a given mass four-current. 

This means, for example, that we no longer need to choose 

a possible equation for the state of matter that relates the 

pressure and the mass density; – for this reason. it suffices 

to solve standard differential equation for pressure field. 

The gravitational field, according to general relativity 

approach, included in metric field, which is geometric in 

nature. Thus, in ОТОm, gravitation is still reduced to 

spacetime curvature. 

To determine the energy and momentum as easily as 

possible, in the GTRm version we suggest using four-

potential D
 and gravitational field tensor Φ

 as 

auxiliary quantities, taken from the theory of vector fields. 

With the help of D
 and Φ

, one can calculate for 

vector fields the system’s energy inside and outside matter 

using formulas (71) and (78), and the momentum of the 

system inside and outside matter using formulas (B1) and 

(B9) in Appendix B. In this case, conditions (72), (79), 

(B8) and (B11) in Appendix B make it possible to 

unambiguously gauge both the components of metric 

tensor, as well as the energy and momentum in GTRm 

version. 

The equation of motion (83) in GTRm version is fully 

written in terms of four-potentials and tensors of the fields 

represented in a system. In the limit of relativistic uniform 

model, equation (83) becomes equal to (86) and exactly 

transforms into the equation of motion (29) of standard 

general relativity. Thus, the GTRm version can be 

considered an improved version of general relativity in 

many respects. On the other hand, the GTRm version is 

much closer to the theory of vector fields than to standard 

general relativity, which can be seen from comparison of 

Lagrangian density 
p f

  = +  (62-63) and 

Lagrangian density (3). The difference between these 

theories lies only in the fact that in theory of vector fields 

gravitational four-potential and gravitational field tensor 

are directly included in Lagrangian density. 

The advantage of vector fields is that the equation of 

motion can be obtained and confirmed in two different 

ways – either from the principle of least action or from the 

equation 0T  =  [1], [8]. Another advantage is that 

in the formulas for energy and momentum, due to use of 

energy gauging with the help of cosmological constant 

, we can eliminate scalar curvature R  and thus uniquely 

determine the formulas. In this case, the approach used in 

theory of vector fields is preferable to that used in general 

relativity, since it is based entirely on Lagrangian 

formalism [32]. 
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Appendix A 

We proceed from the variation 
1S  containing variations 

x  
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We transform by parts in (A1) the term with the mass 

four-current J 
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The covariant divergence of an arbitrary four-vector B 
 

can be expressed as follows 

( )1
B g B

g

 

  =  −
−

. (A3) 

Taking (A3) into account, the first integral on the right 

side of A2) can be written as follows 
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We now use the divergence theorem for the right-hand 

side of (A4), moving from integrating the divergence of a 

four-vector over a four-dimensional volume to integrating 

the corresponding four-vector over four three-

dimensional hypersurfaces 
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The three-dimensional unit vector 
jn , where the index 

1,2,3j = , represents an outward-directed normal vector 

to the two-dimensional surface  , surrounding moving 

physical system under consideration. The equality to zero 

in (A5) follows from the fact that the variations x  at 

the time points 
1t  and 

2t  are equal to zero according to 

the condition of variation of action function. In addition, 

in the case of integration over the surface  , the 

variation x  on this surface is also considered to equal 

zero. 

According to (A4-A5), the first integral on the right side 

of (A2) is equal to zero. The second integral in (A2) is 

transformed as follows 
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In (A6) we used the relation 
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Let us transform the first integral in (A7) 
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Taking into account the divergence theorem as in (A5), 

the first integral on the right side of (A8) is equal to zero. 

The second integral in (A8) is transformed as follows: 
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From (A8-A9) it follows: 

2

1

2

1

1 2 3

1 2 3

1

.

t

t V

t

t V

A
g

j x dt
g

j x

g dx dx dx

j F x
dt

g dx dx dx

 

 

 

 

 







 
 −

 
 
  −− = −    
    

−

=
−

 

 

 (A10) 

Taking (A10) into account, from (A7) we obtain the 

action variation and equation of motion 
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Appendix B 

For convenience, this appendix uses double numbering of 

formulas, indicating the corresponding formulas in text of 

the article. 

If we substitute the Lagrangian density 
p f= +  (3) 

into (21) and take into account 
fL  (70), we obtain the 

momentum of a system in theory of vector fields [8], [32]: 
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 (B1) 

We now use the Lagrangian 
p f

  = +  (62-63) and 

fL  (68), replacing in (21) 
p

 by 
f
 , 

f
 by 

f
 , and 

fL  by 
fL .  Thus, we find an expression for the 

momentum in GTRm 
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In matter, the quantities R  and   are related by relation 

(65), which allows us to express in (B2)   through R  
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+ +

+



A U Π

vP

A

v U
v

Π

v1

1 2 3

.
N

n V

g dx dx dx

=
















 


−

 

 (B3) 

We further use (62) in the form 

0
0 0 0

0 0 0

q q

A j U J J

u

c

  

  

    

  

+ +

−  + 
=  

−  + −  

A v

U v Π v

, (B4) 

as well as a relation from [35]: 

1 2 3

0
1 2 3

0

dt
g dx dx dx

d

u
g dx dx dx dV

c


−

= − =

, (B5) 

where 
0dV  is differential of invariant proper volume of 

any particle of a continuously distributed matter. 

Taking into account (B4- B5) we find: 
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1
1 2 3

0 0

0 0 0

1

0 0

0 0

0 0 0

1

0 0

0 0

0 0

0 0

n

N

n n V

q q
N

n n V

q q
N

n n V

q q

n

A j

U J J

g dx dx dx

dV

dV





 

 

  

  

 

  

  

 

  

  

 

=

=

=

 +
    =+ 
−

−  + 
 

= −  + = 


 −  

−  + 
 

= −  + = 


 −  

−  +


= −  +


− 

 

 

 

v

A v

U v
v

Π v

A v

U v
v

Π v

A v

U v
v

Π v

0

1

0 0

0 0

0 0

0 1 2 3

1
.

n

N

n V

q q

V

dV

c

u g dx dx dx

  

  

 

=




=
 



−  + 
 

−  + 
=  −  

−

 



A v

U v
v

Π v
 (B6) 

In (B6), it was taken into account that when taking the 

partial derivative 

n



v
 with respect to the velocity 

nv  

of a particle with number n , the integral 

0 0 0

0

0 0 0

q q

V

dV
    

  

−  + − 
 

 + −  


A v

U v Π v
 over the volume 

of matter can be replaced by the integral 

0 0 0

0

0 0 0n

q q

V

dV
    

  

−  + − 
 

 + −  


A v

U v Π v
 over the volume 

of this one particle with number n . 

Substituting (B6) into (B3) gives the following: 

0

2

2

1

1 2 3

1

4

16

16

1

2

N

i

n n V

F F

c
u u

c
f f

c k R

g dx dx dx

















 
=

 
− 
 
 
− 
 

   =
− 
 
 
 +
 

−

 P
v

. (B7) 

Equating momentum (B7) to momentum (B1) for vector 

fields, we obtain another expression in which the scalar 

curvature R  inside the body in GTRm is expressed in 

terms of other quantities: 

i i
 =P P . (B8) 

Outside matter formula (B1) for vector fields remains 

valid and gives the momentum of field associated with the 

matter and commoving with it. In this case, in (B1), the 

first integral vanishes because the mass density 
0  and 

the charge density 
0q  outside matter are equal to zero. 

In addition, the tensor invariants associated with 

acceleration field and pressure field are equal to zero. As 

a result, in (B1) only the sum remains for all those 

particles that generate electromagnetic and gravitational 

fields 

0

2

1

1 2 3

1

4

16

N

o

n n V

F F

c
Φ Φ

G

g dx dx dx











=

 
− 
 

  =
+ 
 

−

 P
v

. (B9) 

Similarly, from (B2) taking into account the relation 

4R =  , for the field momentum outside matter in 

GTRm we find 

0

1

1 2 3

1

4

1

2

N

o

n n V

F F

c k R

g dx dx dx






=

 
− 
 

  =
+  
 

−

 P
v

. (B10) 

The equality of momenta (B9) and (B10) gives a relation 

that allows us to estimate the value of scalar curvature R  

in GTRm outside matter 

0 o
 =P P . (B11) 
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