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Abstract 

Phase transitions are fundamental phenomena in physics, characterized by abrupt changes in the properties of a system. 

While classical phase transitions occur due to thermal fluctuations, quantum phase transitions (QPTs) are driven by 

quantum fluctuations at zero temperature. In this work, we explore the presence of QPTs in cavity quantum 

electrodynamics systems using the Time-Dependent Variational Principle (TDVP), a semi-classical approach for 

analyzing complex quantum systems. Beginning with the Rabi model, where a single qubit interacts with a single-mode 

cavity field, we examine the influence of counter-rotating terms on the system's ground state properties. Subsequently, 

we extend our analysis to the Jaynes-Cummings model, where rotating-wave approximation applies, and finally, to the 

Dicke model, which considers the collective interaction of multiple qubits with a bosonic mode. For each model, we 

derive analytical expressions for the ground state properties and identify critical coupling strengths indicative of phase 

transitions. Our findings reveal second-order quantum phase transitions, including superradiant phases with distinct 

ground state behaviors, emphasizing the utility of TDVP in understanding QPTs across a variety of systems. 

Keywords: time-dependent variation principle, Hamiltonian, quantum phase transition, qubit 

1. Introduction 

A phase transition typically refers to a fundamental 

change in the state of a system, characterized by an abrupt 

shift in one of its parameters, known as the order 

parameter [1]. Familiar examples include the melting of 

ice, the loss of ferromagnetism, and superfluid-Mott 

insulator phase transitions in optical lattices [2]. Other 

phenomena, such as liquid crystals [3], Bose-Einstein 

condensates [4], and superconductivity [5], also 

exemplify such transitions. Classical phase transitions are 

driven primarily by thermal fluctuations and are 

associated with singularities in thermodynamic quantities 

[6]. These transitions are marked by macroscopic order, 

such as crystal structures or magnetization [7]. The order 

of the transition is determined by the lowest derivative of 

the free energy that exhibits a discontinuity. Based on this 

criterion, phase transitions are classified into two 

categories: first-order transitions, where the first 

derivative of the free energy is discontinuous, and second-

order (or continuous) transitions, where the first 

derivatives are continuous, but the second derivatives are 

discontinuous [2]. 

While classical phase transitions typically occur at finite 

temperatures, QPTs occur at absolute zero and are driven 

by quantum fluctuations. These transitions result in 

ordering of the system's ground-state properties and are 

often accompanied by spontaneous symmetry breaking 

[8]. QPTs play a vital role in understanding fundamental 

phenomena such as phases of matter, mass generation in 

high-energy physics, magnetism, and superconductivity 

[9]. Moreover, they have practical significance in 

condensed matter systems, including magnetic insulators, 

heavy-fermion compounds, high-temperature 

superconductors, and two-dimensional electron gases [9]. 

Theoretically [10] and experimentally [11], QPTs have 

been shown to typically occur in the thermodynamic limit, 

where the number of two-level atoms in the system 

becomes very large. This phenomenon is often described 

using models like the Dicke model [12] or the Lipkin-

Meshkov-Glick model [13]. However, it has also been 

theoretically demonstrated that QPTs can occur in 

systems involving just a single atom interacting with a 

cavity field. These include the Jaynes-Cummings model 

(under the rotating wave approximation) [9] and the Rabi 

model (without the rotating wave approximation) [14]. 

Recent experiments have confirmed the occurrence of 

QPTs in the Rabi model using a trapped ion in a Paul trap 

[15], where the spin-up state population and the average 
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phonon number of the ion were measured as order 

parameters. 

From a computational standpoint, a fully quantum 

mechanical treatment of QPTs is often complex and 

mathematically intensive [9,14]. Despite the advantages 

of this approach—such as probing superradiant QPT 

dynamics [16], excited-state quantum phase transitions 

[17], and dissipative phase transitions [18]—a semi-

classical approach can provide valuable insights, 

especially for more intricate systems like the quantum 

Dicke model, where multiple qubits interact with a cavity 

field. In this context, the TDVP [19] has emerged as a 

powerful method to describe quantum evolution. TDVP 

has been successfully applied in various domains, 

including open quantum systems [20] and quantum neural 

networks [21]. 

In this paper, we utilize TDVP to investigate QPTs by 

analyzing the ground-state energy of several models. We 

begin with the Rabi model, where non-conservative terms 

are retained. Next, we study the Jaynes-Cummings model. 

Finally, we extend our approach to the Dicke model, 

involving an arbitrary number of qubits interacting with a 

single cavity mode. Our results reveal evidence of phase 

transitions in the ground states of these models. 

The remainder of the paper is organized as follows. 

Section 2 investigates the Rabi model. Section 3 addresses 

the Jaynes-Cummings model. In Section 4, we apply the 

proposed method to the Dicke model. Finally, Section 5 

concludes the paper with a summary of our findings. 

2. Rabi Model 

Consider a system in which a qubit with transition 

frequency z  is interacting with a single-mode of a high-

Q cavity in the Rabi model. The Hamiltonian describing 

the whole system is written as ( )1=  

,ˆ)ˆˆ(ˆˆˆ
2

=ˆ ††

Rabi xcz
z aaaaH 


+++  (1) 

where −=ˆ
z  is the population inversion 

operator of the qubit with transition frequency z . c  

represents the frequency of the cavity quantized mode. 

−+ + ˆˆ=ˆ
x

 with + =̂  ( − =̂ ) denotes 

the raising (lowering) operator for the qubit, while â  (
†â

) is the annihilation (creation) operators of the cavity 

mode. Finally,   represents the coupling strength of the 

interaction of the qubit with the cavity mode. Although 

the total number of excitations 
−++  ˆˆˆˆ=ˆ †

tot aaN  is not 

conserved in quantum Rabi model due to the presence of 

the counter-rotating terms, there is a 
2Z  symmetry by 

which the parity operator 





 ++


)ˆˆ(1/2)(ˆ†ˆ

=ˆ zIaai
e


 (2) 

commutes with the Hamiltonian, i.e.,   0=ˆ,ˆ RabiH , and 

therefore it is conserved. This corresponds to the 

simultaneous replacement of aa ˆˆ −  and xx  ˆˆ −
. Here, we intend to investigate the presence of a quantum 

phase transition based on a semi-classical method, TDVP. 

We investigate the possibility of phase transition by 

studying the ground state of the Rabi Hamiltonian. To 

apply the Time-Dependent Variational Principle (TDVP), 

we use a factorized ansatz for the wavefunction. This 

ansatz assumes a product of a coherent state for the 

bosonic mode and a variational spinor state for the qubit. 

The form is inspired by the semiclassical nature of TDVP 

and is particularly suited to capturing key features of the 

ground-state behavior. While the ansatz appears in similar 

form in all three models discussed (Rabi, Jaynes-

Cummings, and Dicke), it is contextually adapted to the 

Hamiltonian and system size of each. For this reason, we 

relabel the ansatz as equations (3), (19), and (31) for 

clarity and convenience, even though their mathematical 

structure is nearly identical. Accordingly, we consider an 

ansatz  

,)()(=)( )( ttet tiS   (3) 

in which, 0
!

)ˆ()(
=)(

†

0=
2

2|)(|

n

at
et

nn

n

t







−

 is the 

coherent state of the cavity field, 

+ )()/2]([sin)/2]([cos=)( tiettt   is the 

normalized spin state and )(tS  is a phase to be 

determined. In this relation  0  and  20  . 

Then, using time-dependent Schrödinger equation, we 

have  

.)(ˆ)(=)()( Rabi tHtt
dt

d
ti   (4) 

After some straightforward calculations we obtain 

ttLtS
t

 d)(=)(
0

  (5) 

in which )(tL  is the (semi-classical) Lagrangian 

associated to the system which takes the form 

).,,,(

)()()()(=)(

*
Rabi 



H

tt
dt

d
ttitL

−

 (6) 

Here 

)()(ˆ)()(=),,,( Rabi
*

Rabi ttHttH   is 

the expectation value of the Hamiltonian with respect to 

the state (3). The set of variables },,,{ *   introduces 

the trajectories )(t , )(* t , )(t  and )(t  [19]. 

This expression for the Lagrangian arises from the 

application of the Time-Dependent Variational Principle 

(TDVP), which states that the best approximation to the 

quantum dynamics within a chosen variational manifold 

is obtained by minimizing the action 

ˆ( ) ( ) ( ) ( ) .
d

S dt t i t t H t
dt

   
 
 = −  
 

  
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Figure  1.  The solution for   as a function of g . For 1<g , 

there is no real solution for  . 

 

Figure  2.  The cavity photon number of the ground state of 

Rabi model. 

Substituting the variational ansatz into this expression 

yields the effective Lagrangian 

ˆ( ) ( ) ( ) ( ) ( ) ,
d

L t i t t t H t
dt

   = −  

which governs the dynamics of the variational parameters. 

This semi-classical treatment provides a tractable 

approximation to the full quantum evolution, while still 

capturing key features such as ground-state transitions 

and critical behavior. 

The Lagrangian (6) can be written as a function of these 

trajectories as follow [19] 

( )

)).(),(),(),((

)/2(sin)()()(
2

)()(
2

=)(

*
Rabi

2**

ttttH

tttt
i

tt
i

tL





−

−−   (7) 

According to the principle of least action, the equations of 

motion for the actual trajectories are obtained from 

Lagrange equations of motions ( 0,=
ii q

L

q

L

dt

d




−






    

},,,{ * iq ) as follow   

( ),sincos=  +− ci  (8) 

( ),sincos= **  +ci  (9) 

),(sin2= * +−  (10) 

.cot)(cos2= *  +−z
  (11) 

We are interested in the stationary solution of the above 

equations of motion. From equations (8) and (9) we obtain  

.
sincos

== *

c


 −  (12) 

Then, Eq. (10) at the stationary state leads to the following 

equation 

0,=
)(2sinsin2 2

c


 (13) 

which means that 0=)(2sin   or 0=sin . Let us 

consider the first case, i.e, 0=)(2sin   which gives rise 

to /2=  m . Finally, from Eq. (11), one can easily 

observe that for /21)(2=  +n , Eq. (11) leads to 

0=z  which is not a physical result. On the other hand, 

for values  n=  an analytical expression for   at the 

stationary state may be obtained as follow 

( ) 0,=cos1 2  g+  (14)  

in which we have used the dimensionless coupling 

strength zcg /2=  where   is the frequency 

ration as cz  /=  [14]. The introduction of 𝑔 allows 

us to rescale the Hamiltonian in a way that reveals 

universal features of the quantum phase transition, 

independent of absolute frequency values. This form also 

ensures the critical point occurs at 𝑔 = 1, simplifying the 

analysis of ground state behavior and phase boundaries. It 

is evident that regardless of  , Eq. (14) has no real 

solution for 1<g , however, for 1g  the analytical 

solution is 

).1/(cos= 21 g−−  (15) 

This indicates a quantum phase transition locating at 

1=g . According to the above solution,  /2 , 

in which, the upper bound for   is obtained at 1=g  

which corresponds to the spin state =  up to a 

global phase (see figure 1). On the other hand, for large 

values of 
g

, /2 → . This leads a superposition of the 

ground and the excited state for the qubits, i.e., 

( )−+ n1)(
2

1
= . 

In this scenario, the number of photons in the cavity 

becomes proportional to cz  /= . This means a 

superradiance occurrence in the number of the photons in 

the cavity in the ground state of the system. Explicitly, the 

cavity photon number 
2|=|cn  takes the following 

analytical expression 









−

2

2 1

4
=

g
gnc


 (16) 
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Figure  3.  The ground state energy of the Rabi model i.e., 

GE  (top plot) and 
22 dgEd G  (bottom plot) versus g . 

which is greater than zero for 1g . Figure 2 illustrates 

the behaviour of cn  as a function of g  for several values 

of  . It is evident the quantum phase transition at the 

critical value 1== cgg . 

It is also interesting to investigate the ground state energy 

based on the presented method. The ground state energy 

of the system may be obtained via 

 Rabi
ˆ=)( HgEG  which takes the following 

analytical expression for 1g   

( ) 1).(,
4

=)( 22 +− − ggggE z
G


 (17) 

We should point out that the above relation is valid only 

for 1g , i.e., the superradiant phase. In order to find the 

relevant expressions for 1g , i.e., normal phase, we 

observe that the other solution for Eq. (13) is 0=sin   

which gives rise to 0=  and  . For both values of  , 

we have 0=cn . However,  =  is the correct answer. 

This is because for  =  the ground state of the system 

is obtained, i.e., 0 . Then the ground state energy of 

the system is obtained as /2= zGE −  for 1<g  which 

indicates the normal phase. According to figure 3, while 

GE  (as well as its first derivative with respect to g ) is 

continues, there exists a discontinuity in 
2

2

dg

Ed G  at 1=g  

indicating a second-order quantum phase transition.  

3. Jaynes-Cummings Model 

We now turn into a model in which the qubit is interacting 

with a single-mode of a high-Q cavity in the Jaynes-

Cummings model via the following Hamiltonian ( 1=
): 

),ˆˆˆˆ(ˆˆˆ
2

=ˆ ††
JC −+ +++ 


aaaaH cz

z  (18) 

On the contrary to Rabi model, the conserved total 

number of excitations −++  ˆˆˆˆ=ˆ †
tot aaN  implies the 

(1)U -continuous symmetry, according to which, only 

the transitions + ,1, nn  (or 

− 1,, nn ) are allowed. However, we emphasis 

that in the view of occurring QPT we allow the system to 

break the (1)U -continuous symmetry, i.e., transitions 

 ,, nn  and etc. are also allowed. 

Therefore, we should expect that the conservation of total 

number of excitations is not hold any more. We adopt the 

same variational ansatz as in the previous section, with the 

parameters now adapted to the Jaynes-Cummings 

Hamiltonian: 
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 is the 

coherent state of the cavity field, 

+ )()/2]([sin)/2]([cos=)( tiettt   is the 

normalized spin state and )(tS  is a phase to be 

determined. Again, using time-dependent Schrödinger 

equation, we have  

.)(ˆ)(=)()( JC tHtt
dt

d
ti   (20) 

The same procedure will lead to similar equations of 

motion for relevant parameters, however in this case  

),,,,()()()()(=)( *
JC  Htt

dt

d
ttitL −  (21) 

where, 

)()(ˆ)()(=),,,( JC
*

JC ttHttH   is the 

expectation value of the Hamiltonian with respect to the 

state (19). According to the principle of least action, the 

equations of motion for the actual trajectories are obtained 

from Lagrange equations of motions ( 0,=
ii q

L

q

L

dt

d




−






 

in which },,,{ * iq ) as follow   

( ),sin2
2

1
=  i

c ei −+−  (22) 

( ),sin2
2

1
= **  i

c ei +  (23) 

( ),= *  ii eei −−  (24) 

( ) .cot= *   ii
z ee −+−

 
(25) 
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We are interested in the stationary solution of the above 

equations of motion. From Eqs. (22) and (23), we obtain 

.
2

sin
=)(= **

c

ie






−

−  (26) 

Finally, from Eq. (25), the equation of motion for   as 

the stationary state is obtained  

( ) 0,=cos1 2  gz
+  (27) 

in which we have used the dimensionless coupling 

strength zcg /=  [9]. We also introduce the 

frequency ratio cz  /=  which provides a normalized 

measure of the interaction strength relative to the qubit 

frequency. As in the Rabi model, this rescaling simplifies 

the analytical treatment and highlights the universal 

nature of the critical behavior. Although the Jaynes-

Cummings model is integrable and has different 

symmetry properties, we find that a critical value 1=g  

also marks the onset of quantum criticality in the 

semiclassical treatment. It is evident that regardless of 

, Eq. (27) has no real solution for 1<g , however, for 

1g  the analytical solution is  

).1/(cos= 21 g−−  (28) 

This indicates a quantum phase transition locating at 

1=g . According to the above solution,  /2 , in 

which, the upper bound for   is obtained at 1=g  which 

corresponds to the spin state =  up to a global 

phase. In order to investigate the presence of quantum 

phase transition, we should point out that with the optimal 

value for  , we have the following expression for  :  

.
4

)(
=

,
4

)(
=

22
*

22

−

−
−

−
−

−
−

gg
e

gg
e

i

i











 (29) 

By comparing the above two equations, we observe that 

the factor )( 22 −− gg  must be real. This means that 

for 1<g , 0= . Then, according to Eq. (26), 

0=sin   for 1<g . Similar to the Rabi model, only 

 =  leads to the correct ground state of the system in 

normal phase 1<g .  

4. Dicke Model 

Now we are in the position to study a more general model, 

i.e., Dicke model which describes a single bosonic mode 

interacting collectively with a set of N  qubits via the 

following Hamiltonian ( 1= ):  

,)(=ˆ ††
Dicke xczz Jaa

N
aaJH +++


  (30) 

in which 
2

=
1=









N
J , with 1,2,3= . As in the 

previous models, we adopt a time-dependent variational 

ansatz combining a bosonic coherent state with a spin-

coherent state that captures the collective behavior of the 

N qubits. While structurally similar to the earlier ansatz 

forms, this version is tailored to the Dicke Hamiltonian 

and incorporates collective spin degrees of freedom. 

Therefore,  we adopt the following ansatz  

,)(),()(=)( )( tttet tiS   (31) 

in which  ,  is the normalized spin coherent state 

which is defined as 
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||1
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



+
+


  (32) 

where 
l

N

l
JJ −  1=

=,  is the eigenstate of zĴ  with 

eigenvalue J−  with /2= NJ . Also  

.
2

tan= 






− 
 ie

 

(33) 

Again the time-dependent Schrödinger equation leads us 

to the similar equation of motion with  

),,,,(

)()()()(=)(

*
Dicke 



H

tt
dt

d
ttitL
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 (34) 

where, 

)()(ˆ)()(=),,,( Dicke
*

Dicke ttHttH  . 

According to the principle of least action, the equations of 

motion for the actual trajectories are obtained from 

Lagrange equations of motions ( 0,=
ii q

L

q

L

dt

d




−






 in 

which },,,{ * iq ) as follow   

,cossin= 


 J
N

i c +  (35) 

,cossin= ** 


 J
N

i c +−   (36) 

( ) ,sin= * 


 +
N

  (37) 

( )*1
= sin cos cos .

sin
z J J

J N


      



 
 − +  
   

(38)  

Then, at the stationary state, from Eq. (37) we obtain 

 k=  with Zk . Then Eqs. (35) and (36) lead to 

.1)(sin== * k

cN

J
−− 




  (39) 

Finally, from Eq. (38), we obtain the following equation 

of motion for   as the stationary state 

( )21 cos sin = 0,g J +  (40) 
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in which zcg /=  [9]. We also introduce the 

frequency ratio cz  /= . Again, it is evident that 

regardless of  , Eq. (40) has no real solution for < 1g 

, however, for 1g  the analytical solution is 

21= ( 1/ ).cos g − −  (41) 

This indicates a quantum phase transition locating at 

= 1g  . According to the above solution,  /2 , 

in which, the upper bound for   is obtained at 1=g  

which corresponds to the spin coherent state ,J J−  up 

to a global phase. In order to investigate the presence of 

quantum phase transition, we should point out that with 

the optimal value for  , we have the following 

expression for  :  

* 2 2= ( )( 1) ,kJ g g
N


  − = − − −  (42) 

By comparing the above two equations, we observe that 

the factor 
2 2( )g g

N

 − −  must be real. This means 

that for < 1g  , 0= . Then, according to Eq. (39), 

0=sin   for < 1g  . Similar to the Rabi model, only 

 =  leads to the correct ground state of the system in 

normal phase < 1g  . 

The semi-classical approach based on the time-dependent 

variational principle successfully captures the quantum 

phase transition in the Dicke model. The results are 

consistent with the expected superradiant behavior and 

demonstrate the critical role of collective interactions in 

driving the phase transition. This framework provides a 

foundation for exploring more complex models and their 

experimental realizations. 

5. Conclusion 

In this study, we utilized the Time-Dependent Variational 

Principle to explore quantum phase transitions in three 

cornerstone models of cavity quantum electrodynamics: 

the Rabi model, the Jaynes-Cummings model, and the 

Dicke model. By leveraging a semi-classical approach, 

we derived effective equations of motion and analyzed the 

stationary solutions to uncover critical behaviours in the 

ground state properties of these systems. Our findings 

shed light on the mechanisms underlying QPTs, offering 

both theoretical insights and practical implications for 

quantum technologies. 

For the Rabi model, we identified a critical coupling 

strength where a second-order quantum phase transition 

occurs. The inclusion of counter-rotating terms in the 

Hamiltonian led to the emergence of a superradiant phase 

characterized by macroscopic photon occupation in the 

cavity. This highlights the profound influence of counter-

rotating terms on the system's dynamics and their role in 

facilitating phase transitions. 

In the Jaynes-Cummings model, which incorporates the 

rotating-wave approximation, the analysis revealed 

similar quantum-critical phenomena. The study of this 

simplified model not only reinforced the results obtained 

for the Rabi model but also emphasized the effects of 

simplifying assumptions on the quantum phase transition 

behaviour. 

The Dicke model offered a more complex and general 

scenario, with multiple qubits collectively interacting 

with the bosonic mode. Our results demonstrated that the 

critical coupling strength decreases as the number of 

qubits increases, signifying the enhanced role of 

collective interactions in driving superradiant phases. We 

derived analytical expressions for the ground state 

properties, identifying a second-order quantum phase 

transition at a critical point where the system transitions 

from a normal to a superradiant phase. This provides 

valuable insights into the scalability of QPTs in many-

body systems. 

Additionally, our analysis underscores the role of the 

light-matter coupling strength as a key control parameter 

in experimental platforms, enabling the observation and 

manipulation of quantum phase transitions in cavity QED 

systems. 

The significance of these findings extends beyond the 

theoretical framework, as QPTs in light-matter systems 

have broad implications for the development of quantum 

technologies. Superradiant phases, for instance, hold 

promise for enhancing light-matter coupling in quantum 

information processing, quantum sensing, and quantum 

simulation. The use of TDVP in our study offers a robust 

and computationally efficient approach for exploring such 

complex phenomena, bridging the gap between exact 

quantum methods and practical semi-classical 

approximations. 

Looking forward, our work sets the stage for investigating 

more sophisticated models, such as systems with non-

Markovian environments, dissipative phase transitions, or 

multimode bosonic fields. Moreover, experimental 

realizations of these transitions, particularly in platforms 

such as trapped ions, superconducting qubits, and 

ultracold atomic gases, could provide direct validation of 

our theoretical predictions. By expanding our 

understanding of QPTs and their associated critical 

phenomena, this study contributes to advancing both 

fundamental science and the frontier of quantum 

technology applications. 
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