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Abstract

Physical quantities in continuously distributed matter in curved spacetime, and equations for matter and fields are
considered both from the point of view of tensor theory of gravitation and on the basis of vector theory of gravitation. An
example in the first case is the general theory of relativity (GTR), which uses a scalar pressure field and a scalar
acceleration field. In the second case, relativistic vector fields are taken into account, including the covariant theory of
gravitation, the pressure vector field and the acceleration vector field. To analyze and compare the results in each
approach, formulas derived from the principle of least action and from the corresponding Lagrangian are used. The
problem of correlating scalar pressure with the principle of least action in the general relativity is considered. The
conclusion is drawn that results of the general relativity, when scalar pressure is taken into account, are valid for
relativistic uniform systems, but in a more general case, they require correction. Three versions of general relativity were
analyzed: GTRY, GTR? and GTR™. The GTR* version is the closest version to the standard general theory of relativity,
the GTR? version follows exactly the principle of least action, and the GTR™ version is characterized by the fact that the
acceleration field and pressure field are represented not as scalar fields but as vector fields. Equations for metric, equations
of motion, equations for fields, formulas for the energy and momentum, which follow from the Lagrangian formalism,
are presented for all versions of general relativity. An explanation is given of where dark energy comes from and what it
is whithin general relativity.

Keywords: Lagrangian formalism; integral of motion; vector field; general theory of relativity; covariant theory of gravitation.

1. Introduction not depend on the choice of reference frame and on the

The general relativity theory is one of the most developed choice of ~coordinate ~system. According to the
tensor theories of gravitation. In the general relativity, the correspondence principle, covariantly written equations in

metric tensor is considered as a characteristic of a special a gravitational field tending to zero should transform into
metric field that completely describes gravitational field. corresponding equations of special theory of relativity. In
Thus, the properties of the gravitational field and itsaction ~ MOSt situations, it is the gravitational field that makes the
are reduced to the geometry of spacetime and the metric maximum contribution to the curvature of spacetime.
field. If in a physical system it is necessary to take into More generally, and especially in alternative theories of
account the action of some other field, then this other field gravitation, ~ where gravitation ~is  determined
must make its contribution to the metric tensor and to the independently of the metric and several different fields act
metric field. Each subsequent field changes the metric simultaneously, the corre§pondence _prmuple should be
tensor and through it changes the observed action of other formulated as follows: in weak fields that make a
fields in the system. Thus, it turns out that all fields ”eg"g'b'e contrlbutlon to _the curvature of spacetime,
influence each other through the metric. covariantly written equations should pass into the
Due to inclusion of gravitational field in the metric field, corresponding equations of special relativity.
a feature appears in general theory of relativity in howthe S arule, the principle of general covariance is fulfilled if
principle of general covariance and the principle of the equations are written in terms of invariant scalar

correspondence are understood. The principle of general functions, four-vectors and four-tensors. To fulfill
covariance implies that physical equations should be conditions of the correspondence principle, the total mass

written in such a way that the form of these equations does of particles of a system is reduced and the system removed
from the sources of external gravitational fields so that
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non-gravitational forces prevail and behave in the same
way as in special theory of relativity. In this case, the
effects of spacetime curvature become insignificant and
gravitational phenomena in moving systems must comply
with Newton's law, taking into account the Lorentz
transformations for gravitational force.

Let there be covariant equations of some small-sized
physical system, and a reference frame is chosen in which
gravitational phenomena in the system disappear. In
general relativity, this situation leads to the principle of
equivalence of gravitational forces and inertial forces, and
to the equality of gravitational mass and inertial mass for
point-sized bodies.

However, in general case, the equivalence principle
cannot be considered as a single general principle for
every theory of gravitation, and especially in the case
when large bodies are considered. In large bodies, the
gravitational acceleration is different at each point and
directed in different directions. Therefore, locally inertial
reference frames, which can be represented at each point
of the body, will be accelerated relative to each other in
different directions. This means that for each other,
locally inertial reference frames are not inertial systems
and cannot be connected to each other by Lorentz
transformations. This situation does not meet the
conditions of the correspondence principle.

Since it is impossible to reduce the masses of large
systems, significant gravitational fields remain in such
systems. Therefore, the equivalence principle holds only
locally, in small regions of spacetime, but not for the
entire system as a whole. Therefore, the equality of
gravitational and inertial mass postulated for point bodies
cannot be considered accurate for large massive bodies. In
this case, the inertial mass of a system of interacting
particles is determined by the internal properties of the
system and is measured through acceleration of the center
of momentum of the system at a given force. The
gravitational mass of the system is found in another way,
through interaction of the system with a small test body of
known mass located at some distance from the system.
Due to difference in definition of these masses, the
supposed equality of gravitational and inertial masses of a
system, as well as definition of the inertial mass of the
system itself, remains a subject of discussion in general
relativity.

Unlike the general relativity, in covariant theory of
gravitation, which is a vector theory, gravitational
interaction is not completely reduced to the curvature of
spacetime. Moreover, even in ideal case, in flat
Minkowski spacetime, when the metric tensor does not
depend on time and coordinates, the gravitational force is
assumed to be the same independently existing physical
force as the electromagnetic force.

The covariant theory of gravitation proceeds from the
four-potential D, = [%,— Dj , which is described in

terms of the scalar potential i and the vector potential

D of gravitational field. The gravitational field tensor

D, is found using the four-curl

v,xD,=V D, -V D, =, which allows us to

determine the stress-energy tensor of gravitational field,
including the energy and energy flux of the field [1].

Instead, in general relativity, we proceed not from the
four-vector in the form of the four-potential, but from the

four-tensor, namely, from the metric tensor g, . The

uv
Christoffel symbols and curvature tensor are expressed in
terms of derivatives of the metric tensor with respect to
coordinates and time, with the help of which all the
gravitational effects are then specified.
In the case of a continuous distribution of matter, in many
works in general relativity difficulties arise due to the fact
that either a non-covariant Lagrangian is used, or non-
four-dimensional coordinates and momenta are used. In
order to overcome these difficulties and express the
Hamiltonian in covariant form, it is proposed in [2] to use
the DeDonder-Weyl formalism. In this case, four
additional axioms are taken into account.
Analysis of general relativity and comparison of it with
the theory of vector fields leads to the following. Direct

inclusion of the scalar pressure /7, into Lagrangian
density in general relativity is difficult, since there is no
direct relationship between the variation 0/ and other

variables. In this regard, there is no standard expression
for the Lagrangian density in the general relativity, from

which covariant expressions follow both for Z‘% in four-

dimensional form, and for the stress-energy tensor in
continuous matter. Instead, various forms of such
Lagrangian densities have been proposed [3-5].
Unfortunately, the relationships between gravitation and
geometry, as well as reduction of physics to mathematics,
create additional significant problems in general
relativity. Among the latest works aimed at solving these
problems, one can point to article [6], which analyses
methods for determining the energy and momentum of
gravitational field. An attempt is made to explain the
problem of cosmological constant and find the law of
conservation of the energy-momentum in general
relativity. In [7], the energy and momentum of a star were
estimated, using the model of matter as an ideal fluid in
which a scalar pressure field acts.

The main drawback of general relativity is that energy and
momentum of a system are usually not expressed by
standard formulas of Lagrangian formalism, but rather
volume integration of time components of stress-energy
tensor summed up with gravitational pseudotensor
components. It is believed that a four-dimensional
quantity (integral pseudovector) obtained in this way
makes it possible to find four-momentum of a system.
However, if one calculates an integral pseudovector in the
theory of vector fields, it turns out that such a
pseudovector describes distribution of energy and energy
fluxes of fields of the system and is not a four-vector [8].
Indeed, in a closed stationary system with a constant
metric not only the energy, momentum and angular
momentum are conserved, but also configuration of
spatial distribution of the field energy. Moreover, the
general relativity includes at least 7 different forms of
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gravitational pseudotensors [9], which leads to different
integral pseudovectors with noncoincident spatial
distributions of the fields’ energy and to the problem of
interpreting an integral pseudovector as a uniquely
defined integral of mation.

When building cosmological models in general relativity,
we are faced with a number of problems associated with
cosmological constant, singularities, and anomalies of
cosmic microwave background radiation, as well as with
the need to introduce concepts such as dark matter, and
dark energy. To solve these problems, such works appear,
in which, among other things, vector-tensor theories of
gravitation are considered [10-16], and the prospects of
these theories for future research are shown. This may
also apply to covariant theory of gravitation, which is a
vector theory. In particular, in [17] the metric outside a
massive body was calculated, which characterizes
spacetime within the framework of covariant theory of
gravitation, and in [18] the metric inside the body was
found. Similar calculations can be used to determine the
metric in cosmology. In covariant theory of gravitation,
the Pioneer effect is explained, which should not exist
according to general relativity [19].

A physical system, consisting of particles with the same
charge-to-mass ratio, cannot radiate in a dipole manner.
The same applies to radiation of gravitational waves by a
system of neutral massive particles. In covariant theory of
gravitation, gravitational dipole radiation is possible from
any accelerated mass, however, the total dipole radiation
from a closed physical system is close to zero due to
mutual cancellation of oppositely directed radiation from
the system’s parts. The quadrupole radiation remains the
same as is in the general relativity. Thus, both the
covariant theory of gravitation and the general relativity
predict quadrupole-type gravitational waves from
massive cosmic objects; these waves were recently
discovered and presented in [20-21].

As a rule, when calculating using the general relativity,
pressure in matter is considered as a scalar field. In the
simplest case of stationary matter, it is assumed that the

scalar isotropic pressure /7 does not influence the

energy density in time component of stress-energy tensor
of matter. In contrast, when calculating using covariant
theory of gravitation, pressure is considered as a vector
field, so that the energy density turns out to be dependent
on the scalar potential of pressure field [22]. A similar
situation arises in relation to acceleration field, which in
general relativity is represented as a scalar field. Thus, the
Lagrangian of general relativity with scalar fields in
matter differs significantly from the Lagrangian for vector
fields and covariant theory of gravitation.

In [23] it was shown how vector fields are combined into
a single general field. In the concept of vector fields, it
was possible to find formulas for kinetic energy and for
distribution of particle velocities inside a relativistic
uniform system [24], as well as to derive the generalized
virial integral theorem [25], the Navier—Stokes equation
[22], the equations of motion of matter particles [26],
expressions for covariant additive integrals of motion
[27], derive the generalized Poynting theorem and give a

solution to the 4/3 problem [28], estimate the parameters
of planets and stars [29], prove the integral field theorem
[30], find the generalized four-momentum [31] and four-
momentum of a physical system [8] in curved space-time
in continuously distributed matter.

The purpose of this work is to use the Lagrangian
formalism [32] to analyze the general relativity, indicating
the difficulties that arise from the point of view of
theoretical approach. In particular, the well-known
problem of general relativity with determining the mass,
energy and momentum of a system in gravitational field
is solved by using auxiliary quantities that represent the
gravitational field as a vector field.

The principle of least action makes it possible to study
physical systems and find equations of motion not only in
the Lagrangian, but also in the Hamiltonian formulation
[33], [34]. However, the Lagrangian formulation is
considered more fundamental [35], while the well-known
Lagrangian for vector fields is not difficult to adapt for
general relativity. This makes it quite easy to compare the
results obtained in general relativity and in the theory of
vector fields.

In our calculations, we will everywhere use the metric
signature of the form (+,——,-).

2. Methods

Let us consider the particulars of application of
Lagrangian formalism in general relativity. Having
studied a great number of papers, we have not ever found
a Lagrangian density, which allows us to uniquely express
the scalar isotropic pressure in a four-dimensional form
while providing the standard stress-energy tensor of the
general relativity for continuous matter. As a result, we

had to construct such a Lagrangian density
L=L,+L, by ourselves, which consisted of two
parts
L, =-A, j*‘—cJJ“ngW
_K (J/J’gluv):

1, 1 (1)
:_EPOqU ¢+Ep0qu A-v—
cJJ“J”gW -K@J“,9,)-
L :—LFWF”chR —-2ckA=

44,
,(2)

—iFﬂvFﬂg"”g“+ckag”V—20kA
0

where A :(ﬂ,—A] is the four-potential of

i
C
electromagnetic field, given by the scalar potential ¢ and

the vector potential A of this field, ]* :poqu“ is the

charge four-current, Pogq is invariant charge density in
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the particle’s comoving reference frame, u“ is the four-

velocity of a point particle or element of matter, u’is time
component of four-velocity, Vis three-dimensional
velocity of a particle or element of matter, Cis the speed
of light, J* = p,U”is the mass four-current, p, is
invariant mass density in the particle’s comoving
u - .
K(3*,9,,)is scalar function

reference  frame,

depending on the four-current J* and the metric tensor

9, Ly s the magnetic constant,

F.=V,A -V,A =0,A -0,A, is the electromagnetic

tensor, | __ ¢ __ 1 where % is Einstein's
167GB  2cx

gravitational constant, R, is the Ricci tensor, R is the

scalar curvature, A is the cosmological constant.

The Lagrangian density £ =L, + £, with components
Ep (1) and £, (2) has a slight difference from the

standard Lagrangian density of general relativity in [36-
38], taking into account matter and electromagnetic field.
This difference lies only in the fact that a scalar function

K(J*,9,,) is introduced in (1). Given the function

K(J4, gﬂv) , based on the principle of least action, those

terms appear in equation for the metric and in equation of
motion of matter that can be associated with scalar

pressure E) and with the pressure force in matter.

The four-currents j* and J* in (1) are four -vectors, as

defined in [36-37], where the variations of these four -
currents, necessary in the principle of least action, are also
calculated. In this case, the continuity equations have the

fom V,j*=0, V,J*=0. Covariant expressions

for four-currents  J* = pp,U“ and J* = pyu”

correspond exactly to four-vector algebra, since they are
obtained by multiplying the invariant scalars Poq and o,

by the four-velocity U* .
A feature of Ep (2) is the direct dependence on the four-

currents j* and J#, whereas in L, (2) there is no such

dependence. Note that the term —C,/J* J"g,, in (@),

when integrated over the invariant four-volume in the
action function and with subsequent variation, gives the
same result in the principle of least action as the

in V2
corresponding term —(p’ pﬂ) in [37].

In (1). it is essential that the mass four-current J* in the

radical /% J",, should always be used in the form

of a contravariant four-vector, and the metric tensor

should be taken as a doubly covariant tensor g, . It is

due to this choice that the stress-energy tensor of matter
in the general relativity is obtained with a positive sign.
Next, we will need the Lagrangian density £ = L + L,

for four vector fields according to [1] and [22]

£,=-A,j*-D,1"-U, " ~7,1"=

P u
40 —Pog P+ Pog AV —poy +
:? PeD-V=—pyd+p,U-v—
P+ poI-v
1 c’

—__F F"4 D D
4 4, ™ 162G

2

2

C
u, u*———fF "+ : 3
167zn 1670 " ®

ckR-2ckA

C
gravitational field, described in terms of the scalar
potential {7 and the vector potential D within the
framework of covariant theory of gravitation,

where Dﬂ:(z,—Dj is the four-potential of

3
U, :(_’_Uj is the four-potential of acceleration

C
field, where 9 and U denote the scalar and vector
potentials, respectively, 7, =[£,—Hj is the four-
C

potential of pressure field, consisting of the
scalar potential g and the vector potential IT,
G s the gravitational constant,
@uV:V#DV—VvDﬂzaﬂDV—OVD# is the
gravitational tensor, 77 is the acceleration field coefficient,
u,=v,u -vu =0U -0U, is the
acceleration tensor, calculated as the four-curl of the four-
potential of acceleration field, o is the pressure field
coefficient,

f,=V,n,-V,n,=0,7,-0,7x, is the

pressure field tensor.
Similar to electromagnetic field equations, the
gravitational field equations connect the gravitational

tensor QDW with the mass four-current J * and allow one

to calculate the components of gravitational tensor [1].
The equation for calculating the four-potential Dﬂ has

the following form [26]

Az G
B _ N aYid
VﬂV D#— —02 J# D Rﬁﬂ,
where Rﬂﬂ is the Ricci tensor.
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According to (1-2), the electromagnetic field is fully taken
into account in the Lagrangian density as a vector field,
and the gravitational field manifests itself exclusively
through the metric tensor g, ; therefore, it is defined as

a tensor field. The acceleration field has the energy

density of C,/J“J"g,, =p,c” = pouu* =u,J"

and is represented as a scalar field. This is evident from
the fact that in the Lagrangian density (1-2) there is no
2

additional tensor invariant — u, u*", associated

167zn *

with the acceleration field, while in the Lagrangian
density for vector fields (3) this tensor invariant is present.
One of the reasons that the electromagnetic field is
represented in Lagrangian densities (1-3) is that in both
the covariant theory of gravity and the general theory of
relativity, the terms with the electromagnetic field have
the same form. On the other hand, electromagnetic fields
are of great importance in the physics of relativistic
charged particles and in the astrophysics of stars,
especially for white dwarfs and neutron stars. Thus, the
results obtained in this work can be useful in the analysis
of phenomena involving electromagnetic fields.

Note that the four-velocity u, is a special and limiting
case of the four-potential U p of acceleration field, when
each particle is considered as a point solid body moving

by inertia. The expression C, /J #J%g,, =u,d"in()

in its meaning corresponds to the term UﬂJ” in the

Lagrangian density (3) for vector fields. Thus. the vector
acceleration field in the Lagrangian density (3) for vector
fields includes the scalar acceleration field of general
relativity in (1) as a special case.

The mass density p,, charge density Pog and scalar

- /‘ - - . ..
function K(J*,g,,) in (1) are invariant quantities,
since they are given in the reference frame that comoves
with the matter element under consideration. This means,

1
for example, that the mass density 0, =—U,J* is
c
expressed in terms of the tensor invariant and therefore is
a scalar function. Although in each reference frame, the
four-current J* and the four-velocity u, of a matter

element have their own values, the tensor invariant of
these quantities always defines the mass density as equal

to the mass density o0, in the comoving reference frame.
A similar reasoning applies to the function K(J*,g,,).

Our goal will be to find the equation for the metric in
general relativity, to derive the formulas for the energy
and momentum, to obtain the equation of motion and to

relate the function K(J“,g,,) with the scalar isotropic

pressure /7 in matter.

First, we consider the equation for the metric. Since four-
currents j* and J* , four-potential A, and the metric
tensor g, are independent variables when varied,

variation Ep (1) with respect to the metric tensor g,.
can be written as follows

cJ“J"s9, oK

(6c,) =- —— g, =

p g v HV

uv 2 H ag v

1 W Jang g (4)
—=puru’ o -——90

2P0 T T, e

Sincein (4) 69, =—0,,, gﬂvé'g“ﬂ,the variation £,

with respect to the metric tensor g“ﬂ and the
corresponding functional derivative are equal to

(5£p )gaﬂ :%pouau 69 “ 4

oK

= 59

agﬂv ga‘ugﬂv g

oL, _1 u,u +—aK 9,.9 (5)
ag,uv 2100 uov agaﬁ pua Ivp -

For variation £, (2) with respect to the metric tensor

g“ﬁ and for the corresponding functional derivative, we
can write similarly [36], [38]
1
6L ) . =—F, F“89" +
( L‘T )g H 2# va Y2

0
ckR, 69"
8‘Cf 1 a
=—F,, F%+ckR,,. (6)
o9 2u,
Taking (5-6) into account, we find the derivative of the
entire Lagrangian density £ =L, + £, with respect to

the metric tensor in the general relativity

oL 1
ag v _Epouyuv +@gyagvﬂ +
1 )

a
_Zy o F % TCKR
0
According to the principle of least action, to find the
equations of motion of particles and fields, variation of the

[
action S = j L dt should be equated to zero
4
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t, 1
&S =[sLdt = EpoU,,Uﬁ@gwgvﬁ
t
t : 8 1
f — 14y 2dy 3 _ —F,_ F° e k R (14)
!(\!5(5«/ g)dx dx “dx ]dt—o 2u, "
In (8) there is the Lagrangian L = J.ﬁﬂ/—g dx'dx*dx® 1 Ay g +Cy[J “37 9,5 +K+
= —— g v 1 .
, found by integrating the Lagrangian density £ over the 27" —F, sF7—CckR+2ckA
volume  of  the Ay "

moving system. Since

04—0 :—%J—g 9,,09", from (8) follows the

expression

t
55 :H5L\/§dx Tdx 2dx 3dt —
t,V

. ()
ltZ nv 1 2 3 _

Etj\;[ﬁgwég J—g dx dx 2dx 3dt =0
The metric tensor g*" is included in the set of

independent variables by which the Lagrangian density is
varied. We can assume that the Lagrangian density

L=L,+L; in (1-2) depends on the following
variables
L=L(]*3"A,F,.9"). (10)
Hence,
se=L55jn 1 05
9 (11)
ﬁéA _6/5 5F 6£ 0g*”
8A 8F Gg n
Substltuting (11) |nto (9) gives:
oL—- L‘, 9,99 ’”j
5 = j [ ( ! dt =
WY [-g dx ldx 2dx 3
a_ﬁ o)+ oc 0" +
o) " oJ*
12)
y | £ oA, + oL oF,, +
:_” 8A# # 8FW ! dt =0.
t, VvV
' oL 1
+ -=L 69"
(ag nv 2 gﬁ”j g |

J—g dx 'dx %dx ®
The equation for metric follows from the equality to zero
the last term in square bracket in (12)

oL 1
-—=L =0. 13
og* 2 v &)

Substituting (1-2) and (7) into (13) gives the following

Let us write the standard expression for stress-energy
tensor WW of electromagnetic field, as well as the

expression for stress-energy tensor 7z of matter
7%

considering the scalar pressure 75 which is used in
general relativity in the limit of continuous matter:

1( 1
W, =—|F F“+=-g, F F“ﬂj. (15)
u o u 4> s
P,
T,uv :(po +C_gju; uv _E)g,uv' (16)

Substituting (15-16) into (14) taking into account the

equality C/J“ Jﬁgaﬂ :poc2 gives

kR, -ckRg,, =
—g/w(Aﬂ i’ +pc?+P+K +chA) (17)

oK P,
_Zﬁgwgvﬂ +C—2u#uv -7, W .
We apply contraction of equation (17) by multiplying by
g“" and take into account expression 7, (16), as well
as the equalities g, 0 =4, g*u,u, =c’,
9“'wW,, =0
— 2 is
2ckR =5p,c"+4A, " +
(18)

4K +2ﬁgaﬁ+8ckA '
g

ap
In Sections 3.1 and 3.2 we turn to equations (17-18) in
connection with the problem of energy gauging and
definition of the meaning of cosmological constant A .
According to [8], the energy of a physical system is
written as follows

1 2
Iav[ J vu®,/—gdx 'dx “dx®
'[(Lp+4 )y/-g dxdx *dx * + . (19)
\%

\ oL,
vt
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In (19) Vv, is the velocity of a particle or element of
matter of the system with number n, the quantity

L, =I£f J-g dx'dx’dx® is the Lagrangian
\

associated with the Lagrangian density £, . Substituting
[,p (1) and £, (2) into (19), taking into account the

equality C,/J“ Jﬂgaﬁ, = p,C° we find:

1
P Ep0q¢+
—— +
ov| p,c’ +K
E=| u’
"l1o(puA)
vu®/—gdx'dx “dx ®
1
EPOqU°<0+poCZ+K
+f +iFﬂvFﬂV—ckR+2ckA (20)
v 4,

-9 dx ‘dx %dx ®
N AL

v - .

+Z[ ) avnj

n=1
If the electromagnetic field potentials @ and A depend
on the velocity, then the terms with partial derivatives

0 . .
— in (20) will not be equal to zero. In some cases, we
V

can assume that the sum p,c®+ K does not directly
depend on the particle velocity V; however, the time

component U’ of the particles’ four-velocity in the
general case depends on the velocity V. Indeed, in the
limit of the special theory of relativity
C
0

J1-v?/c?

According to [8], the relativistic momentum of a system
is expressed by the formula:

o(L
P=|—|—=2 |u®/—qgdx'dx2dx?®
Talie s

& oL
+ —_—
n OV,
Substitution into (21) £, (1) and £, (2) taking into

account the equality C, /J “Jr Uop = p002 gives

(1)

1
E:OOq A-

o1 L pCt+K ),
P:J' ovlcPea? u®
\Y
19(py A) N (22)
ov

| C
u®y/—g dx 'dx “dx

N oL,
+) —

n=1 aVn
To obtain the equation of particles’ motion, it is necessary
to calculate the action variation in (9), which contains
only variations of the four-currents, and to equate this
variation to zero. Consequently, in (9) it is necessary to
use only the first integral on the right side

19}
35S, = ”5/3,/—9 dx'dx’dx*dt = 0. (23)
\Y

4

The variation of Lagrangian density £ =L, + £, with
respect to four-currents reduces to the variation of Llp,
since £, (2) does not depend on the four-currents.
Taking into account (1) for variation Cp over four
currents we find

5£p =-A P oj"—

c(63#3vg,,+383"g,,) oK

— T 8) = (24)
2“#3‘/9#‘/ oJ*
. oK
A, 81" ~U,63" =53

According to [36], the variations of four-currents are
equal to

Sj* =V, (j7ox - j ox7)=
aa[ﬁ(j"dx”—j”éx“)]
814 =V (J°ox*=1"5x7)=
ﬁag[ﬁ(\]"éx”—\]*’éx“)]'

Let's substitute into (24) & j* and dJ* from (25), and
then substitute 5£p into (23) instead of 6L

<1

(25)
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1
H

t ¥ +
5, = (17ox" =17 0x7) dt =0. (26)
RO o2
J ox*—=J"ox° )

«/—g dx ‘dx %dx
Acting as in [36], a variation of the action and the equation
of motion were found in Appendix A in (A11)

1°F, +J“V6(ul+aK j
Loay

5S _” “anf dt =0.

“ J—g dx 'dx %dx

- oK e, OK .
J Va(u#+ sz \Y% -J°F,,. @7

oJ” *03°
In (27), taking into account expression for the four-current
J? = p,u?, we write the equation of motion in terms of

_ R D
operator of proper-time-derivative U VG = D—
T
D oK oK .
—|u +—[=J°V —j°F_ . (28)
poDr(” aJﬂj woge d Teu
In general relativity the stress-energy  tensor

T, =7, +W,, of matter with pressure R isused. In
this case, the equation of motion is found by taking the
= 0. Considering the
(16), using the

electromagnetic field

divergence of this tensor: VVT#V
(15) and for Ty
known equation for

V'W,, = j7

expressions for W,

G#, we express the equation of motion

V'T,, =0 interms of the pressure

V{(po+§juﬂuv}zvyﬂg—j"FW. (29)

Equation (29) is the equation of motion in general

relativity for charged matter in scalar pressure field [7% ,
in electromagnetic field with the tensor Fo_# and in

gravitational field, defined in terms of the metric tensor.
In derivation of equation of motion (27), we used the

variations & j* and 0J* from (25). According to [36],

the expressions for these variations are valid on the
condition that the continuity equations hold for the four-

currents: V,J* =0,V J*=0. Using the continuity

equation V,J“ =0, we substitute J7F, , from ((29)

into (27). This leads to the following
v, K oy K
oJ* #0d°

:C%VV(Z%%U#UV)—V#[P;)

(30)

If we multiply (30) by U*, the left side in (30), taking into

account the equalites J7 = p,u?, J* = p,u”,
vanishes
a7y, 5 _urgey, X
31
=u”J?V,_ oK -u’J*v,_ oK =0
oJ* oJ*

For the right side of (30) after multiplication by U“ taking
into account the equalitiesu” V" u,=0, u,u’= c?
the following is obtained

%u”vv(}%uﬂuv)—u”vyﬂ%

Cc

1
=—u‘u u V" F+
C H

C%E,uﬂvv(u#uv)—u"vﬁ./ﬁf) =

(32)
v By gy

=u,V" Pt UtV (u,u,)

UtV P =

0 4\ TV _ \4
U (uu,)=RAV',.
From (30-32) it follows that the equations of motion (27)

and (29) are consistent provided that in (32) V'u, =0.

Taking into account the continuity equation

' (po uv) =0, we can see that in the system under
d

consideration the condition U, V" p, = 2 0 must

be satisfied, that is, the mass density o, must be constant
in the comoving reference frame of each matter element.
This means that p, should not depend on the time and

coordinates within each matter element.

These restrictions on the consistency of equations of
motion (27) and (29) show that equation (29) in the
general case does not represent a full description of
motion of real matter. The same applies to the stress-
energy tensor (16), which in this case must contain

additional specifying terms.
Equation (30) can be considered an equation for
determining the value of K. Thus, provided that
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V,p, =0, the particular solution of (30) is

B,

=——————=[F,. To prove this, we must take

PoC
P«/J”JV
Kzo—g”v, the condition

PoC
e 0 and the following relations in (30)

oK 2KRJ'g, Ru,

3" 2p,cJ3407g,  AC

into account

u“viu, =0, v, J7=0. (33)

The condition V , o, =0 is equivalent to the condition
0p, _ :

0, P = =0, which corresponds to matter with
ox*

uniform density, for example, an incompressible liquid or
a body densely composed of identical solid particles of
constant mass density.

For free matter without an electromagnetic field and
without considering the pressure, it follows from (29)

V”(pou#uv):uﬂvv\]v +

J V" DU# 0
u = =
Ty

Du,
a”:D—T:U Vguﬂ:

o A o
u’o,u, I, u,u’=

ou
du
H s o _
. -Ir;uu®=0

Du”
a’ = =u’V_u* =

Dr
uso_u*+T* u‘u’ = . (34)
du”

dr
Equations (34) for the covariant four-acceleration a, and

+T# u*u® =0

the contravariant acceleration @" show that the free
matter, in the absence of external fields and without taking
into account the internal pressure, moves with zero four-
acceleration along the so-called geodesic line. This means
that the gravitational field changes synchronously with
changing metric tensor in such a way that the small test
particles move in the same way regardless of their mass,
when all other conditions being equal. However, in the
presence of external nongravitational fields, taking into
account the pressure and sufficiently large test particles,
the equations (34) will no longer hold true.

The latter follows from the fact that the metric inside a test
particle arises not only from the action of external
gravitational field, in which the particle is moving but also

from the particle’s own gravitational field. Gravitation
inevitably changes the internal pressure 17’6 in matter, the

pressure gradients create internal forces, and the four-
acceleration becomes nonzero. Equations (34) are
equations of motion for a single point particle, but not for
real matter, for which (27) should be used together with
(30) to determine the relationship of the function

K(J*,9,,) with pressure 7.

The presence of an electromagnetic field manifests itself
in general relativity in two ways — on the one hand, the
metric tensor and corresponding gravitational field
change; on the other hand, the charged nparticles
experience the Lorentz force and generate
electromagnetic radiation. Thus, in the general case, the
motions of neutral and charged particles differ
significantly from each other.

The results obtained above will not change, if we use as
L, the following expression

L,=-A, j"-

p =
Cp()\’u’uuvgyv _K(‘]’u7g,uv)=

1 o 1 0
:_Equu ¢+Ep0qu A-v-—

CIOO \’u#uvgyv _K (‘] ,u1gyv)'
In (35) the quantity Cpm/u” u”g,, isused instead of
C, /J #J"g,, in(1); moreover, the result of variation in

the action remains the same.

(35)

3. Results

3.1. GTR! version

In this Section we consider the GTR? version, which is the
closest version to standard general relativity. In the
analysis of GTR? we rely on the results of Section 2,
obtained from the principle of least action.

The equation for the metric in general relativity, which

contains the cosmological constant Ay, has the
following form [36-39]

1 1
Ryv_Engv_‘_AGngv: 2C_k uv
: (36)
872G
== T, =z, W, )

where the tensor T/N =7, +WW is the sum of stress-

energy tensor (16) of matter and stress-energy tensor (15)
3
c 1

167G 2

It should be noted that the left side of (36) consists of
geometric quantities associated with the spacetime metric,
and physical quantities are concentrated in the right side

of electromagnetic field, k = —
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o 87G
of (36). The coefficient >z = —
C

in front of stress-

energy tensor TW in (36) was chosen so that the general

relativity in the weak field limit reproduces Newton's law
of gravitation. However, this eliminates in advance those
small additives that may be present in the value of
coefficient 2¢ . This means that in fact the coefficient ¢
should be considered an unknown quantity, which should
be derived from the general relativity itself and from
experiment, without relying on a less accurate Newton
theory. In this regard, in the theory of vector fields, which
will be discussed in Section 3.4, it is assumed that

87Gp _ .
» =——"—, where [ is a constant coefficient to be
C
determined.

Let us equate the identical terms in (36) and (17) and
multiply the result by g“". Hence it follows that both
equations coincide under the following condition
H 2
8ckAgy =4A, [ +4p,c° +
oK . 37
3R +4K +2——g,,+8CkA 37
09,5

We apply contraction of equation (36) by multiplying by
g“" and by taking into account the tensor expressions
(15-16)
2ckR =8CkAg, + p,C° —3P,. (38)
Substitution of 8C kAGR from (37) into ((38) allows us
to express the scalar curvature R inside matter of the
physical system in terms of A :
2ckR =5p,c*+4A, j’

oK . 39
+4K +2——¢g,, +8CkA 9

09,4
Equation (39) coincides with (18). We substitute Ay
from (38) into (36):

1 87G
RyV_ZRg,uV: C4 T/lv
272G ' (40)
- (pOCZ_3‘éU()))g,uV

By solving equation (40), we can calculate the metric
tensor inside matter and determine scalar curvature R .
Next, with the known value R , we find Agg from (38).

If equation (30) is solved and the function K is
determined, then from (39) we obtain the expression for
A

Let us consider the situation outside matter. In this case,
according to (37), the following equality holds true:

Agg = . Then, theequality R =4A; = 4A follows

from (38). The equation for the metric (36), as well as
equation (17), take the following form:

Irg, =Gy (41)

v 4 uv C4 uv

Rﬂ

In (41) the stress-energy tensor Wﬂv of electromagnetic

field changes the spacetime curvature outside matter. The
solution of equations (40-41) is a dependence of the
metric tensor on coordinates and time, while at the points
on the surface surrounding matter, the metric tensor
components in both equations, due to their equality, must
coincide with each other. This allows us to determine part
of the unknown constants in solutions for the metric tensor
inside and outside matter.

We now turn to the formula for the system’s energy (20)

and we substitute A with R with the help of (39).

. 1 1

Considering that Aﬂ J“= —poquogo——poqqu -V,
C C

we find the following for the energy inside matter

1

= +

—9q, ,+
4 29 Jas
f L el (42)
Vdy, 2

J—g dx “dx %dx ®
NGNS

+y v, — |
Z( " 8vnj

n=1

Outside matter, according to (39), R =4A , so that the
energy (20) is written as follows:

R
E, = 4 2
' J—gdx dx dx ® . (43)
N oL,
+y v -——

To determine the system’s energy with the help of (42-
43), we need to know the dependence of the scalar
curvature R on the coordinates and time; that is, first, we
need to solve equations for the metrics (40-41). When
calculating the total relativistic energy of a physical
system, it is necessary to sum up the energies (42) and

(43): E=E, +E,. Since (43) can be obtained from (42)



IJPR Vol. 25, No. 3

Comparison of tensor and vector theories of gravitation 71

at py=0, K=0and p,, =0, thatis, in the absence
of matter, (42) is the general formula for the energy in
standard general relativity.
The presence of the scalar curvature R in the formulas
for energy (42-43) is necessary to take into account
contribution of gravitational energy to the total system’s
energy with the help of metric.
The relativistic momentum P of a system, according to
(22), depends on the scalar curvature R and the
N oL,
cosmological constant A only through the sum Z—
n=1 OV,
. After calculating the energy E and the momentum P,
it is possible to determine the system’s four-momentum

o E
of the system, defined in [8] as P# =| —,—P|. The
C

equation for determining the motion of matter in GTR?is
equation (29).

3.2. GTR? version

In this Section we proceed not from equation (36) for the
metric of standard general relativity, but rather from the
derivation of general relativity with the help of
Lagrangian formalism in Section 2. This will lead us to a
new version of general relativity, which we denote GTR?.
Let us express A from (18) and Ty from (16), and

substitute them into (17)
kR, -ckRg, =

uv
1 1 1 oK
=—g, | =CkR-=p,c?—=—r Y
g,uv 2 4p0 Zagaﬂ gaﬁ' ( )
oK
_zagwgvﬁ—pouﬂuv—ww.

Transposing the term containing R from the right-hand

side (44) to the left-hand side, taking into account the
3

coefficient k=- , we obtain equation for the

167G

metric
1
R, _ZR 9, =

7

272G 2 oK
=——=| PC”+2
c o9, 5

(45)

gaﬂ]gyv_'_

872G oK
— 2
ag ap

C gyagv/}+p0uyuv+w,uvj'

The left-hand side of (44) contains the Einstein tensor
1 .

G, =R, _ERg”V multiplied by 2CK. The well-

known property of this tensor is that its divergence is
equal to zero: V"G, =0. Consequently, the

divergence of the right-hand side of (44) must also be
equal to zero

1 1 1 oK

V |ZckR-Zpc?-=— +

”[2 470 2agaﬁg“ﬂJ

2g,,v, 2 4 @)
2.,

V' (pou,u, )+V'W,, =0

In (46) we used expression g”‘,V" = V# and the fact

that under covariant differentiation the metric tensor
behaves as a constant. We substitute the equation of
motion (27) into (46) and take into account the equality

for electromagnetic field VW, =j°F_, the

continuity equation V" (o, U,)=0 and the equality
2p,u,Vu, =23V _u,

1, &K
CkVﬂR :VA(EIOOC +@gaﬁJ—

oK
49 WV ¥
g ap
oK _2j°v oK -
oJ” “oJe
Now we take the covariant derivative V" of both sides of

(17) and take into account the fact that for the
cosmological constant it must be

\VAd (Agw ) =V ,A =0. Using in the right-hand side

+ 47)

21°V,

of (17) z,,, from (16) and equality V'W,, = J°F,,.
we find
Vﬂ(Aﬁ i’ +pct+K )+

2ngﬁ[ K J+ . (a8)

09,4
V' (pou,u,)+j°F,, =0

A comparison of (48) with equation of motion (27) gives
V/,(Aﬁ i +p,c?+K )+

oK . 49
9,.V, _ (49)
agaﬁ
jov, K _goy K
ol “8J°

Multiplication (49) by the four-velocity U* leads to the
following
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u i B 2
u Vﬂ(Aﬁ J7+pC +K)
oK . (50)
+2u V,——=0
a ' p a
gaﬂ
We can assume that (45), (47) and (49-50) are the system
of equations that allows us to simultaneously find the
function K and the metric tensor g, ,. After K and

g, arefound, we can use them in the equation of motion

(7).

If we express A from (18) and substitute it into (20), we
obtain an expression coinciding with the energy (42) in
the GTR! version. Similarly, the expression for the
momentum (22) is remain unchanged.

Outside matter, it follows from (18) that R =4A , and
the equation for metric (44) becomes the same as that in
(41) in the GTR! version. In this case, according to (47),
V#R =8#R =0, and we can assume that the scalar

curvature R is a constant. However, inside matter, the
scalar curvature is a scalar function of the coordinates and
time.

3.3. Discussion of GTR! and GTR? versions
Let's first consider the GTR* version. By definition, the
cosmological constant A does not depend on time or

coordinates, which are taken into account during variation
in the principle of least action. It follows from (37) that

the quantity A is equal to the cosmological constant

A only outside matter. However, inside matter, AGR is

no longer constant and becomes a certain scalar function,
depending on the coordinates and time, such that
VﬂAGR:&O. The latter also applies to the scalar

curvature R, according to (38).
We rewrite the equation for the metric (40) in terms of the

1
Einstein tensor G*" =R*"—=Rg*", for which

1
purpose we subtract the quantity ZRg 4 from both

parts of (40), taking into account the coefficient

4
2ck =— ¢
87G

kG, =

(51)

1 1 2,3 .
_(EC kR _Zpoc +ZEDO)Q/—!V _T,l”’

Let us take the covariant derivative V" of both sides of
(51). The covariant derivative of the left-hand side will be
equal to zero, since V" G,, =0 due to the property of

the Einstein tensor. On the other hand, the covariant
derivative of stress-energy tensor is equal to zero,

VVTW =0, which leads to equation of motion (29).

Taking into account the additivity of covariant derivative
with respect to the sum of tensors, for remaining terms on
the right-hand side (51) we have:

V., (2ckR—-p,¢* +3P,)=0. (52)

The equation (52) represents an additional limitation on
the value of the scalar curvature R inside matter in GTR?

version and relatess R to the matter’s density and
pressure.

In standard general relativity it is assumed that the
equation for metric (36) is the primary equation.
However, we agree with the validity of (36) only in the
case of uncharged dust-like matter in the absence of
pressure between the particles and at constant mass

density o, , when the stress-energy tensor of matter has
;o . .
the form T, =PoU,U, . In this case, according to (37),

2ckAgr = p,C* +2CkA , and the equation of motion

VVZ';W =0 follows from the vanishing of divergence of

the right-hand side of (36); this equation coincides with
the equation of motion (34) of the free matter.

In the case of continuously distributed matter with scalar
pressure, we could not find a Lagrangian density that
would give, as a result of applying the principle of least
action, equation (36) for the metric in general relativity,
while fulfilling two conditions: 1) The stress-energy

)
tensor 7, = ,00+C—2 uu,—F#g, must be

present in (36); 2) AGR must not be a scalar function, but

rather a constant value and a real cosmological constant.
The analysis of the literature gives the impression that the

)
stress-energy tensor 7, =| o, +C—2 uu,—#4g,,

is inserted into the equation for the metric (36)
“manually”, simply by analogy with the case of uncharged
dust-like matter, without accurate derivation from the
principle of least action.

To be more precise, we will remember that in
hydrodynamics, the following Lagrangian density is
sometimes used

‘Cm = _p0C2 -
tap . (53)
2
po_[ S+ By =—pyc” = pll
0 0
4B B .
—— ——is the potential
o Po FPo
energy of a fluid elastic compression, which refers to the

In [36], the quantity I1=

N o dIT . .
mass unit, while /, = py —— . In [40] an isentropic
dp,
perfect fluid was considered, and instead of I, a similar

quantity e=T1/Cc* was used. Variation in the
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Lagrangian density Em (53) gives the stress-energy
tensor

yo) tdp
T, = p0+—§j—° uu,-~g, (54)

C % P
and the equation of motion

F
pO d EDO v,

(p0+c—zj‘— u vV,

o Po (55)

=V P

wu=0

U#UV V
——% V1
C
If in (54-55) we assume that the mass density o, does
not depend on the pressure E) take into account the
continuity equation V" (ppu,)=V"J, =0 and

condition V"u, =0, then (54-55) would coincide,

respectively, with the stress-energy tensor (16) and
equation of motion (29), taken without regard to
electromagnetic field. Thus, for the Lagrangian density

L., (53) to actually lead to the stress-energy tensor and

the equation of motion required in general relativity, it is
necessary to satisfy the condition of constant mass density

in the foom V"p, =0. In the general case, when

V¥ p, #0, the Lagrangian density Em cannot be the

Lagrangian density of general relativity.
To understand this problem, we constructed Lagrangian
density £ =L, +L; (1-2) and introduced the function

K(J“, gﬂv) , which leads to the emergence of pressure

force in matter and is present in the equation of motion.
Now, suppose that the cosmological constant A is still
a constant value in general relativity. Then, (37) is an
equation of the state of matter, since it relates, with an
accuracy of up to a constant, the mass density, the
pressure, and the energy density of electromagnetic
current.

The equation of motion (29), which is a consequence of

equation V'T =0, is consistent with equation of
motion (27), which is derived from the principle of least

d
action, only when V'u,6 =0, ﬁ=0, which is
T
dp, _ 9p,

equivalent to the relation =—+V-Vp,=0.
dt ot ’

In this case the function K(J*, gﬂv) becomes equal to

P, J3*3"
the pressure /4: K :0—g,uv = . With this

PoC

in mind, we take the derivative and substitute it

a9 v
into (37):

oK PJ"" P .,
= = 2U u s
agw ZPOC\/JﬂngW 2C

pOCZ+Ap P+ B =

2cKk Az —2C K A =const

The last equality in (56), as an equation of state of matter,
cannot be considered the general expression, which limits
the applicability of general relativity approach with its
equation for metric (36), stress-energy tensor of matter
(16), and equation of motion (29).

As a result, we are faced with a number of paradoxical
conclusions about general relativity, the validity of which
appears to be questionable and which we suggest taking

on faith. For example, let us assume that in (36) Ay isa

(56)

constant value and that
P . .
T =| P +C—2 uu,—#g,,, as is assumed in

general relativity in (16). Then, the divergence of the left-
hand side of (36) is zero, and the equality to zero of
divergence of the right-hand side (36) in form

VVTW =0 gives us equation (29), which can be written
as follows

P
(Po +C—§juvvvuﬂ +u, V"
P (57)
K"”c_?j”v}WﬁrFfo

By multiplying (57) by the four-velocity u* and taking
. Hea o HX\7V —
into account that |7 = pyU”, U \Y% u,= 0,
u“u,= c’, and
JOF, uf=py ufF u® =

H o _ o H_
—pp U F, U7 ==—pyu°F, u“=0
as a consequence of the antisymmetry of tensor FM ,then
we obtain the following result:

V' (poC® + B)u, |-uv, B =0 (58)
The equation (58) can be simplified by permutation and
substitution of the indices:

VV[(,ooc2 +P0)UV:| :Vﬂ[(,ooc2 +177§,)u”]. This

gives us the following:
P,
Vﬂ(pou”)+c—gvﬂu"=0. (59)

The expression (59) is considered in general relativity as
a relativistic definition of continuity equation. However,
(59) contradicts the continuity equation in the form

\P (pou") =0, which was used for the action variation

and finding equation of motion (27). In addition, as
mentioned above, for the consistency of equations (27)
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and (29); the following conditions should be met:
v, u“=0, V., P, =0. If these conditions are not met,

then equation of motion (29) of general relativity cannot
be derived from the principle of least action;
consequently, (29) becomes an assumed but unproved
equation.

The condition V , p, =0 corresponds to the condition

of constancy of the mass density, which is possible, for
example, in the relativistic uniform model. In this case,
the models of compact stars using the general relativity
will need correction if they are applied to matter with

nonuniform density p, .

Given that the standard general relativity is derived from
the equation for metric (36), and not from the principle of

least action, neither formula (19) for the energy E , nor

formula (21) for the momentum P are used in general
relativity.

Instead, a different approach is used in general relativity.
It is assumed in [36-38] that the time components of

stress-energy tensor Tﬂv =7, +WW in (36) during

integrating them over the four-volume can fully replace
the system’s four-momentum and give the energy E and
the momentum P for matter and nongravitational fields.
As a consequence, the system mass is related to the
volume integral of the energy density in the time
component of stress-energy tensor of matter.

For the energy and momentum of gravitational field itself,
the pseudotensor t,, is supposed to be used for

calculation. A well-known problem of this approach is
that the pseudotensor of the gravitational field is not a
uniquely determined value. For example, in [9], seven
different pseudotensors were referenced. It is pointed out
that the problem of impossibility of unambiguous spatial
localization of gravitational energy and the emergence of
a pseudotensor instead of an energy-momentum tensor is
due to the fact that gravitational field is "hidden" in the
metric tensor.

In [41] it was emphasized that the gravitational field
energy, found with the help of a pseudotensor under
condition of constant matter density, is consistent with
physical expectations, but differs if other equations of
state of matter are used. In [42-43], it was proven that in
general relativity, it is impossible to uniquely calculate the
energy and mass of any arbitrarily chosen small part of the
system. To the best of our knowledge, the questions of
whether the system’s energy and momentum, calculated
in general relativity for continuously distributed matter
taking into account the pressure and the pseudotensor of
gravitational field, are truly equal to their values in
formula (19) for energy E and in formula (21) for
momentum P have not yet been studied.

In cosmology, the equation (36) of general relativity for
the metric is sometimes written as follows

1 87G
Ry =5ROuw =— T —Acr Oy (60)

v - 2 uv C4 MV

Here, the cosmological constant A is used to describe
dark energy, the nature of which is unknown but which
modifies the equation for metric in accordance with
observations. Let us substitute A, (56) into (60)

1 87G
RW—ERgW+Ag#v = o T

uv

87G €D

C4

(2p0c2 +Aﬁ jﬂ +]fz%)g#v

In (61) a value is added to the stress-energy tensor TW ,

which is proportional to rest energy density of

cosmological matter pOCZ, the energy density of

particles’ four-current Aﬂ jﬂ and the pressure /7 . This

allows us to explain the meaning of mysterious dark
energy — it appears on the right side of (61) in the form of

aterm (2p002 +A, j7+ E,)gw as a consequence of

the fact that the equation for metric (36) is actually not
derived from the principle of least action, and Ay

according to (37) turns out to be a scalar function and is
not a real cosmological constant.

We now turn to characteristics of GTR2. In this version,
equation for metric (45) and equation of motion (27) are
used, derived from the principle of least action with the

help of function K(J*,g,,). The GTR? version is more

accurate and consistent than the GTR?! version. One
drawback of GTR? is the need to determine specific form

of its function K(J*,g,,). The disadvantage of both

versions of general relativity is that we first need to solve
equation for the metric and to find the scalar curvature R

so that we can calculate the energy E and momentum P
of a system using formulas (19) and (21), respectively.
This is a consequence of the fact that gravitational field is
included in the metric tensor.

We can achieve even greater accuracy in GTR? if, instead

of the function K(J*, g,,v) , which specifies the scalar

pressure in Lagrangian density, we use corresponding
terms for pressure as for a vector field, that is, use the four-
potential and the pressure field tensor.

3.4. GTR™ version

In this Section we consider modernized general theory of
relativity, which we have designated GTR™. Our goal will
be to derive from the principle of least action equations of
the theory for continuous matter, taking into account
pressure and electromagnetic field in curved spacetime.

As mentioned in the previous Section, representation of
the pressure as a scalar field has the disadvantage that it
becomes necessary to determine the function

K(J*, gﬂv) simultaneously with calculating spacetime

metric tensor in a system of coupled equations. Moreover,
the transition from the scalar pressure field to the vector
pressure field increases accuracy of calculations and
simplifies solution of equations. The same applies to



IJPR Vol. 25, No. 3

Comparison of tensor and vector theories of gravitation 75

acceleration field. Thus, our modernization of standard
Lagrangian density of general relativity will consist of
introducing the terms that turn the scalar fields into vector
fields. This means that Lagrangian density will now
include the four-potentials of acceleration field and
pressure field, as well as corresponding tensor invariants
of these fields. In this case, the Lagrangian density
L'=L)+L; of GTR™ version differs from the

Lagrangian density (3) for vector fields only because of
2

c v
the absence of terms D, J* + D, D" for
167G
gravitational field
Lh=-A,j"-U, 3" —7,3"= .
ﬂ[—p0q¢+quA~V— J 69
C \ped+pU-V—pop+p,Il-v
2
=t F Fm o Sy o
A1t 1677 (63)
2
C f_ f™ tckR—2CkA.
1670 “

The main characteristic feature of general relativity is that
the spacetime curvature plays the role of gravitational
field, which is taken into account with the help of metric
field given by the metric tensor and its derivatives with

respect to X*. While deriving GTR™, we can almost fully
use the results obtained for vector fields. Thus, the
standard equations of electromagnetic field and similar
equations for acceleration field and pressure field,
presented in [1], remain in force. Moreover, after varying
the Lagrangian density L'= L +/L{ (62-63) with

respect to the metric tensor in the principle of least action,
the equation for metric is obtained in the following form:

kR, -ckRg,, =

A, j+U_J“+ . (64)
"\z, 3% +2ckA a
In (64) there is a total stress-energy tensor

T, =W, +B, +P, that takes into account the
stress-energy tensors of electromagnetic field WW’
acceleration field B, and pressure field P, . The only

difference between (64) and equation for the metric for
vector fields in [1] is that in (64) there is no contribution
from the four-potential and from the stress-energy tensor
of gravitational field. This is due to the fact that in the
Lagrangian density (62-63) there are no terms that define
gravitational field, except for scalar curvature R and the
metric tensor.

Contracting equation (64) with the metric tensor g*"
gives the following

A j%+U J“
ckR=2| “ “ . (65)

+7,J“+2Ck A

Equation (65) allows us to simplify the equation for metric
4

(64). Considering the equality 2ck =— , where
V4
[ is a coefficient of the order of unity, we find:
1 87GS .,
R,uv _Z Rg,uv = 4 Tyv ) (66)

It is not at first clear in general relativity if the
cosmological constant A can be used to gauge energy,
as was done for vector fields in [1]. Let us turn to general
expression for the energy of a system (19), into which we
substitute the Lagrangian density (62-63). This for energy
in GTR™ version gives the following:

_%(qu(o"'po‘g"'poSO)

1
E'== 0
cvI +V-a—v(p0q A+ pyU+p )
vu®—gdx'dx “dx
u0
?(p0q§9+po‘9+p080)
2

+LFWF““ +C—uﬂvu’” +
+I 4, 1677
) C2
+

1670

-9 dx 'dx %dx ®
N oL/
v — |

n=1 n

(67)

f,f“ —ckR+2ckA

In (67), there is a quantity

L/ :JQ J-gdxdx %dx * =
\

2
1 F“v c u uv o _

- uv - uv

4u, 1671 (68)

-] ¢

Vil16ro

-9 dx 'dx “dx ®

which is that part of Lagrangian for which £{ (63) is

f, f*+ckR-2ckA |

used.

The difference 2CKA —CKR in (67) must define the
contribution of gravitational field to energy of the system,
while the quantities A and R must satisfy (65);
therefore, they can no longer be chosen arbitrarily for
energy gauging. With the help of (65) we can exclude A
in (67). Taking into account relations of the type
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. 1 1
Aa j” :—poquo(p——poqqu-v for all the fields,
C C

we find:
Pog A+ poU+poIl—

1.[ a%(qu(p"'po‘g"'poSO)"’

E/==
CV
0
+V-—(p0qA+p0U+pOH)
vu’,/—gdx ‘dx %dx
2
1 VF"V+—C u,u* +
Ay, *“ 1677 *
2 (69)
+f| e £ e Lekr "
Vi16zo * 2

\J—9g dx "dx “dx ®
&( L ]
n=1

By solving equation (66), we can determine the metric
tensor g, , then calculate the scalar curvature R and,

with its help, find the system’s energy Ei' (69) in matter.

However, there still remains the problem of gauging the
undetermined coefficients in the metric tensor in such a
way that R correctly and uniquely defines the energy in
(69). Usually. in general relativity, the metric tensor is
defined taking into account the fact that in the limit of a
weak field the gravitational force transforms into the
Newtonian force of gravitation. But in the general case,
this may not be enough for the value R obtained through
such metric tensor to exactly satisfy the expression for
energy (69).

We can avoid this problem in the following way. Let us
suppose that the theory of vector fields developed in [1] is
valid just like the general relativity is. Then we can equate
the energy of general relativity (69) to the corresponding
energy in the theory of vector fields.

For the part of the Lagrangian L, associated with L,

(3), under the gauge condition R = 2A , which is applied
to vector fields for the purpose of calculating energy and
momentum in continuously distributed matter, we can
write

L, =IL; J—gdx'dx dx® =
\Y%

1 uv C 7%
m F.F"+ 162G Duv (70)
_ 2 2
_'[ - c Vu/”/ c f tvf "
v 16zn “ 1670 *
—gdx'dx *d

If we substitute Lagrangian density £ =L +L; (3)
into (19) under conditon R=2Aand L, (70), we

obtain the energy E, for vector fields inside matter [8],
(32]

I (3 Pog P+ PV |
ov +po‘9+p080
1
= :_j 0 (POqA+PoDJ
Cgl+v:
| OVi+pU+p Il
vu®/-gdx'dx *d
uO
?(/%q(”"’po‘//"'po‘g"'pog))"‘
2
P N
+I b, ” 162G
\ 2 2
+ u,u“ + f £
1677 * 1670
-9 dx "dx %dx ®
g pw
duy "
CZ
166 T T (1)
+i v ij c?
n-1 " ov - uﬂvuw
"V 16zn
2
N S
1670 *
J-gdxidxFdx® |

Let's equate energy Ei' (69) and energy E; (71):
’

E =E. (72)
The equality of energies in (72) allows us to impose
additional conditions on the values of uncertain
coefficients in the metric tensor in matter and on the value
of scalar curvature R present in energy (69). In this case,
one should take into account the difference between
metric tensors in GTR™ and in the theory of vector fields,
which follows from the difference in equations for metric.

This leads to the fact that the tensors F**, u*" and f*”

in (69), depending on the metric tensor, differ from the
same tensors in (71). Therefore, similar terms in the left
and right sides of (72), associated with tensors, cannot
cancel with each other.

Let us now consider the situation outside of matter, where,
according to general relativity, there is only an
electromagnetic field and a metric field, and four-currents
are equal to zero. In this case, the equation for metric (64)
is simplified
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2ckR,, —ckRg,, =-2ckAg,, — (73)

uv'
Contraction of equation (73) with the metric tensor g*"
leads to relation R =4A | so that if A is constant, then

the scalar curvature R would also be constant.

Substitution R =4A into (73) taking into account the
4

equality 2ck =— leads to equation for metric
7G
outside of matter
1 _87Gp
R, 2 Rg,, e W,. (74)

Outside matter, the mass density o, and charge density
P, areequal to zero, and expressions (62-63), (68) have
the following form

L =0,
L :—LF JF*"+ckR—-2ckA . (75)
4,Uo
L/ :.[4 J—g dx'dx %dx ® =
\Y
—LF M4 : (76)

J

J—gdx 'dx *d
v ckR—2ckA

Taking into account the relation R =4A in (76), the
expression for energy outside matter in GTR™ version in
(67) is also simplified

—LFFW—ka
E I 4,UO 2 +
" J—gdx'dx %dx ®
—LF E 7)
4;“0

L 0
2 Y v +hekr

J—g dx 'dx %dx ®
For wvector fields outside matter, there are only
electromagnetic and gravitational fields, and the relation
R=4A =0 according to [1], [44] is valid. Instead of
(71), the energy becomes equal to the following
expression:

LI
4/10
E0=J. 3 c? b PN +
vi 162G
1 2 3
) \J—g dx 'dx “dx ) (78)
g g
\ 5 4/10
+> | v —.[ c?
n + D P
| Vey| TG
i J-gaxidx ‘dx

By solving equation (74), one can find expressions for the
metric tensor and scalar curvature R . Equality of
energies in (77) and in (78) in the form

!
E'=E,. (79)
makes it possible to clarify the value of scalar curvature
R in energy (77), as well as to clarify the values of
uncertain coefficients in the metric tensor outside matter.
In addition, the equality of internal and external metrics
on the surface of massive body also allows us to more
precisely define the undetermined coefficients in the
metric tensor.
In a similar way as with the energy we can proceed with
the system’s momentum. A comparison of energies and
momentums in OTO™ and in vector fields, taking into
account the formulas for momentum in Appendix B, leads
to two relations (72) and (B8) for R in matter, and to two
relations (79) and (B11) for R outside matter. After
clarifying the value R in OTO™, it becomes possible to
use formulas for energy in matter (69) and beyond matter
(77). At the same time, according to (B7) and (B10) in
Appendix B, the formulas for momentum in OTO™,
respectively, in matter and outside matter have the
following form

R
4;“0
2
R N N U -
P, :ZNJ 167z (80)
n=1 nv C2 1
ff#12ckR
1670 “ 2
J—g dx "dx %dx ®
N
- A1, g
P°=HZ;'EJ +lokr ' 1)
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By summing the energies inside and outside matter (69)
and (77), we find the energy E of a physical system;
similarly, the sum of the momenta inside and outside
matter (80) and (81) gives the momentum P of the
system.

After the energy E and the momentum P are found, we
can determine the four-momentum of the system, defined

E
in [8] in the form Pﬂ=(—,—Pj. The energy
C

determined in the center-of-momentum frame represents
the rest energy Eo , with the help of which the system’s
inertial mass in accordance with [32] is calculated as

E
_ 0
M =2
C
In vector field theory, the gravitational mass of a system

is calculated after the gravitational tensor cbw is found,

the time components of which include the gravitational
field strength T" . Near the surface of a spherical massive

body, the strength I, according to Newton’s law, is equal
to the free fall acceleration, found in terms of the
gravitational mass of the body. Thus, a connection
between &  and the gravitational mass appears. Since

the methods for determining the inertial and gravitational
masses are completely different, these masses can equal
each other only approximately. As a result, the principle
of equivalence of the inertial and gravitational masses,
which contributed to the development of general
relativity, is not satisfied for vector fields.

Let us now consider the equation of motion of typical
particles in matter in GTR™. Using the principle of least
action for the Lagrangian density £’ = £ + £ (62-63)
and varying over four-currents, we arrive at the equation
of motion, which differs from the equation of motion for
vector fields in [1] only in the absence of a gravitational
term

o o 10

Jou,, +J fM+J F,.=0. (82)
Equation (82) is also obtained from the expression
V'T,, =0, where the total stress-energy tensor of non-

gravitational fields is presented in (66) in the form
TW =WW + BW + Pﬂv.

Let us express the tensors of acceleration field and
pressure field in terms of the fields’ four-potentials and
substitute them into (82)

uo‘y = VO'U V7 _v;tUo"

fcw =V,z,-V,7x,,

J°V,U,-3V U,

+°V,7,-3°V, 7z, +]°F,, =0
We apply (83) to a relativistic uniform system of a
spherical shape with chaotically moving particles, which

is kept in equilibrium by its proper fields. The root-mean-
square velocity of the particles’ motion in such a system

(83)

depends only on the radius and reaches its maximum at
the center [24], [29]. If the particles do not have proper
vector potentials in the comoving reference frames of
these particles, then, due to the chaotic character of the
particles’ motion in such a system, the global vector
potentials of all the fields would be equal to zero. This
leads to the absence of solenoidal vectors of the fields,
similar to the magnetic field in the case of an
electromagnetic field. To a first approximation, for the
four-potential of acceleration field, describing the motion
of an arbitrary typical particle of the system, the following
relation holds true: U u= (ﬁ ,— Uj =Uu,,where u  is
c H
the four-velocity of the particle, ¢ and U represent the
scalar and vector potentials of the acceleration field,
respectively. In the same approximation, the four-
potential of the particle pressure field will equal

P,
Ty :(g’_nj:—ozuu
Cc P,C
these potentials into (83)

J°vV,u , —=J°V u_ +

J"VG[ E’Zuyj—\]"vy( ﬂ%zuajf (84)
PoC PoC

J°F,,=0

Next, we use the continuity equation V_J“ =0 and the

[45]. Let us substitute

following obvious relations
3°V,u,=,(u,d%)
-u, v, J =V6(p0u”u

J°V, u, =pu°v, u =0,
A

J°V, Pszu# =V, —%5u,J’
PoC PoC

P P ’
- OZU#VJJGZVU(—SU#UUJ
PoC c
J°v, R’zug = }%ZJUV#UG-F
PoC PoC

(85)

. av#( ﬂ%z}povﬂ(ﬁj
PoC Po

Taking into account (85), the equation (84) is written as
follows

VGKPO +£§juuua:| -
C

P (86)
va,u(p_Z]_ J UFo‘,u
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In relativistic  uniform
1 9p,

V,,po :aﬂpo :(C at

invariant mass density o, =CONSt, that is, the density

system, the equality

,Vpoj:O holds true; the

P, does not depend on either time or coordinates and is
the same for all the particles in the system. In such a

P

physical system povy(—o
0

that equation (86) coincides with the equation of motion

(29) in general relativity when taking scalar pressure E)

]=V#PO, and we can see

into account.

On the other hand, as we indicated in Section 2, the
equation of motion (29) of general relativity will be
consistent with the principle of least action and (27) if

d
uV'p, = dL;O =0 that is, the mass density 0, must

be constant in the comoving reference frame of each

matter element. Since in this case
0

dp, :Edpo :u_dpo —0, where U° is the time

dr dr dt c dt

component of the four-velocity, then the condition

d 0,

% = %+ V-V, =0 must also be satisfied. All

this is satisfied by the equality p, =const for the

relativistic uniform system. Thus, within the framework
of general relativity, calculations of equation of motion of
matter inside massive objects, such as compact stars, can
be performed with condition p, = const . Inall the other

cases, for greater accuracy, it is better to use not equation
(29), but rather the equation of motion in the form of (82-
83), where the field tensors are found through the
corresponding field equations.

Let us apply the covariant derivative V" to both sides of
equation (64) for the metric. On the left-hand side, we
obtain zero as a consequence of the properties of the
Einstein tensor. The right-hand side of (64) contains the
total stress-energy tensor T;;V =WW + BW + PW of the

three fields, for which the following equations hold
V'w,, =J°F,,,V'B,, =J%u_,,
V'R, =31, (87)
Taking (87) into account, the following equation follows
from (64)
v, (A, j“+U, 3% +x,3“+2ckA)

] (88)
+J%u,,+3°f , +j°F,, =0
If we take into account equation of motion (82) in (88),
then using (65) we obtain for scalar curvature:

A, je+U_J° k
: XV R=0. @9
+7,J“+2ckA) 2

Condition (89) imposes an additional limitation on the
quantity R in matter in GTR™.

3.5. Discussion of GTR™ version

The GTR™ version presented in the previous Section is
more accurate than standard general relativity due to the
use of vector acceleration field and vector pressure field
instead of corresponding scalar fields. Indeed, it is

difficult to directly include the scalar pressure /3 in
Lagrangian density because we need to make additional
assumptions about the variation /% to apply it into the

principle of least action. As a result, the equation of
motion (29) of general relativity is not derived from the
principle of least action itself, but rather by equating the
divergence of stress-energy tensor to zero in the form

v'T, =0.
However, from the standpoint of Lagrangian formalism,

derivation of equation of motion from the principle of
least action is preferable and necessary for completeness

of the theory. The use of scalar function K(J*,d,,)

allows us to derive the equation of motion (27) and to
show that, on the conditionthat V' p, =0, this function

actually becomes equal to pressure E) since in this case

P.[3"3"
Kzo—ngﬁ). The problem of this

PoC
approach is associated with the need to define a precise

expression for the function K(J*,g,,) in general case,

which requires solving the system of equations (45), (47)
and (49-50) in GTR? version.

Achieving greater accuracy in GTR™ version is possible
due to the additional terms in Lagrangian density
L'=L)+L; (62-63), which include the tensor

e

invariants U, U“" of acceleration fieldand f,, of

pressure field. The addition of these terms leads to the
emergence of independent equations of corresponding
fields and allows us to quickly find all the characteristics
of these fields in standard form.

Substitution of gravitation by the spacetime curvature,
and reduction of physical force of body attraction to
geometry were fully justified in general relativity for the
case of motion of small test bodies near massive objects,
as happens in the case of motion of planets and rays of
light near the Sun. However, in obtaining solutions for the
case of continuous matter with pressure and
electromagnetic field, as was shown above, we face
various problems. One of these problems is related to the
system’s energy and momentum, and the other is related
to the ambiguity of solutions for the metric. The fact is
that the energy and momentum cannot be determined
without considering the contribution of gravitational field.
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However, since gravitation is included in the metric, it is
first necessary to solve the equations for metric (66) and
(74) inside and outside matter, to find the metric tensor
and scalar curvature R, and through them evaluate the
contribution of gravitation in energy and momentum. If
we use the Lagrangian formalism, energy and momentum
inside matter in GTR™ can be found using formulas (69)
and (80), respectively, and energy and momentum outside
matter can be found using formulas (77) and (81).

With this method, ambiguity arises in the definition of
energy and momentum, since the solutions for the metric
tensor contain undefined coefficients resulting from the
integration of the equations. To avoid such ambiguity, we
proposed to use energy and momentum, calculated in the
theory of wvector fields, as auxiliary quantities.
Comparison of these quantities with the energy in GTR™
in (72), (79), and momentum in (B8) and (B1l) in
Appendix B makes it possible to clarify the values R
inside and outside matter and thereby unambiguously
determine the energy and momentum of the system.
However, it should be noted that the scalar curvature
inside matter must simultaneously satisfy both equality
for energy (72) and equality for momentum (BS8).
Similarly, the scalar curvature outside matter must
simultaneously satisfy both the equality for energy (79)
and the equality for momentum (B11). In this case, at the
boundary of a body, the scalar curvature inside matter
must be equal to the scalar curvature outside matter.

The proposed approach is a consequence of Lagrangian
formalism with respect to energy and momentum.
Therefore, this approach has an advantage over standard
general relativity approach, where the energy and
momentum are defined in terms of volume integral of time
components of stress-energy tensor summed with
gravitational pseudotensor components.

Let us consider, as an example, the symmetric Landau—

Lifshitz pseudotensor of gravitational field t*" [38], for
which, in view of stress-energy tensor of matter and non-

87
gravitational fields, the coefficient » =—— and the

4
C
cosmological constant A 5 , the following equation holds
uv uv AGR uv
o, (=9)| T +t*" ——=¢ =0. (90)
”
Integrating (90) over infinite volume gives the following
(-9)
L (T #0440
Pl == : 91
H C'[ A dx dx ?dx ®D
_ 1R gr
7

It is asserted that the integral vector P/ (91) represents

the four-momentum of a system.

We noted some drawbacks of standard general relativity
approach in Section 3.3, while discussing GTR* and GTR?
. We can add that an additional drawback is the lack of
mathematical proof that volume integral (91) of time
components of stress-energy tensor summed with

gravitational pseudotensor components precisely gives
the four-momentum of a system, not any other value. At
least such a proof does not follow from the Lagrangian
formalism [8].

Indeed, treatment of P/ (91) as a four-momentum starts

with the fact that stress-energy tensor T“" is expressed
through the stress-energy tensor Thw (16) in sum with the

stress-energy tensor Wﬂv (15) of electromagnetic field.
Next, the weak gravitational field approximation is used
when we can assume that t*" ~ 0 in comparison with
T#". Then, to a first approximation, the value P% is

close to the value of the system’s four-momentum.
Hence, it is assumed that in the general case, P/ is also

the four-momentum.

In response to such argumentation, we would like to
remember that the equation of motion (29) in standard
general relativity is consistent with the equation of motion
(27), derived from the principle of least action, and is

apm, _ 0

dr

This condition is equivalent to the fact that a relativistic
uniform system is always under consideration. As was
shown in [24], [29], equilibrium in a relativistic uniform
system reduces to equilibrium in gravitational and
electromagnetic fields.in acceleration field and in
pressure field. If we consider the situation not from the
standpoint of general relativity, but from the standpoint of
vector fields, then instead of (90) we must proceed from
the equation of matter’s motion in the form

valid only on the condition that U, V" p, =

uv
VT = il +I0 T 47 +
ax v P
T“T* = 1 8( -7 W) (92)
pv H OX v !

+T4T 7 =0

In (92), stress-energy tensor
T =W* +U" +B*" +P*"  includes stress-

energy tensors of all four fields; therefore, there is no need
for any gravitational field pseudotensor.

Let's choose a reference frame in which the Christoffel
y2i
PV
case, multiplying (92) by the element of covariant volume

-9 dx°dx"dx’dx® and integrating over the four-

dimensional volume of this element, taking into account
the divergence theorem, we have:

symbols I'” ' in some element of matter are zero. In this
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el
kK

jT “0\/)i_gdx 'dx %dx * +

jUT ”K/de dx 3}dx 04 (93)
+J.UT “zﬁdxldx3de°+

IUT # [~g dx 'dx 2}dx0 ~0.

Let's make the notation:

| = %J.T“(’\/deldxzdx3 : (94)

IT "1de 2dx ® +IT ”Zﬁdx 'ax @

[T Ty dax? = T #n, =g as -
S

In (95), the sum of the three integrals is a surface integral
over a two-dimensional surface S, surrounding the

volume element, N, is a unit vector perpendicular to the
surface S and directed outward, K =1, 2,3 . Substituting

(94-95) into (93) and differentiating by variable x® =ct
, we find

Y7
dollt +{pT+nJ-g ds ~0. (96)
S

The smaller the volume element in question is selected,
the more precisely expressions (93) and (96) tend to zero.

At ,u=0 (96) describes the generalized Poynting

theorem in integral form, according to which energy
fluxes flowing into a certain volume increase the energy

of fields in this volume [28]. When =1, 2,3 the values

dx %dx *dx %dx 3 =

T#* taken with a minus sign are components of a three-
dimensional stress tensor. In this case (96) can be
considered as integral equations for the rates of change of
energy fluxes in an element of matter. Such changes in
energy fluxes are caused by forces acting on the element
of matter from the fields.

Suppose that the volume element in question is in such an
equilibrium state that there are no energy fluxes through
its surface or the fluxes are on average zero. In this case,

according to (96), 1“ becomes a certain constant in time,

I“ =const.

It is not difficult to verify that at equilibrium the integral
over the three-dimensional volume in matter in (94)
vanishes [8], [28]. This is a consequence of equation of

motion in the form VVTW =0, that is, the consequence

of balance of all the forces in matter at equilibrium. If in
(96) the volume element is taken not in matter, but outside
it, then in (96) only the total energy of gravitational and
electromagnetic fields outside matter and the fluxes of
these energies remain. It turns out that the integral vector

1# does not set the four-momentum of the element of
matter, and even more so does not set the four-momentum
of entire system consisting of many particles and fields.

Instead, the vector |1* shows that in each volume element
of a closed equilibrium system, another value associated
with the energy of fields must be preserved.

To obtain the vector |*, we had to use the weak field
approximation by choosing a suitable reference frame in
which the Christoffel symbols in the volume element in

question become zero. But in the general case |* turns
out to be a four-dimensional pseudovector, since the

equation of motion V'T,, =0 in covariant form does

not integrate over four-dimensional volume and does not
give a true four-vector.

The presented picture shows that the integral vector P/}

in (91), like |* in (94), is not the system’s four-
momentum, but an integral pseudovector. In this case,
there is no other way in general relativity to find the
energy and momentum, than to use the formulas derived
from the Lagrangian mechanism and presented above.

We analyzed in more detail the problem of four-
momentum and integral vector in general relativity and in
theory of vector fields in [8] and [27] where references
were also provided to papers showing inadequacy of
general relativity approach for defining of energy and
momentum. For example, in [37] indicated that the energy
of a closed system in general relativity is either not
conserved or depends on the choice of reference frame. It

can be seen from (91) that tensor T*" and pseudotensor

t“Y have different transformation laws; therefore, the
system’s inertial mass, which should be obtained from

P/, will not be the same in different reference frames.

This is confirmed in [46], which also indicates the
inequality of inertial and gravitational masses of a
physical system in general relativity. Moreover, according
to [47], the principle of correspondence does not hold in
general relativity.

In addition, even if t* is a tensor, P# cannot be an

actual four-vector. This follows from the fact that the
right-hand side of (91) contains the time tensor
components that are transformed into another reference
frame in a different way than the components of a four-
vector should be transformed [28]. The difference in
transformation of tensor components and four-vector
components leads to the so-called 4/3 problem for a
moving body, when the mass-energy in volume integral
of the time component of stress-energy tensor for
electromagnetic or gravitational fields is not equal to the
mass-energy in integral of the space components of this
tensor.

From a philosophical standpoint, noncoincidence of four-

momentum and integral pseudovector |* in (94) is
associated with the duality of matter and field and with the
difference in their definitions in terms of four-currents and
field tensors, respectively. The conservation of four-
momentum in a closed system is associated with the
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conservation of energy and momentum of the matter’s
particles that generate fields and act on each other through
these fields. At the same time, the conservation of integral

pseudovector |* leads only to conservation of energy
and energy flux of fields in the system.

4. Conclusions
In order to covariantly describe the pressure effect, we
introduced the scalar function K(J*,g,,), which

depend on the four-current J* and the metric tensor
g, into the Lagrangian density (1) of general relativity.
Next, we found the equation for metric (17), derived the

formulas for energy (20) and momentum (22), obtained
equations of motion (27-29) and in (30) related the

- /,l - - -
function K (J ,gw) to scalar isotropic pressure /) in

matter.

With this in mind, in Section 3.1 we arrived at GTR?
version, which is the closest to the standard general
relativity, and in Section 3.2 at GTR? version, which was
fully derived from the principle of least action. One of the
results is that the equation of motion (29) in GTR! is
consistent with equation (27) only on the condition that

, d
u,vVip, = dL;O = 0. This means that general relativity

can be used to study relativistic uniform systems, where
V" p, =0, but it may be inaccurate in general cases.

The situation can be improved by using GTR?; however,
the analysis of both versions of general relativity in
Section 3.3 revealed the presence of other notable
drawbacks. For example, in general relativity, the
expression of continuity equation (59) differs from the

standard expression Vﬂ(po u” ) =0. As we show when

deducing from the principle of least action in OTO?
version, the equation of motion (27) agrees with (29) only

under the condition V ,U* =0. If we accept both the

conditions V*p, =0 and V, U“=0 in general

relativity, then only in this case (59) passes into standard
continuity equation

V#(pou”)=u#vﬂpo+pov#u” =0.
With the help of (61), we explain the meaning of dark

energy, which emerges from the cosmological model of
general relativity, and is  expressed as

(2p00*+ A, I+ 1) g

density of cosmological matter p002 , energy density of

in terms of rest energy

uv

particles’ four-current Aﬂ jﬂ and pressure Pg in matter.

In this case, the dark energy emerges because the equation
for the metric (36) in general relativity is not derived from
the principle of least action; and according to (37) Agg

turns out to be a scalar function and is not a real
cosmological constant.

In Section 3.4 we present modernized general theory of
relativity, which we designate GTR™. Unlike in standard
general relativity, in GTR™acceleration field and pressure
field are considered not as scalar fields, but as vector
fields. Thus, for these fields it becomes possible to write
their own equations and to find four-potentials, tensors
and stress-energy tensors at a given mass four-current.
This means, for example, that we no longer need to choose
a possible equation for the state of matter that relates the
pressure and the mass density; — for this reason. it suffices
to solve standard differential equation for pressure field.
The gravitational field, according to general relativity
approach, included in metric field, which is geometric in
nature. Thus, in OTO™, gravitation is still reduced to
spacetime curvature.

To determine the energy and momentum as easily as
possible, in the GTR™ version we suggest using four-
potential Dﬂ and gravitational field tensor cDW as

auxiliary quantities, taken from the theory of vector fields.
With the help of Dﬂ and gbﬂv, one can calculate for

vector fields the system’s energy inside and outside matter
using formulas (71) and (78), and the momentum of the
system inside and outside matter using formulas (B1) and
(B9) in Appendix B. In this case, conditions (72), (79),
(B8) and (B11) in Appendix B make it possible to
unambiguously gauge both the components of metric
tensor, as well as the energy and momentum in GTR™
version.

The equation of motion (83) in GTR™ version is fully
written in terms of four-potentials and tensors of the fields
represented in a system. In the limit of relativistic uniform
model, equation (83) becomes equal to (86) and exactly
transforms into the equation of motion (29) of standard
general relativity. Thus, the GTR™ version can be
considered an improved version of general relativity in
many respects. On the other hand, the GTR™ version is
much closer to the theory of vector fields than to standard
general relativity, which can be seen from comparison of
Lagrangian density ~L'=L) +L{ (62-63) and

Lagrangian density (3). The difference between these
theories lies only in the fact that in theory of vector fields
gravitational four-potential and gravitational field tensor
are directly included in Lagrangian density.

The advantage of vector fields is that the equation of
motion can be obtained and confirmed in two different
ways — either from the principle of least action or from the

equation V'T,, =0 [1], [8]. Another advantage is that

in the formulas for energy and momentum, due to use of
energy gauging with the help of cosmological constant A
, we can eliminate scalar curvature R and thus uniquely
determine the formulas. In this case, the approach used in
theory of vector fields is preferable to that used in general
relativity, since it is based entirely on Lagrangian
formalism [32].
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Appendix A
We proceed from the variation 581 containing variations

ox"

dt =0. (A1)

v +(uy+ oK jvg
oJ

(J°’5x 3457

J—9 dx'dx “dx ®
We transform by parts in (Al) the term with the mass
four-current J*

. ( aK) J7ox*
2 U, +— |V,
) A TP A e
" [~g dx dx %dx ®
oK
u +
bV ( ! &V’j
o | I TR T R LS
t,V
J—g dx dx dx
J7ox”
2 VU(u +%j
[ [{=3#ox” “ 83" dt.
Y J—g dx 'dx %dx ®

The covariant divergence of an arbitrary four-vector B
can be expressed as follows

vasﬂzﬁaa(ﬁsa). (A3)

Taking (A3) into account, the first integral on the right
side of A2) can be written as follows

oK

5 v (“”wj

_” (376x#—3#ox) | M=
J-g dx'dx %dx ®

oK

ool )

:_JVI (370x#=3#5x7) at.

dx ‘dx 2dx ®

(A4)

We now use the divergence theorem for the right-hand
side of (A4), moving from integrating the divergence of a
four-vector over a four-dimensional volume to integrating
the corresponding four-vector over four three-
dimensional hypersurfaces

oK
o o)
_{[J (J"&x“—J”&x"
dx 'dx *dx °
1

( 5 j tz
u,+ "
0J (A5)

c VI(meﬂ—waxf’)

J—9 dx'dx %dx * .

[ 57)
u,+
ty SEGN R

T ep0n37ax7)

4 X
njy-gdX

The three-dimensional unit vector n;. where the index

)dt=

dt =0.

J =1,2,3, represents an outward-directed normal vector
to the two-dimensional surface 2., surrounding moving
physical system under consideration. The equality to zero
in (A5) follows from the fact that the variations OX* at
the time points t; and t, are equal to zero according to
the condition of variation of action function. In addition,
in the case of integration over the surface ., the

variation OX* on this surface is also considered to equal
zero.

According to (A4-Ab), the first integral on the right side
of (A2) is equal to zero. The second integral in (A2) is
transformed as follows

L (J78xH=345x7)

{[\;[VG [u + oK

H 6\] Yz

J"Va[u#+aK J
oJ

:.” -J°V (u +8Kj dt =
v u|Ze

Sx “J—g dx dx 2dx ®
Javo(uy+ oK j
oJ*
oK dt.
i " 53°
5X”de 'dx %dx ® (A6)

dt =

J —g dx'dx “dx ®

-
N

-J°V

-
s

Il
<!_.
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In (A6) we used the relation
J°V, u, =pu°Vv, u,

. Consequently,
_FPo o, \_ o 2 _
—7Vﬂ(u ug)—7vﬂc =0

(Al) is equivalent to the following

(BN

y —(17ox" )|
88, =—|| l:\/_g(—j“&x"]:l at =0 A"

-J°V

Ha]_a

J—g dx 'dx %dx

Let us transform the first integral in (A7)

A, A0

D R A
_tJ:J [H(jgéxﬂ_ju&(a)] dt =
J—9 dxdx %dx ®
AN-9

= ” "’5x —j*‘éx") dt + (A8)
v dxldxzdx3
jeox*
+]j HL—j”&x"Jdt.

t, Vv
" o,A, dxdx “dx®
Taking into account the divergence theorem as in (A5),

the first integral on the right side of (A8) is equal to zero.
The second integral in (A8) is transformed as follows:

J-g (j7ox*—j ox7)
v O,A, dx 'dx %dx ?

j7ox"a,A, -
j( “SX 70 A, ]dt=
a \/_dxldxzdx
joox oA, -
j{'aaxﬂa A,
o \/_dxldxzdx

0,A )5x"

:{”\/_dxldxzdx
“ i°F,,ox* J-g dx 'dx dx *dt.
t,V

From (A8-A9) it follows:

A, —2—0,

"To

- Joox =\ dt =

;U [H[J'”&(G ﬂ (A10)
J—g dx dx Zdx ®

_J.J. 1°F, 5X” ot
\/_dxldxzdx

Taklng (A10) into account, from (A7) we obtain the
action variation and equation of motion

dt =

H

Il
e

}dt = (A9)

Il
e

dt =

1°F

ou

- oK
_tz +J v"(u”JraJ”jd ~
58, =[] t=0,

tVv
_yey, K
2 aJa

X “J—g dx ‘dx *dx ®

o oK oy OK o
J Va(ueraJ#j:J v”aJ"_J F,.. (All)

Appendix B

For convenience, this appendix uses double numbering of
formulas, indicating the corresponding formulas in text of
the article.

If we substitute the Lagrangian density £ =L + L, (3)
into (21) and take into account L, (70), we obtain the
momentum of a system in theory of vector fields [8], [32]:
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quA+pOD+

0
U+p,II——
Po Po ov
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+ v poD+p,U |-V

+p 11
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D D
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We now use the Lagrangian £’ = £ + £{ (62-63) and
L{ (68), replacing in (21) £, by L, L, by L{,and
L, by L}.
momentum in GTR™

+

Thus, we find an expression for the

Pog A+t p U+ p Il
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In matter, the quantities R and A are related by relation
(65), which allows us to express in (B2) A through R

Pog A+ p U+ p, 1T
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——| +po9 |+
Cy TPo§
quA
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ov Po
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1
+§Ck R+ (B3)

+A, jO+U, I

+7,Jd°

J—g dx dx %dx ®
We further use (62) in the form
P H H H
A, 1"+U 3" +7,d

_ﬁ(qugo_quA'v_‘_pO'g }' (B4)

C\—poU-v+pyp—p,I-v
as well as a relation from [35]:

g—tf/—g dx *dx “dx ®

u® ’
=— g dx'dx 2dx* =dV,
c

where dV0 is differential of invariant proper volume of

(BS)

any particle of a continuously distributed matter.
Taking into account (B4- B5) we find:
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A, j %+
N
Za%j U,J“+m,3%)=
" nv«/—gdxldxzdx3

N
0
= [=—| pod-poU-v+ [dV,

- _J' ov . (B6)
Cy Pof—pPoIl-v
u®y/—g dx*dx %dx>
In (B6), it was taken into account that when taking the
0
partial derivative —— with respect to the velocity V

n

of a particle with number n, the

I(qu(”_quA'V"'po‘g_
VP UVt pop—poIl-v
of matter can be replaced by the

(quq)_quA'v+p0l9_
v, \PoU-V+pop—pIl-v

of this one particle with number n.
Substituting (B6) into (B3) gives the following:

L EEm
A1, .

C 2
1677
Pl=)>» — c? : (B7)

_ v
nv
1670 "

integral
JdVO over the volume
integral

JdV0 over the volume

uv
UWU

+1ckR

2
H dx 'dx %dx 3
References
1. S G Fedosin, Jordan J. Phys. 9, 1 (2016).

Equating momentum (B7) to momentum (B1) for vector
fields, we obtain another expression in which the scalar
curvature R inside the body in GTR™ is expressed in
terms of other quantities:

Pi’ =P. (B8)
Outside matter formula (B1) for vector fields remains

valid and gives the momentum of field associated with the
matter and commoving with it. In this case, in (B1), the

first integral vanishes because the mass density o, and
the charge density p, outside matter are equal to zero.

In addition, the tensor invariants associated with
acceleration field and pressure field are equal to zero. As
a result, in (B1) only the sum remains for all those
particles that generate electromagnetic and gravitational
fields

RN
4u, g
N
0 2
p=Y_" c i (BY)
"Z-;a"nvj 160G T

-9 dx'dx “dx*
Similarly, from (B2) taking into account the relation

R =4A , for the field momentum outside matter in
GTR™ we find

RS
- A4, .
Pﬁéav +%ckR | (B10)

J—g dx 'dx “dx *
The equality of momenta (B9) and (B10) gives a relation
that allows us to estimate the value of scalar curvature R
in GTR™ outside matter

P, =P,. (B11)

2. C Cremaschini and M Tessarotto, Appl. Phys. Res. 8, 2 (2016).



IJPR Vol. 25, No. 3 Comparison of tensor and vector theories of gravitation 87

3. S Mendoza and S Silva, Int. J. Geom. Methods Mod. Phys. 18, 4 (2021) 2150059.
4. A Diez-Tejedor, Phys. Lett. B 727, 1-3 (2013).

5. O Minazzoli and T Harko, Phys. Rev. D 86, 8 (2012) 087502.

6. S B Riister, Parana J. Sci. Educ. 8, 6 (2022).

7. S Aoki, T Onogi, and S Yokoyama, Int. J. Mod. Phys. A 36, 10 (2021) 2150098.
8. S G Fedosin, Phys. Scr. 99, 5 (2024) 055034.

9. M Sharif and T Fatima, Int. J. Mod. Phys. A 20, 18 (2005) 4309.

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39

T G Zlosnik, P G Ferreira, and G D Starkman, Phys. Rev. D 74, 4 (2006) 044037.

J B Jimenez and A L Maroto, Phys. Rev. D 80, 6 (2009) 063512.

R Dale and D Séaez, Phys. Rev. D 85, 12 (2012) 124047.

R Dale and D Séez, J. Phys. Conf. Ser. 600, 1 (2015) 012044.

D Momeni, M Faizal, K Myrzakulov, and R Myrzakulov, Eur. Phys. J. C 77 (2017) 37.
L Heisenberg and M Bartelmann, Phys. Lett. B 796 (2019) 59.

A lzadi, A Shojai, and M Nouradini, J. Astrophys. Astron. 34 (2013) 41.

S G Fedosin, Int. Frontier Sci. Lett. 1(1) (2014) 41.

S G Fedosin, St. Petersburg Polytech. State Univ. J. Phys. Math. 14 (3) (2021) 168.

S G Fedosin, Can. J. Phys. 93(11) (2015) 1335.

Abbott B. P. et al., Phys. Rev. Lett. 116 (6) (2016) 061102.

Abbott B. P. et al., Phys. Rev. Lett. 119 (16) (2017) 161101.

S G Fedosin, Int. J. Thermodyn. 18 (1) (2015) 13.

S G Fedosin, Rep. Adv. Phys. Sci. 1, 2 (2017) 1750002.

S G Fedosin, Cont. Mech. Thermodyn. 29 (2) (2017) 361.

S G Fedosin, Cont. Mech. Thermodyn. 31(3) (2019) 627.

S G Fedosin, Int. Lett. Chem. Phys. Astron. 83 (2019) 12.

S G Fedosin, Bull. Pure Appl. Sci. 37D(2) (2018) 64.

S G Fedosin, Int. Frontier Sci. Lett. 14 (2019) 19.

S G Fedosin, Can. J. Phys. 94(4) (2016) 370.

S G Fedosin, Gazi Univ. J. Sci. 32(2) (2019). 686

S G Fedosin, Gazi Univ. J. Sci. 37(3) (2024) 1509-1538 373737.

S G Fedosin, Int. J. Mod. Phys. A 40, 2 (2025) 2450163.

G Schéfer and P Jaranowski, Living Rev. Relativ. 21, 7 (2018).

N Kiriushcheva and S V Kuzmin, Cent. Eur. J. Phys. 9, 3 (2011).

E Curiel, Br. J. Philos. Sci. 65, 2 (2014).

V A Fock, The Theory of Space, Time and Gravitation, London: Pergamon Press (1959).
P A M Dirac, General Theory of Relativity, New York: John Wiley & Sons (1975).

L D Landau and E M Lifshitz, The Classical Theory of Fields, Vol. 2 (4th ed.), Butterworth-Heinemann (1975).

. A Einstein, Ann. Phys. 354, 7 (1916).
40.

S W Hawking and G F R Ellis, The Large Scale Structure of Space-Time, New York: , New YorkCambridge Univ.

Press (1999).

41.
42,
43.
44,
45,
46.
47.

F 1 Cooperstock and R S Sarracino, J. Phys. A: Math. Gen. 11, 5 (1978).
V | Denisov and A A Logunov, Theor. Math. Phys. 51, 2 (1982).

R I Khrapko, Grav. Cosmol. 20, 4 (2014).

S G Fedosin, Aksaray Univ. J. Sci. Eng. 2, 2 (2018).

S G Fedosin, Adv. Stud. Theor. Phys. 8, 18 (2014).

V | Denisov and A A Logunov, Theor. Math. Phys. 85, 1 (1990).

V | Denisov and A A Logunov, Theor. Math. Phys. 45, 3 (1980).



