IRANIAN JOURNAL OF
Iranian Journal of Physics Research, Vol. 25, No. 3, 2025

i 4 5 £ 4 8 (¥ DOI: 10.47176/ijpr.25.3.22022

@08

Time-dependent variational principle treatment of quantum phase transition

zar Vafafard®#”, Alireza Nourmandipour?, and Roberto Franzosi
Azar Vafafard'?”, Al N dipour?, and Roberto F 4
Faculty of Physics, University of Tabriz, Tabriz, Iran
2Quantum Technology Center, University of Tabriz, Iran
3Department of Physics, Sirjan University of Technology, Sirjan, Iran
4DSFTA, University of Siena, Siena, Italy

E-mail: vafafard@tabrizu.ac.ir

(Received 14 December 2024 ; in final form 12 May 2025)

Abstract

Phase transitions are fundamental phenomena in physics, characterized by abrupt changes in the properties of a system.
While classical phase transitions occur due to thermal fluctuations, quantum phase transitions (QPTs) are driven by
quantum fluctuations at zero temperature. In this work, we explore the presence of QPTs in cavity quantum
electrodynamics systems using the Time-Dependent Variational Principle (TDVP), a semi-classical approach for
analyzing complex quantum systems. Beginning with the Rabi model, where a single qubit interacts with a single-mode
cavity field, we examine the influence of counter-rotating terms on the system's ground state properties. Subsequently,
we extend our analysis to the Jaynes-Cummings model, where rotating-wave approximation applies, and finally, to the
Dicke model, which considers the collective interaction of multiple qubits with a bosonic mode. For each model, we
derive analytical expressions for the ground state properties and identify critical coupling strengths indicative of phase
transitions. Our findings reveal second-order quantum phase transitions, including superradiant phases with distinct

ground state behaviors, emphasizing the utility of TDVP in understanding QPTs across a variety of systems.
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1. Introduction

A phase transition typically refers to a fundamental
change in the state of a system, characterized by an abrupt
shift in one of its parameters, known as the order
parameter [1]. Familiar examples include the melting of
ice, the loss of ferromagnetism, and superfluid-Mott
insulator phase transitions in optical lattices [2]. Other
phenomena, such as liquid crystals [3], Bose-Einstein
condensates [4], and superconductivity [5], also
exemplify such transitions. Classical phase transitions are
driven primarily by thermal fluctuations and are
associated with singularities in thermodynamic quantities
[6]. These transitions are marked by macroscopic order,
such as crystal structures or magnetization [7]. The order
of the transition is determined by the lowest derivative of
the free energy that exhibits a discontinuity. Based on this
criterion, phase transitions are classified into two
categories: first-order transitions, where the first
derivative of the free energy is discontinuous, and second-
order (or continuous) transitions, where the first
derivatives are continuous, but the second derivatives are
discontinuous [2].

While classical phase transitions typically occur at finite
temperatures, QPTs occur at absolute zero and are driven

by quantum fluctuations. These transitions result in
ordering of the system's ground-state properties and are
often accompanied by spontaneous symmetry breaking
[8]. QPTs play a vital role in understanding fundamental
phenomena such as phases of matter, mass generation in
high-energy physics, magnetism, and superconductivity
[9]. Moreover, they have practical significance in
condensed matter systems, including magnetic insulators,
heavy-fermion compounds, high-temperature
superconductors, and two-dimensional electron gases [9].
Theoretically [10] and experimentally [11], QPTs have
been shown to typically occur in the thermodynamic limit,
where the number of two-level atoms in the system
becomes very large. This phenomenon is often described
using models like the Dicke model [12] or the Lipkin-
Meshkov-Glick model [13]. However, it has also been
theoretically demonstrated that QPTs can occur in
systems involving just a single atom interacting with a
cavity field. These include the Jaynes-Cummings model
(under the rotating wave approximation) [9] and the Rabi
model (without the rotating wave approximation) [14].
Recent experiments have confirmed the occurrence of
QPTs in the Rabi model using a trapped ion in a Paul trap
[15], where the spin-up state population and the average
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phonon number of the ion were measured as order
parameters.

From a computational standpoint, a fully quantum
mechanical treatment of QPTs is often complex and
mathematically intensive [9,14]. Despite the advantages
of this approach—such as probing superradiant QPT
dynamics [16], excited-state quantum phase transitions
[17], and dissipative phase transitions [18]—a semi-
classical approach can provide valuable insights,
especially for more intricate systems like the quantum
Dicke model, where multiple qubits interact with a cavity
field. In this context, the TDVP [19] has emerged as a
powerful method to describe quantum evolution. TDVP
has been successfully applied in various domains,
including open quantum systems [20] and quantum neural
networks [21].

In this paper, we utilize TDVP to investigate QPTs by
analyzing the ground-state energy of several models. We
begin with the Rabi model, where non-conservative terms
are retained. Next, we study the Jaynes-Cummings model.
Finally, we extend our approach to the Dicke model,
involving an arbitrary number of qubits interacting with a
single cavity mode. Our results reveal evidence of phase
transitions in the ground states of these models.

The remainder of the paper is organized as follows.
Section 2 investigates the Rabi model. Section 3 addresses
the Jaynes-Cummings model. In Section 4, we apply the
proposed method to the Dicke model. Finally, Section 5
concludes the paper with a summary of our findings.

2. Rabi Model
Consider a system in which a qubit with transition
frequency @, is interacting with a single-mode of a high-

Q cavity in the Rabi model. The Hamiltonian describing
the whole system is written as (7 =1)

A

H o = %a +o,a'a+A(A+4")6,, )
where &, :‘T><T‘_‘¢><¢‘ is the population inversion

operator of the qubit with transition frequency @, . @,
represents the frequency of the cavity quantized mode.
6,=6,+6_ with &, = "]‘><¢‘ (6_= ‘¢><T‘) denotes

the raising (lowering) operator for the qubit, while & (é\T
) is the annihilation (creation) operators of the cavity
mode. Finally, A represents the coupling strength of the
interaction of the qubit with the cavity mode. Although

the total number of excitations N, = 4'4+ 6,6 isnot

conserved in quantum Rabi model due to the presence of
the counter-rotating terms, there is a z, symmetry by

which the parity operator

A in[a a+(2)(i +6‘Z):|

Il=e @
commutes with the Hamiltonian, i.e., [f[, H Rabi J= 0, and

therefore it is conserved. This corresponds to the
simultaneous replacement of & > —a and & > —Jy

. Here, we intend to investigate the presence of a quantum

phase transition based on a semi-classical method, TDVP.
We investigate the possibility of phase transition by
studying the ground state of the Rabi Hamiltonian. To
apply the Time-Dependent Variational Principle (TDVP),
we use a factorized ansatz for the wavefunction. This
ansatz assumes a product of a coherent state for the
bosonic mode and a variational spinor state for the qubit.
The form is inspired by the semiclassical nature of TDVP
and is particularly suited to capturing key features of the
ground-state behavior. While the ansatz appears in similar
form in all three models discussed (Rabi, Jaynes-
Cummings, and Dicke), it is contextually adapted to the
Hamiltonian and system size of each. For this reason, we
relabel the ansatz as equations (3), (19), and (31) for
clarity and convenience, even though their mathematical
structure is nearly identical. Accordingly, we consider an
ansatz

v () = e°Cfa ) 2(V), 3)

_la@®P? n At
ay=e 2 ¥ A o) is the
coherent state of the cavity field,
| 2(0) = cos[o(t)/2] ) +sin[o(t)/21e? V) is  the
normalized spin state and S(t) is a phase to be
determined. In this relation 0<@# <7 and 0<@P<2r.

Then, using time-dependent Schrddinger equation, we
have

in which,

(O ®) = (O Fras v ©), @
After some straightforward calculations we obtain

S = [Lt)dt 5)
in which L(t) is the (semi-classical) Lagrangian

associated to the system which takes the form
. d
Lt) =i 2] ) 20) ©)

= Hpai (05,0‘*,‘9:9’5)-
Here
Hrapi(a o ,0,6) = (a®)|( x(t)|Hrapi|a®) z()) is
the expectation value of the Hamiltonian with respect to
the state (3). The set of variables {«, a*, 6, ¢} introduces

the trajectories a(t), a*(t), O(t) and ¢(t) [19].

This expression for the Lagrangian arises from the
application of the Time-Dependent Variational Principle
(TDVP), which states that the best approximation to the
quantum dynamics within a chosen variational manifold
is obtained by minimizing the action

s=| dt[(w(t)li%IW(tD—(w(t)l H It//(t)>J-
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Figure 1. The solution for € as a function of g . For g<l1,
there is no real solution for 4.
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Figure 2. The cavity photon number of the ground state of
Rabi model.

Substituting the variational ansatz into this expression
yields the effective Lagrangian

L® =1y O] v O) - O]A [y ),

which governs the dynamics of the variational parameters.
This semi-classical treatment provides a tractable
approximation to the full quantum evolution, while still
capturing key features such as ground-state transitions
and critical behavior.

The Lagrangian (6) can be written as a function of these
trajectories as follow [19]

L(t) = %a(t)a*(t) —%o’i‘(t)a(t) — (t)sin?(0()/2) 0
— Heyi (1), @ (1), 6(1), 4(1)).

According to the principle of least action, the equations of
motion for the actual trajectories are obtained from

. . d oL oL _
Lagrange equations of motions (———-— =0,
dt 6d; 0o
q e{a.a”,0,4}) as follow
¢ = —i(aaw, + Acosgsing), ®)
& = i(a*a)c + ﬂcos;zﬁsin&), )

0=-2sing(a+a"), (10)

$ = w, —2Acosg(a +a)cot. (11)
We are interested in the stationary solution of the above
equations of motion. From equations (8) and (9) we obtain

« _ _Acosgsing

a=a = (12)

a)C
Then, Eq. (10) at the stationary state leads to the following
equation

2%sin@sin(2¢) _ 0

W

which means that sin(2¢) =0 or Sin@=0. Let us
consider the first case, i.e, Sin(2¢) = 0 which gives rise
to ¢ =mz2. Finally, from Eqg. (11), one can easily
observe that for ¢ = (2n+1)2, Eq. (11) leads to

w; = 0 which is not a physical result. On the other hand,

, (13)

for values ¢ = Nz an analytical expression for € at the
stationary state may be obtained as follow

77(1+ g° cosH)= 0, (14)
in which we have used the dimensionless coupling

strength g = 24/\/@,@, where 1 is the frequency

ration as 77 = a)z/a)c [14]. The introduction of g allows

us to rescale the Hamiltonian in a way that reveals
universal features of the quantum phase transition,
independent of absolute frequency values. This form also
ensures the critical point occurs at g = 1, simplifying the
analysis of ground state behavior and phase boundaries. It
is evident that regardless of 7, Eg. (14) has no real

solution for g <1, however, for g >1 the analytical
solution is

6 = cos*(-1/g°). (15)
This indicates a quantum phase transition locating at
g =1. According to the above solution, 7/2< 60 <,
in which, the upper bound for € is obtained at g =1

which corresponds to the spin state |;(> = H«> up to a

global phase (see figure 1). On the other hand, for large

values of 9 , @ — 72 . This leads a superposition of the
ground and the excited state for the qubits, i.e.,

1 0 n
2)=—=T)+D i).
7=y
In this scenario, the number of photons in the cavity
becomes proportional to 7= @,/@.. This means a

superradiance occurrence in the number of the photons in
the cavity in the ground state of the system. Explicitly, the

cavity photon number n. :|a|2 takes the following
analytical expression

1
N. :%(92 _?j (16)
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Figure 3. The ground state energy of the Rabi model i.e.,

Eg (topplot) and d 2EG /d92 (bottom plot) versus @ .

which is greater than zero for g >1. Figure 2 illustrates
the behaviour of n; as a function of g for several values
of 7. It is evident the quantum phase transition at the
critical value g = g; =1.

It is also interesting to investigate the ground state energy
based on the presented method. The ground state energy
of the  system may be  obtained via

Eg(9) = (w|HRapilw) which takes the following
analytical expression for g >1

EG(9)=—%(92+9‘2) (9>1). (17)

We should point out that the above relation is valid only
for g >1, i.e., the superradiant phase. In order to find the

relevant expressions for g <1, i.e., normal phase, we
observe that the other solution for Eq. (13) is Sin@ =0
which gives riseto 8 =0 and = . For both values of 6,
we have N, =0. However, & = 7 is the correct answer.

This is because for @ = 7 the ground state of the system
is obtained, i.e., |0>‘~L> . Then the ground state energy of

the system is obtained as Eg = —,/2 for g <1 which
indicates the normal phase. According to figure 3, while
EG (as well as its first derivative with respectto Q) is

2
Ec
dg2

continues, there exists a discontinuity in atg=1

indicating a second-order quantum phase transition.

3. Jaynes-Cummings Model

We now turn into a model in which the qubit is interacting
with a single-mode of a high-Q cavity in the Jaynes-
Cummings model via the following Hamiltonian (% =1
):

A

Hy = %a +wala+ a6, +a'6), (19
On the contrary to Rabi model, the conserved total
number of excitations Niq; = éTé+6'+6'_ implies the
U (1) -continuous symmetry, according to which, only

‘n+1,¢><—>‘n,1‘> (or

the transitions

‘n,¢> ‘ n —1,T> ) are allowed. However, we emphasis

that in the view of occurring QPT we allow the system to
break the U (1) -continuous symmetry, i.e., transitions

‘n,¢> <~ ‘ n,T> and etc. are also allowed.

Therefore, we should expect that the conservation of total
number of excitations is not hold any more. We adopt the
same variational ansatz as in the previous section, with the
parameters now adapted to the Jaynes-Cummings
Hamiltonian:

w (1)) = e®Ola®))| 2(1), (19)

e ®)? 2" (@)
: )
zn=o—n| ‘0) is the

in which,

a(t)> =e
coherent state of the cavity field,
| 2(t)) = cos[o)/2] 1) +sin[O(t)/2]e "L} is  the

normalized spin state and S(t) is a phase to be

determined. Again, using time-dependent Schrddinger
equation, we have

(O 5w 0) = (W OIRJy ), (20)

The same procedure will lead to similar equations of
motion for relevant parameters, however in this case

L@t = i<a(t)\<x(t)\%\a(t)>\)c(t)> CHy(aa' 0.4, (D)

where,

Hic(a,a,0,¢) = (a)( 2 (0)[Hic|a®) 2(1)) is the
expectation value of the Hamiltonian with respect to the
state (19). According to the principle of least action, the
equations of motion for the actual trajectories are obtained

. . d oL oL
from Lagrange equations of motions (———-—=0,
tog;  oq;
in which g; e{a,a*,9,¢}) as follow
a= —% i(Zaa)C + e sin 6’), (22)
o = %i(Za*a)C + €' sin 0) (23)
0= iﬂ(ei¢a—e_i¢a*) (24)

$=w, - i(ei"’a +e " )cot 6. (25)
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We are interested in the stationary solution of the above
equations of motion. From Egs. (22) and (23), we obtain

e’ 1sing (26)

20,

a=(") =-

Finally, from Eg. (25), the equation of motion for € as
the stationary state is obtained

o, (1+ g’ cos@): 0, 27)
in which we have used the dimensionless coupling
strength 9" = A/ J@.m, [9]. We also introduce the

frequency ratio 77 = a)Z/a)C which provides a normalized

measure of the interaction strength relative to the qubit
frequency. As in the Rabi model, this rescaling simplifies
the analytical treatment and highlights the universal
nature of the critical behavior. Although the Jaynes-
Cummings model is integrable and has different
symmetry properties, we find that a critical value g’ =1
also marks the onset of quantum criticality in the
semiclassical treatment. It is evident that regardless of 7
, Eq. (27) has no real solution for g' <1, however, for

g’ >1 the analytical solution is
6 = cos*(-1/g"?). (28)

This indicates a quantum phase transition locating at
g’ =1. According to the above solution, 772 <& < 7, in

which, the upper bound for @ is obtained at g’ =1 which
corresponds to the spin state |;g> = ‘~L> up to a global

phase. In order to investigate the presence of quantum
phase transition, we should point out that with the optimal
value for @, we have the following expression for o :

e V(0 —-97")

“ T 24 : ’ (29)
o = i N1(97-97)
n .

By comparing the above two equations, we observe that

the factor \/77(92 —g~2) must be real. This means that

for g<1, a=0. Then, according to Eq. (26),
sin@ =0 for g <1. Similar to the Rabi model, only

0 = r leads to the correct ground state of the system in
normal phase g <1.

4. Dicke Model

Now we are in the position to study a more general model,
i.e., Dicke model which describes a single bosonic mode
interacting collectively with a set of N qubits via the
following Hamiltonian (% = 1):

Hpike = @59, +a)CaTa+i(a+aT)JX, (30)

JIN

u
in which J,, = Zszl%’ with @ =1,2,3. As in the

previous models, we adopt a time-dependent variational
ansatz combining a bosonic coherent state with a spin-
coherent state that captures the collective behavior of the
N qubits. While structurally similar to the earlier ansatz
forms, this version is tailored to the Dicke Hamiltonian
and incorporates collective spin degrees of freedom.
Therefore, we adopt the following ansatz

(1)) =e°O|a(t)) o), 4@)), (31)

in which |6,¢> is the normalized spin coherent state
which is defined as

J
1 4
0,¢)= +1J,=J),
| ¢> (1+|r|2Je | > (32)

where |J,-J) :®|N=1“L>| is the eigenstate of J, with

eigenvalue —J with J = N/2 . Also
r=e"tan (gj 33)

Again the time-dependent Schrédinger equation leads us
to the similar equation of motion with

L(t) = i<a(t)|<z(t)|%|a(t)>lz(t)>

_HDicke(a’a*’9’¢)i

(34)

where,

Hpioke (@@, 6,6) = () 2(®) H pigke| 2(®))] 2(1)) -
According to the principle of least action, the equations of
motion for the actual trajectories are obtained from

, . d oL oL .
Lagrange equations of motions (————=0, in
dt og; oq;
which g, e{a, ", 6,4} ) as follow
. A .
o = w.a +—JSINBCosy, 35
e IN ¢ (35)
- * * 2« -
—la =w.a +——JSsIN@cosy, (36)
C \/W ¢
0= i(05+0¢*)Sin¢, (37)

JN

1 . A .
)= ——| wJsind——==J(a+a")cosOcosp|. (38)
773 sinH{ : JIN ( ) (0]

Then, at the stationary state, from Eq. (37) we obtain
¢ =k with k € Z. Then Egs. (35) and (36) lead to

a=a =- sing(=1) . (39)

Ad
VN,
Finally, from Eq. (38), we obtain the following equation
of motion for & as the stationary state

(1+ g 2cose)J sin@ =0, (40)
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in which 9" =A/\J@.®, [9]. We also introduce the
frequency ratio 77 = a)Z/a)c. Again, it is evident that

regardless of 77, Eq. (40) has no real solution for ¢ , <1
, however, for g’ >1 the analytical solution is

6 =cos (-1/ g, ). (41)
This indicates a quantum phase transition locating at
g' =1. According to the above solution, 72 <0<,
in which, the upper bound for @ is obtained at g’ =1
which corresponds to the spin coherent state |J , —J> up

to a global phase. In order to investigate the presence of
quantum phase transition, we should point out that with
the optimal value for &, we have the following
expression for ¢ :

a:a*:_J\/%(g'z_g'—Z)(_]_)k’ (42)

By comparing the above two equations, we observe that

the factor \/%(g 2_g ) mustbe real. This means

that for ¢ <1, a =0. Then, according to Eq. (39),

’
sin@=0 for g <1. Similar to the Rabi model, only
6 = 7 leads to the correct ground state of the system in

normal phase g <1.

The semi-classical approach based on the time-dependent
variational principle successfully captures the quantum
phase transition in the Dicke model. The results are
consistent with the expected superradiant behavior and
demonstrate the critical role of collective interactions in
driving the phase transition. This framework provides a
foundation for exploring more complex models and their
experimental realizations.

5. Conclusion

In this study, we utilized the Time-Dependent Variational
Principle to explore gquantum phase transitions in three
cornerstone models of cavity quantum electrodynamics:
the Rabi model, the Jaynes-Cummings model, and the
Dicke model. By leveraging a semi-classical approach,
we derived effective equations of motion and analyzed the
stationary solutions to uncover critical behaviours in the
ground state properties of these systems. Our findings
shed light on the mechanisms underlying QPTS, offering
both theoretical insights and practical implications for
quantum technologies.

For the Rabi model, we identified a critical coupling
strength where a second-order quantum phase transition
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