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Abstract 

Brown and Maclay [1] found the energy-momentum tensor for the Casimir effect of parallel plates in 1969. We find its 

curved spacetime version in a static background using the point splitting regularization method. Previous results in the 

literature are reinforced and some consequences discussed. 
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1. Introduction 

Some aspects of the final theory of quantum gravity may 

reveal themselves through a probable asymptotic theory 

such as quantum field theory in curved spacetime. The 

theory has predicted important phenomena such as 

Hawking radiation [2] and particle production in 

expanding universe [3] as well as the Casimir effect and 

radiation from accelerating conductors. The energy-

momentum tensor, occupies a crucial and central role in 

semi-classical approach to the theory of gravity [4,5]. 

On this ground, and after derivation of the energy 

momentum tensor for the Casimir effect of parallel plates 

in flat spacetime by Brwon and Maclay [1], the Casimir 

energy in curved spacetime has been studied by many 

authors investigating some physical notions such as weak 

principle of equivalence [6-10], quantum vacuum 

structure [11,12] and the question that whether the 

vacuum energy is responsible for the cosmological 

constant problem or not [13]? Some studies have been 

devoted to calculating the Casimir energy in a classical 

background [14-29] while few others concerning the full 

energy-momentum tensor [30-34]. 

In Ref. [33], the energy-momentum tensor has been 

derived and analysed in Fermi coordinates for a massless 

scalar field confined between two conducting parallel 

plates in the case of weak gravitational field. However, as 

is well-known and indicated in Ref. [32], there is no 

mathematically essential difference between Rindler 

spacetime and the Fermi coordinates in curved spacetime 

if we neglect curvature effects (see also equation (13.73) 

in Ref. [35]). In this paper, we find 𝑇𝜇𝜈 in a general static 

curved spacetime. Although it is a hard and tricky 

computation, it can be more efficiently presented using 

the point splitting method [4,36]. In section II, after 

defining our set up for the Casimir apparatus, we find the 

Green function using a method different from the one 

usually used by others. We find it more simply by 

employing the WKB method with the aid of a known 

theorem in the general theory of differential equations. In 

section III we compute the energy-momentum tensor 

using the point-splitting method. Then, the Casimir 

energy and force will be found. Taking advantage of the 

Wick rotation, we find the explicit type of the 

divergences. To check out consistency of the 

computations, we reinforce the previous results in the 

literature. Covariant conservation of the obtained 𝑇𝜇𝜈 is 

examined. A careful analysis of conformal invariance and 

trace anomaly is done in section IV. In section V, we 

provide some examples in support of the developed 

method. The final section is devoted to some discussions.  

2. The Green function 

 The apparatus is a system of two parallel plates separated 

by a small distance 𝑎 and located at distance 𝑅 from the 

source of the gravitational field. The scalar field is 

massless and arbitrarily coupled to gravity with Dirichlet 

boundary condition on plates. The spacetime metric is 

assumed to be  

𝑑𝑠2 = (1 + 2𝛾0 + 2𝜆0𝑧)𝑑𝑡2 − (1 + 2𝛾1 +  2𝜆1𝑧) × 

                                                 (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) (1) 

 Our motivation for using this type of metric is related to 

the fact that a typical gravitational potential can be 

expanded, up to second order perturbation, in the space 

between the plates as 𝐺𝑚/𝑐2𝑟 = 1 + 2𝛾0 + 2𝜆0𝑧+. .. where 

𝛾0 = −𝛾1 = −
𝐺𝑚

𝑐2𝑅
<< 1, 𝜆0𝑧 = −𝜆1𝑧 =

𝐺𝑚

𝑐2𝑅2 𝑧 << 1 [18]. 

Hereafter we assume 𝑐 = ℏ = 1. 

To regularize the energy-momentum tensor, we use the 

point splitting method. The energy-momentum tensor can 

 



106 Borzoo Nazari IJPR Vol. 25, No. 3 
 

be written according to the Hadamard two-point function 

which is related to the Feynman Green function by  

𝐻(𝑥, 𝑥′) =< [𝜙(𝑥), 𝜙(𝑥′)]+ >= 2𝐼𝑚  𝐺𝐹(𝑥, 𝑥′) (2) 

The Feynman Green function satisfies  

 (◻ −𝜉𝑅)𝐺𝐹(𝑥, 𝑥′) = −
𝛿(𝑥,𝑥′)

√−𝑔
. (3) 

Some calculations show that the Ricci scalar 𝑅 ≈ 𝑂(𝛾𝑖
2),

𝑖 = 0,1, hence should be neglected by now as we will 

compute everything up to second order perturbation only. 

This does not delete 𝜉 in the next calculations since it still 

presents in the energy momentum tensor. Thus we have  

𝜕𝜇(√−𝑔𝑔𝜇𝜈𝜕𝜈𝐺𝐹(𝑥, 𝑥′)) = −𝛿(𝑥, 𝑥′). (4) 

The planar symmetry of the apparatus in the directions 𝑥 

and 𝑦 makes it easier to work with the reduced Green 

function 𝐠𝐹(𝑧, 𝑧′) defined by [30]  

𝐺𝐹(𝑥, 𝑥′) = ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝐠𝐹(𝑧, 𝑧′)𝑒

−𝑖𝜔(𝑡−𝑡′)+𝑘⃗ ⊥.(𝑥 −𝑥′⃗⃗  ⃗)

= ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝑈(𝑥, 𝑦, 𝑧, 𝑡; 𝜔, 𝑘⃗⃖),

 (5) 

where  

𝑈 ≡ 𝐠𝐹(𝑧, 𝑧′)𝑒
−𝑖𝜔(𝑡−𝑡′)+𝑖𝑘⃗ ⊥.(𝑥 −𝑥′⃗⃗  ⃗), (6) 

and a Feynman contour is chosen in integration. Using the 

same relation as (5) for 𝛿(𝑥, 𝑥′) and expanding the left 

side of (4) we find  

√−𝑔𝑔11𝜕𝑧
2𝐠𝐹(𝑧, 𝑧

′) + 𝜕𝑧(√−𝑔𝑔11)𝜕𝑧𝐠𝐹(𝑧, 𝑧
′) − 

         √−𝑔𝑔11(𝑘⊥
2 +

𝑔11

𝑔00
𝜔2)𝐠𝐹(𝑧, 𝑧′) = −𝛿(𝑧 − 𝑧′). (7) 

Here we do not use the iterative procedure to find 𝐠(𝑧, 𝑧′), 

the perturbation method used in Ref.[30]. Instead, we use 

the general theory of differential equations and the 

following theorem [37]: 

Theorem 𝟏: The Green function for the differential 

equation   

𝑝0(𝑧)𝑦′′(𝑧) + 𝑝1(𝑧)𝑦′(𝑧) + 𝑝2𝑦(𝑧) = 𝑓(𝑧, 𝑧′), (8) 

which is defined on the interval [𝑎, 𝑏], along with the 

boundary conditions  

𝛼1𝑦(𝑎) = 𝛼2𝜕𝑧𝑦(𝑎), 𝛽1𝑦(𝑏) = 𝛽2𝜕𝑧𝑦(𝑏), (9) 

is given by   

𝐺(𝑥, 𝑥′) =
𝑌1(𝑧)𝑌2(𝑧′)

𝑊(𝑧′)𝑝0(𝑧′)
              𝑧 < 𝑧′ (10a) 

𝐺(𝑥, 𝑥′) =
𝑌1(𝑧′)𝑌2(𝑧)

𝑊(𝑧′)𝑝0(𝑧′)
              𝑧 > 𝑧′ (10b) 

in which 𝑌1(𝑧) and 𝑌2(𝑧) are two independent solutions 

of the corresponding homogeneous differential equation 

and 𝑊(𝑧) is the Wronskian of 𝑌1(𝑧), 𝑌2(𝑧). 

To find 𝑌1(𝑧) and 𝑌2(𝑧) we use the general solution to the 

homogenous part of (6) (see Ref.[25] equation (15))  

𝑌(𝑧) = 𝐷0 (1 − (
𝜆

2
+

𝑎

4𝑏
)𝑧) sin (√𝑏𝑧(1 +

𝑎

4𝑏
𝑧) + Θ0), (11) 

in which Θ0 and 𝐷0 are arbitrary constants to be 

determined by imposing the boundary conditions and   

𝑎 = −2𝐵𝜔2,    𝑏 = (1 − 2𝐴)𝜔2 − 𝑘⊥
2 ,   (12a) 

𝐴 = 𝛾0 − 𝛾1,    𝐵 = 𝜆0 − 𝜆1,    𝜆 ≡ 𝜆1 + 𝜆0. (12b) 

 

The Dirichlet boundary condition is given by  

𝐺𝐹(𝑧, 𝑧
′)|𝑧=0,𝑙 = 0. (13) 

According to (5), (9) and (10a)-(10b) this boundary 

condition is equivalent to  

𝑌1(0) = 0,     𝑌2(𝑙) = 0. (14) 

Therefore, it is found that   

𝑌1(𝑧) = (1 − (
𝜆

2
+

𝑎

4𝑏
) 𝑧) sin√𝑏 (𝑧 +

𝑎

4𝑏
𝑧2) ,       𝑧 < 𝑧′, (15a) 

𝑌2(𝑧) = (1 − (
𝜆

2
+

𝑎

4𝑏
) 𝑧) × 

               sin√𝑏 ((𝑧 − 𝑙) +
𝑎

4𝑏
(𝑧2 − 𝑙2)) , 𝑧 > 𝑧′. (15b) 

A computation shows that the Wronskian for 𝑌1 and 𝑌2 is 

given by  

𝑊(𝑧′) = (1 − 𝜆𝑧′)√𝑏sin√𝑏 (𝑙 +
𝑎

4𝑏
𝑙2). (16) 

Using 𝑝0(𝑧′) = √−𝑔𝑔11 ≃ −(1 + 𝛾0 + 𝛾1 + 𝜆𝑧′) we arrive 

at 

𝐠𝐹(𝑧, 𝑧′) = −
(1 − 𝛾0 − 𝛾1)(1 − 𝜖(𝑧 + 𝑧′))

√𝑏sin√𝑏 (𝑙 +
𝑎
4𝑏

𝑙2)
  sin (√𝑏𝑧 +

𝑎

4√𝑏
𝑧2) × 

              sin (√𝑏(𝑧′ − 𝑙) +
𝑎

4√𝑏
(𝑧′2 − 𝑙2)) ,         𝑧 < 𝑧′, (17a) 

𝐠𝐹(𝑧, 𝑧′) = −
(1 − 𝛾0 − 𝛾1)(1 − 𝜖(𝑧 + 𝑧′))

√𝑏sin√𝑏 (𝑙 +
𝑎
4𝑏

𝑙2)
sin(√𝑏𝑧′+

𝑎

4√𝑏
𝑧′

2
) × 

               sin (√𝑏(𝑧 − 𝑙) +
𝑎

4√𝑏
(𝑧2 − 𝑙2)) ,           𝑧′ < 𝑧. (17b) 

Notice that the above green function is symmetric due to 

the fact that the differential equation (7) is self-adjoint. In 

fact, the sufficient condition for (8) to be self-adjoint is 

that 
𝑑𝑝0(𝑧)

𝑑𝑧
= 𝑝1(𝑧) [38]. 

By expanding in terms of 𝑎, we finally find the green 

function up to second order perturbation as follows:   

𝐳 < 𝐳′: 

𝐠𝐹(𝑧, 𝑧′) =
1 − 𝛾0 − 𝛾1 − 𝜆(𝑧 + 𝑧′)

2√𝑏sin√𝑏 (𝑙 +
𝑎
4𝑏

𝑙2)
{𝑐𝑜𝑠(√𝑏𝛼) − 𝑐𝑜𝑠(√𝑏𝛽) 

+
𝑎

4√𝑏
((𝑧2 − 𝑧′2 + 𝑙2)𝑠𝑖𝑛(√𝑏𝛽) − (𝑧2 + 𝑧′2 − 𝑙2)𝑠𝑖𝑛(√𝑏𝛼))}, (18a) 

𝛼 = 𝑧 + 𝑧′ − 𝑙, 𝛽 = 𝑧 − 𝑧′ + 𝑙 = Δ𝑧 + 𝑙. (18b) 

To find 𝐠𝐹(𝑧, 𝑧′) for 𝑧 > 𝑧′ it suffices to do the 

interchange 𝑧 ↔ 𝑧′ as the green function is symmetric. 

3. The energy-momentum tensor 

The classical energy-momentum tensor of a scalar field in 

an arbitrary 𝑛-dimenstional spacetime is given by [4]:  

𝑇𝜇𝜈 = (1 − 2𝜉)𝜙;𝜇𝜙;𝜈 + (2𝜉 −
1

2
)𝑔𝜇𝜈𝜙

;𝜆𝜙;𝜆 − 2𝜉𝜙;𝜇𝜈𝜙 

            +
2

𝑛
𝜉𝑔𝜇𝜈𝜙 ◻ 𝜙 − 𝜉(𝐺𝜇𝜈 +

2(𝑛 − 1)

𝑛
𝜉𝑅𝑔𝜇𝜈)𝜙

2 

            +2[
1

4
− (1 −

1

𝑛
)𝜉]𝑚2𝑔𝜇𝜈𝜙

2,  (19) 

in which ◻= 𝑔𝛼𝛽𝜙;𝛼𝛽 and 𝐺𝜇𝜈  is the Einstein tensor. As 

is commonly known, the expectation value of this energy-

momentum tensor is divergent when evaluated at a typical 

point in curved spacetime. In fact, this is a typical 

behavior of the problems consisting of taking the 

expectation value of the operators quadratic in terms of 

the filed strength [4]. 

One can see [36] that after employing the point splitting 

method the enenergy-momentum tensor takes the form  

⟨𝑇𝜇𝜈⟩ = lim
𝑥′→𝑥

[(1 − 2𝜉)4(𝐺
  ;𝜇′𝜈

(1)
+ 𝐺

  ;𝜇𝜈′
(1)

) 

                +(𝜉 − 14)𝑔𝜇𝜈𝐺  ;  𝜎
(1)    𝜎′

− 𝜉2 (𝐺  ;𝜇𝜈
(1)

+ 𝐺
  ;𝜇′𝜈′
(1)

) 

                +𝜉8𝑔𝜇𝜈(𝐺  ;  𝜎
(1)    𝜎

+ 𝐺  ;  𝜎′
(1)    𝜎′

) + 𝜉2𝐺𝜇𝜈𝐺
(1) 

                +
3

4
𝜉2𝑅𝑔𝜇𝜈𝐺

(1) +
3𝜉−1

4
𝑚2𝑔𝜇𝜈𝐺

(1)]. (20) 

in which  

𝐺(1)(𝑥, 𝑥′) = 〈[𝜙(𝑥), 𝜙(𝑥′)]+〉 = 2𝐼𝑚  𝐺𝐹 , (21) 

is the Hadamard function and ; 𝜇′ denotes differentiation 

with respect to 𝑥′. The main idea behind the point splitting 

(point-separation) method is that we avoid taking the 

above limit by separating the points using the bivector 𝑃 
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which is responsible for the parallel transport of any 

tensor field from point 𝑥 to another distinct point 𝑥′ along 

a geodesy which connects 𝑥 to 𝑥′. Thus, for instance, we 

do the replacements such as  

lim
𝑥′→𝑥

𝐺  ;𝜇′𝜈
(1)

→ 𝑃𝜇
𝜇′

𝐺  ;𝜇′𝜈
(1)

, (22) 

in order to carry out the above limiting process. After the 

calculations done, 𝑃𝜇
𝜇′

 will be replaced by unity, i.e. by 

𝛿𝜇
𝜇

.   The bivector 𝑃𝜇
𝜈′

 is given by [33]  

𝑃  𝜈′
𝜇

= 𝑔𝜇𝜌𝜂𝑎𝑏𝑒  𝜌
𝑏 𝑒  𝜈′

𝑎 . (23) 

The normalized vielbeins 𝑒  𝜌
𝑏  for the metric (1) are  

𝑒  𝜇
0 = √𝑔00𝛿  𝜇

0 , 𝑒  𝜇
𝑖 = √|𝑔11|𝛿  𝜇

𝑖     𝑖 = 1,2,3. (24) 

Therefore, we find  

𝑃  𝜈′
𝜇

= (√
𝑔0′0′

𝑔00
, √

𝑔1′1′

𝑔11
, √

𝑔1′1′

𝑔11
, √

𝑔1′1′

𝑔11
). (25) 

Now, we return to (20). First, note that the last term in (20) 

which contains 𝐺𝜇𝜈  vanishes for the metric (1) as it is a 

second order term. By using (5) and the replacements like 

(22) we rewrite (20) for the massless case as  

〈𝑇𝜇𝜈〉 =
1

6
𝐼𝑚  ∫

𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[2(𝑃𝜇

𝜇′
𝑈  ;𝜇′𝜈 + 𝑃𝜈

𝜈′𝑈  ;𝜇𝜈′) − 𝑔𝜇𝜈𝑃𝜎′
𝜎𝑈;𝜎

    𝜎′ 

              −(𝑈  ;𝜇𝜈 + 𝑃𝜇
𝜇′
𝑃𝜈

𝜈′𝑈  ;𝜇′𝜈′) +
1

4
𝑔𝜇𝜈(𝑈;𝜎

    𝜎 + 𝑃𝜎
𝜎′𝑃𝜎′

𝜎𝑈;𝜎′
    𝜎′)] 

     +(𝜉 −
1

6
)𝐼𝑚  ∫

𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[−(𝑃𝜇

𝜇′
𝑈  ;𝜇′𝜈 + 𝑃𝜈

𝜈′𝑈  ;𝜇𝜈′) + 2𝑔𝜇𝜈𝑃𝜎′
𝜎𝑈;𝜎

    𝜎′ 

               −(𝑈  ;𝜇𝜈 + 𝑃𝜇
𝜇′
𝑃𝜈

𝜈′𝑈  ;𝜇′𝜈′) +
1

4
𝑔𝜇𝜈(𝑈;𝜎

    𝜎 + 𝑃𝜎
𝜎′𝑃𝜎′

𝜎𝑈;𝜎′
    𝜎′)]. (26) 

To find individual components of the above energy-

momentum tensor we need the Cristoffel symbols 

associated with the metric (1) as  

Γ00
3 = Γ03

0 = 𝜆0 + 𝑂(𝜖2),    Γ13
1 = Γ23

2 = Γ33
3 = −Γ11

3 =
−Γ22

3 = 𝜆1 + 𝑂(𝜖2), (27) 

and the following relations  
𝜕0𝑈 = −𝑖𝜔𝑈, 𝜕1𝑈 = −𝑖𝑘𝑥𝑈, 𝜕2𝑈 = −𝑖𝑘𝑦𝑈,

𝑈;00′ = 𝜔2𝑈, 𝑈;1′1 = 𝑘𝑥
2𝑈, 𝑈;2′2 = 𝑘𝑦

2𝑈, 𝑈;3′3 = 𝜕𝑧𝜕𝑧′𝑈,

𝑈;00 = −𝜔2𝑈 − 𝜆0𝜕𝑧𝑈, 𝑈;0′0′ = −𝜔2𝑈 − 𝜆0𝜕𝑧′𝑈,

𝑈;11 = −𝑘𝑥
2𝑈 + 𝜆1𝜕𝑧𝑈, 𝑈;1′1′ = −𝑘𝑥

2𝑈 + 𝜆1𝜕𝑧′𝑈,

𝑈;22 = −𝑘𝑦
2𝑈 + 𝜆1𝜕𝑧𝑈, 𝑈;2′2′ = −𝑘𝑦

2𝑈 + 𝜆1𝜕𝑧′𝑈,

𝑈;33 = 𝜕𝑧
2𝑈 − 𝜆1𝜕𝑧𝑈, 𝑈;3′3′ = 𝜕𝑧′

2𝑈 − 𝜆1𝜕𝑧′𝑈.

 (28) 

Before tending to find energy-momentum components, 

we need to compute scalars 𝑃𝜎′
𝜎𝑈;𝜎

    𝜎′ and 𝑈;𝜎
    𝜎 +

𝑃𝜎
𝜎′𝑃𝜎′

𝜎𝑈;𝜎′
    𝜎′ as follows. 

𝑃𝜎′
𝜎𝑈;𝜎

    𝜎′ = 𝑔0′0′√
𝑔0′0′

𝑔00
𝑈;00′ + 𝑔1′1′√

𝑔1′1′

𝑔11
{𝑈;11′ + 𝑈;22′ + 𝑈;33′}

= 𝑔00𝜔2𝑈 + 𝑔11(𝑘⊥
2𝑈 + 𝜕𝑧𝜕𝑧′𝑈),

 (29) 

in which we have used equations (30) and (33). The same 

calculation shows  

𝑈;𝜎
    𝜎 + 𝑃𝜎

𝜎′
𝑃𝜎′

𝜎 𝑈;𝜎′
    𝜎′

= 

𝑔00𝑈;00 + 𝑔11{𝑈;11 + 𝑈;22 + 𝑈;33} + 𝑔0′0′
𝑈;0′0′ + 

𝑔1′1′
{𝑈;1′1′ + 𝑈;2′2′ + 𝑈;3′3′} − 2𝑔00𝜔2𝑈 

−2𝑘⊥
2𝑔11𝑈 − 𝜆(𝜕𝑧 + 𝜕

𝑧′)𝑈 + 𝑔11(𝜕𝑧
2 + 𝜕

𝑧′
2 )𝑈.      (30) 

Note that in the above equation it is eligible to take 𝑥 →
𝑥′ after the differentiation is done.  

3.1  non-diagonal components 

The non-diagonal components of the 〈𝑇𝜇𝜈〉 vanish. For 

instance, we find 〈𝑇01〉. Since 𝑔0𝜇 = 0, the second and the 

last terms in (26) vanish. For the first and third terms, we 

see after using (6) and (28) that  

𝑃0
𝜇′

𝑈  ;𝜇′1 + 𝑃0
𝜈′

𝑈  ;1𝜈′ = 𝑃0
0′
(𝑈0′1 + 𝑈1′0) 

= (−𝜔𝑘𝑥𝑈 − 𝑘𝑥𝜔𝑈)  = −2𝑘𝑥𝜔𝑈, 

𝑈  ;01 + 𝑃0
𝜇′

𝑃1
𝜈′𝑈  ;𝜇′𝜈′ = 2𝑘𝑥𝜔𝑈,                                 (31) 

and arrive at  

〈𝑇01〉 = lim
𝑥′→𝑥

  2𝐼𝑚  ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[2𝑘𝑥𝜔𝑈] = 

2∫
−∞

+∞
𝑑𝑘𝑦 ∫

−∞

+∞
𝑑𝜔

1

(2𝜋)3
∫

−∞

+∞
𝑑𝑘𝑥[2𝑘𝑥𝜔𝑍(𝑧, 𝑧′)] = 0,    (32) 

since 𝜔 and 𝑍(𝑧, 𝑧′) are even functions in terms of 𝑘𝑥, 

hence the integrand in (32) is an odd function in terms of 

𝑘𝑥. 

 

3.2  computation of < 𝑻𝟎𝟎 > 

After using (26)-(30) we find  
⟨𝑇00⟩ = 
1

6
𝐼𝑚  ∫

𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[2(2𝜔2)𝑈 − 𝑔00{𝑔

00𝜔2𝑈 + 𝑔11(𝑘⊥
2𝑈 +

𝜕𝑧𝜕𝑧′𝑈)}  − (−2𝜔2𝑈 − 𝜆0(𝜕𝑧 + 𝜕𝑧′)𝑈)  

+
1

4
𝑔00(−2𝑔00𝜔2𝑈 − 2𝑘⊥

2𝑔11𝑈 − 𝜆(𝜕𝑧 + 𝜕𝑧′)𝑈

+ 𝑔11(𝜕𝑧
2 + 𝜕𝑧′

2 )𝑈)] 

+(𝜉 −
1

6
)𝐼𝑚  ∫

𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[−2𝜔2𝑈 + 2𝑔00{𝑔

00𝜔2𝑈 + 𝑔11(𝑘⊥
2𝑈

+ 𝜕𝑧𝜕𝑧′𝑈)} − (−2𝜔2𝑈 − 𝜆0(𝜕𝑧 + 𝜕𝑧′)𝑈) 

+
1

4
𝑔00(−2𝑔00𝜔2𝑈 − 2𝑘⊥

2𝑔11𝑈 − 𝜆(𝜕𝑧 + 𝜕𝑧′)𝑈 + 𝑔11(𝜕𝑧
2 +

 𝜕𝑧′
2 )𝑈)]                                                                                            (33)  

which can be written as follows  
〈𝑇00〉 = 
1

6
lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[
9

2
𝜔2 −

3

2

𝑔00

𝑔11

𝑘⊥
2 +

𝑔00

4𝑔11

(𝜕𝑧
2 + 𝜕𝑧′

2

− 4𝜕𝑧𝜕𝑧′) + 3𝜆0 − 𝜆14(𝜕𝑧 + 𝜕𝑧′)]𝐠𝐹 

+(𝜉 −
1

6
) lim

𝑧′→𝑧
𝐼𝑚 ∫

𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[
3

2
𝜔2 +

3

2

𝑔00

𝑔11

𝑘⊥
2

+
𝑔00

4𝑔11

((𝜕𝑧
2 + 𝜕𝑧′

2 ) + 8𝜕𝑧𝜕𝑧′) + 3𝜆0

− 𝜆14(𝜕𝑧 + 𝜕𝑧′)] 𝐠𝐹                         (34) 

  

Before doing integrations in the above equation, we need 

to find 𝐠𝐹 , (𝜕𝑧 + 𝜕𝑧′)𝐠𝐹 and 𝜕𝑧𝜕𝑧′𝐠𝐹 separately. After a 

careful calculation, we find up to second order 

perturbations in terms of 𝜆, 𝛾 (see Appendix A) 

𝐠𝐹 =
1

2
(𝑁 − 𝑀),  (35a) 

𝑀 = −(1 − 𝛾0 − 𝛾1)
𝑐𝑜𝑠(√𝑏𝛼)

√𝑏𝑠𝑖𝑛(√𝑏𝑙)

+
𝑎𝑙2

4𝑏

𝑐𝑜𝑠(√𝑏𝛼)𝑐𝑜𝑠(√𝑏𝑙)

𝑠𝑖𝑛2(√𝑏𝑙)
+ 

𝑎

4√𝑏
(𝑧2 + 𝑧′2 − 𝑙2)

𝑠𝑖𝑛(√𝑏𝛼)

√𝑏𝑠𝑖𝑛(√𝑏𝑙)
+ 2𝜖𝑧

𝑐𝑜𝑠(√𝑏𝛼)

√𝑏𝑠𝑖𝑛(√𝑏𝑙)
 (35b) 

𝑁 = −(1 − 𝛾0 − 𝛾1)
𝑐𝑜𝑠(√𝑏𝛽)

√𝑏𝑠𝑖𝑛(√𝑏𝑙)

+
𝑎𝑙2

4𝑏

𝑐𝑜𝑠(√𝑏𝛽)𝑐𝑜𝑠(√𝑏𝑙)

𝑠𝑖𝑛2(√𝑏𝑙)
+ 

𝑎

4√𝑏
(𝑧2 − 𝑧′2 + 𝑙2)

𝑠𝑖𝑛(√𝑏𝛽)

√𝑏𝑠𝑖𝑛(√𝑏𝑙)
+ 2𝜖𝑧

𝑐𝑜𝑠(√𝑏𝛽)

√𝑏𝑠𝑖𝑛(√𝑏𝑙)
, (35c) 

𝜖 =
𝜆

2
+

𝑎

4𝑏
.  (35d) 

and  
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(𝜕𝑧𝜕𝑧′)𝐠𝐹 = 𝜖
sin(√𝑏𝛼)

sin(√𝑏𝑙)
−

𝑎𝑧

2√𝑏
(
cos(√𝑏𝛼)

sin(√𝑏𝑙)
+

                         
cos(√𝑏𝛽)

sin(√𝑏𝑙)
) + 𝑏

𝑀+𝑁

2
, (36) 

(𝜕𝑧
2 + 𝜕𝑧′

2 )𝐠𝐹 = 𝜆
sin(√𝑏𝛼)

sin(√𝑏𝑙)
−

𝑎𝑧

√𝑏
(
cos(√𝑏𝛼)

sin(√𝑏𝑙)
−

cos(√𝑏𝛽)

sin(√𝑏𝑙)
)

+ 𝑏(𝑀 − 𝑁),                                              (37) 

𝜆1(𝜕𝑧 + 𝜕𝑧′)𝐠𝐹 =
−𝜆1

2 sin(√𝑏𝑙)
(sin(√𝑏𝛼) − sin(√𝑏𝛽)) + 

                              
−𝜆1

2 sin(√𝑏𝑙)
(𝑠𝑖𝑛(√𝑏𝛼) + 𝑠𝑖𝑛(√𝑏𝛽)) 

                         = −𝜆1
𝑠𝑖𝑛(√𝑏𝛼)

𝑠𝑖𝑛(√𝑏𝑙)
 (38) 

Note that in our calculations we frequently use typical 

approximations of the kind  

𝜀𝑓(𝜀, . . . ) = 𝜀𝑓(0, . . . ) + 𝑂(𝜀2). (39) 

For example  

𝜆1
1−𝜖(𝑧+𝑧′)

√𝑏𝑠𝑖𝑛(√𝑏𝛼+𝜆0𝑧)
= 𝜆1

1

√𝑏𝑠𝑖𝑛(√𝑏𝛼)
+ 𝑂(𝜆1𝜆0) + 𝑂(𝜆1𝜖). (40) 

To have insight into the divergent parts of equations (34)-

(38), we need to first analyse the flat spacetime case. 

Explicit computations will be done to clear the type of 

divergences.  

 

3.3  flat spacetime analysis of the energy-momentum 

tensor 

The flat space 〈𝑇00〉 is given by letting 𝜆0 = 𝜆1 = 𝛾0 =
𝛾1 = 0 in equation (33). For sake of simplicity we analyse 

the case 𝜉 = 0, i.e.  

〈𝑇00〉 = lim
𝑧′→𝑧

1

2
𝐼𝑚  ∫

𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[𝜔2 + 𝑘⊥

2 + 𝜕𝑧𝜕𝑧′]𝐠𝐹 . (41) 

After using (40) and (44) we find  

〈𝑇00〉 = −
1

2
lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝜔2cos(√𝑏𝛽)−𝑘⊥
2cos(√𝑏𝛼)

√𝑏sin(√𝑏𝑙)
. (42) 

To compute this integral we use the Wick rotation 

technique discussed in Appendix B. Thus, we find  
〈𝑇00〉 = 

= −
1

12𝜋2
lim
𝑧′→𝑧

∫
∞

0

𝜅3𝑑𝜅

sinh𝜅𝑙
[cosh(𝜅𝛽) + 2cosh(𝜅𝛼)] 

= −
1

12𝜋2 lim
𝑧′→𝑧

∫
∞

0

𝜅3𝑑𝜅

sinh𝜅𝑙
[cosh(𝜅(Δ𝑧 + 𝑙)) +

                                                     2cosh(𝜅(2𝑧 − 𝑙))]    (43) 

which in turn gives  

〈𝑇00〉 = 

−
1

12𝜋2
[ lim
𝑧′→𝑧

∫
∞

0

𝜅3𝑑𝜅𝑒𝜅Δ𝑧 + ∫
∞

0

2𝜅3𝑑𝜅

𝑒2𝜅𝑙 − 1
+ 2∫

∞

0

𝜅3𝑒2𝜅𝑧𝑑𝜅

𝑒2𝜅𝑙 − 1
 

                           +2 ∫
∞

0

𝜅3𝑒2𝜅(𝑎−𝑧)𝑑𝜅

𝑒2𝜅𝑙−1
] (44) 

After using [42]  

∫
∞

0

𝑥𝜈𝑒(𝛽−𝜇)𝑥

𝑒𝛽𝑥 − 1
𝑑𝑥 =

1

𝛽𝜈+1
Γ(𝜈 + 1)𝜁 (𝜈 + 1,

𝜇

𝛽
),      

                              𝑅𝑒 𝛽 > 0, 𝑅𝑒 𝜇 > 0, 𝑅𝑒 𝜈 > 1, (45) 

we find  

⟨𝑇00⟩ = [−
1

2𝜋2
lim
𝑧′→𝑧

1

(Δ𝑧)4
−

𝜋2

1440𝑙4
] 

                     −
1

16𝜋2𝑙4
[𝜁 (4,1 −

𝑧

𝑙
) + 𝜁 (4,

𝑧

𝑙
)] (46) 

in which  

𝜁(𝑚, 𝑥) = ∑∞
𝑛=𝑜

1

(𝑛+𝑥)𝑚
, (47) 

is the Riemann’s zeta function. 

Notice that the first bracket in (46) is originated from the 

𝛽-dependent part of equation (42) while the second 

bracket is due to the 𝛼-dependent part. We will use this 

point later in next sections. As is evident from the 𝛽-

dependent part, the first term diverges when 𝑧′ → 𝑧. This 

is the typical behaviour of the point splitting method and 

is not an special effect here [36]. Except for this point, the 

𝛽-dependent part is the finite one. 

A simple computation shows that the 𝛼-dependent part is 

completely divergent. In fact,  

𝐸𝛼 = −
1

16𝜋2  𝑙4
∫

𝑙

0

[𝜁 (4,1 −
𝑧

𝑙
) + 𝜁 (4,

𝑧

𝑙
)]𝑑𝑧 

      = −
1

16𝜋2
[∫

𝑙

0

𝑑𝑧

𝑧4
+ ∫

𝑙

0

𝑑𝑧

(𝑙 − 𝑧)4
+ 

                          ∫
𝑙

0

𝑑𝑧 ∑

∞

𝑛=1

(
1

(𝑧 + 𝑛𝑙)4
+

1

[(𝑛 + 1)𝑙 − 𝑧]4
)] 

      = −
1

4𝜋2 ( lim
𝑧→0+

1

𝑧3 + lim
𝑧→𝑙−

1

(𝑙−𝑧)3
) (48) 

Therefore, the 𝛼-dependent part does not produce any 

finite contributions to the energy. 

 

3.4  regularization of < 𝑻𝟎𝟎 > 

Based on the analysis presented in the previous section, 

the terms containing 𝛼 are divergent at 𝑧 = 0, 𝑧 = 𝑙 while 

the 𝛽-terms converge. Hereafter we first calculate 𝛽-terms 

in each case. Note also that 𝑀 is a totally 𝛼-term. 

For the first line of (34), after using (35a) and (36)-(38) 

we find  

[
9

2
𝜔2 −

3

2

𝑔00

𝑔11
𝑘⊥

2 +
𝑔00

4𝑔11
(𝜕𝑧

2 + 𝜕𝑧′
2 − 4𝜕𝑧𝜕𝑧′) + 3𝜆0 − 𝜆14(𝜕𝑧 + 𝜕𝑧′)]

𝑁 − 𝑀

2
= 

[−3(1 − 𝛾0 − 𝛾1 +
1

2
𝐵𝑧)

𝜔2

√𝑏

cos(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
+

3𝑙2

4

𝑎𝜔2

𝑏

cos(√𝑏𝛽)cos(√𝑏𝑙)

𝑠𝑖𝑛2(√𝑏𝑙)
 

+
3𝑙2

4

𝑎𝜔2

𝑏

sin(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
++6𝑧

𝜖  𝜔2

√𝑏

cos(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
−

3𝑧

4

𝑎

√𝑏

𝑐𝑜𝑠(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
] 

+[−(1 + 𝛾0 − 3𝛾1 + 2𝐵𝑧)
√𝑏cos(√𝑏𝛼)

𝑠𝑖𝑛(√𝑏𝑙)
+

𝑙2

4
𝑎

cos(√𝑏𝛼)cos(√𝑏𝑙)

𝑠𝑖𝑛2(√𝑏𝑙)

+
1

4
(2𝑧2 − 𝑙2)𝑎

sin(√𝑏𝛼)

sin(√𝑏𝑙)
+ 2𝑧

𝜖√𝑏cos(√𝑏𝛼)

sin(√𝑏𝑙)
 

3(1 − 𝛾0 − 𝛾1 +
1

2
𝐵𝑧)

𝜔2

√𝑏

𝑐𝑜𝑠(√𝑏𝛼)

𝑠𝑖𝑛(√𝑏𝑙)
−

3𝑙2

4

𝑎𝜔2

𝑏

𝑐𝑜𝑠(√𝑏𝛼)cos(√𝑏𝑙)

𝑠𝑖𝑛2(√𝑏𝑙)
 

−
3

4
(2𝑧2 − 𝑙2)

𝑎𝜔2

𝑏

sin(√𝑏𝛼)

sin(√𝑏𝑙)
− 6𝑧

𝜖𝜔2

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
−

𝑧

4

𝑎

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
 

−
𝜆

4

sin(√𝑏𝛼)

sin(√𝑏𝑙
+

𝜆1−3𝜆0

4

sin(√𝑏𝛼)

sin(√𝑏𝑙)
+ 𝜖

sin(√𝑏𝛼)

sin(√𝑏𝑙)
] (49) 

In a similar manner, for the second line of (34), after using 

(35b) and (36)-(38), we find  

[
3

2
𝜔2 +

3

2

𝑔00

𝑔11

𝑘⊥
2 +

𝑔00

4𝑔11

((𝜕𝑧
2 + 𝜕𝑧′

2 ) + 8𝜕𝑧𝜕𝑧′)

+ (3𝜆0 − 𝜆1)4(𝜕𝑧 + 𝜕𝑧′)]
𝑁 − 𝑀

2
= 

[
3

2
𝐵𝑧

𝜔2

√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
+

3𝑧

4

𝑎

√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
] + [−

3

2
𝐵𝑧

𝜔2

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
 

+(1 + 𝛾0 − 3𝛾1 + 2𝐵𝑧)√𝑏
cos(√𝑏𝛼)

sin(√𝑏𝑙)
−

𝑙2

4
𝑎

cos(√𝑏𝛼)cos(√𝑏𝑙)

sin2(√𝑏𝑙)
 

−
2𝑧2 − 𝑙2

4
𝑎
sin(√𝑏𝛼)

sin(√𝑏𝑙)
− 2𝑧𝜖√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
+

5

4
𝑧

𝑎

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
 

−
1

2
𝜖

sin(√𝑏𝛼)

sin(√𝑏𝑙)
−

3𝜆0−𝜆1

4

sin(√𝑏𝛼)

sin(√𝑏𝑙)
−

𝜆

4

sin(√𝑏𝛼)

sin(√𝑏𝑙)
]. (50) 
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As is evident from (50), the second line of (34) is 

completely divergent at 𝑧 = 0 and 𝑧 = 𝑙. This divergent 

part is absent in the case of conformal coupling of the 

field, i.e. for 𝜉 = 1/6. Thus, after a Wick rotation and 

using other integrations in appendix B, we finally find  
⟨𝑇00⟩ = 
𝐸0

𝑙
(1 + 2𝛾0 − 4𝛾1 +

2

5
𝜆0(3𝑙 − 𝑧) −

2

5
𝜆1(3𝑙 + 4𝑧)) +

𝑐0

(Δ𝑧)4
 

+
𝐵

90𝜋2 [−8𝑧𝐴1(𝛼) + 𝑙2𝐴2(𝛼) − (2𝑧2 − 𝑙2)𝐴3(𝛼) + 5𝐴4(𝛼)] 

+
1

12𝜋2
(𝜉 −

1

6
)[6(1 + 2𝛾0 − 4𝛾1 − 2𝜆1𝑧)𝐴1(𝛼) + 𝐵𝑙2𝐴2(𝛼) 

               −(2𝑧2 − 𝑙2)𝐵  𝐴3(𝛼) − 2(4𝜆1 + 5𝜆0)𝐴4(𝛼)], (51) 

in which 

𝑐0 = −
1

2𝜋2 [1 + 2𝛾0 − 4𝛾1 −
2

5
(𝜆0 + 4𝜆1)𝑧], (52) 

and  

𝐴1(𝛼) =
3

8𝑙4
[𝜁(4,1 −

𝑧

𝑙
) + 𝜁(4,

𝑧

𝑙
)], 

𝐴2(𝛼) =
3

4𝑙5
[2𝜁(4,2 −

𝑧

𝑙
) − 2(1 −

𝑧

𝑙
)𝜁(5,2 −

𝑧

𝑙
) 

          +2𝜁 (4,1 +
𝑧

𝑙
) −

2𝑧

𝑙
𝜁 (5,1 +

𝑧

𝑙
) + 𝜁(5,1 −

𝑧

𝑙
) + 𝜁(5,

𝑧

𝑙
)], 

𝐴3(𝛼) =
3

4𝑙5
[𝜁(5,1 −

𝑧

𝑙
) − 𝜁(5,

𝑧

𝑙
)], 

𝐴4(𝛼) =
1

4𝑙3
[𝜁(3,1 −

𝑧

𝑙
) − 𝜁(3,

𝑧

𝑙
)], 

and 𝐸0 = −𝜋2/1440𝑙4 is the Casimir energy in flat 

spacetime. An important point should be stressed here. In 

equations (49) and (50), everywhere, we can replace 𝑏 =
(1 − 2𝐴)𝜔2 − 𝑘⊥

2  by 𝑏 = 𝜔2 − 𝑘⊥
2  in view of the 

application of equation (38). However, since the first and 

fifth terms in (49) and the second term in (50) are not 

proportional to 𝑂(𝜆), hence the replacement is not 

eligible. In such terms, we can use the variable change 

𝜔′ → 𝜔(1 − 𝐴) and send 𝑏 = (1 − 2𝐴)𝜔2 − 𝑘⊥
2  to 𝑏0 =

𝜔′2 − 𝑘⊥
2  again. Consequently it makes an extra 

multiplicative factor of 1 + 3𝐴 which should be taken into 

account. Another point is that all the functions 𝐴1, 𝐴2, 𝐴3 

and 𝐴4 are divergent near the surfaces, i.e. at 𝑧 = 0 and 

𝑧 = 𝑙. 

3.5  computation of < 𝑻𝟏𝟏 > and < 𝑻𝟐𝟐 >  

The fact that there is horizontal symmetry in the space 

between the plates, the energy momentum tensor is the 

same for both 𝑥 and 𝑦 directions, i.e. 〈𝑇11〉 = 〈𝑇22〉. The 

same reasoning will ended up with the following relations 

which we use later:  

 

lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝑘𝑦

2𝐠𝐹 = lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝑘𝑥

2𝐠𝐹 =

1

2
lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝑘⊥

2𝐠𝐹 (53) 

By using (26) we find  

〈𝑇11〉 = 〈𝑇22〉 

=
1

6
lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[
3

2
𝑘⊥

2 −
3

2

𝑔11

𝑔00

𝜔2 +
1

4
(𝜕𝑧

2 + 𝜕𝑧′
2

− 4𝜕𝑧𝜕𝑧′) + 𝜆0 − 3𝜆14(𝜕𝑧 + 𝜕𝑧′)]𝐠𝐹 

+(𝜉 −
1

6
) lim
𝑧′→𝑧

𝐼𝑚  ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[
3

2
𝑘⊥

2 +
3

2

𝑔11

𝑔00
𝜔2 +

1

4
(𝜕𝑧

2 +

             𝜕𝑧′
2 + 8𝜕𝑧𝜕𝑧′) + 𝜆0 − 3𝜆14(𝜕𝑧 + 𝜕𝑧′)]𝐠𝐹 . (54) 

After the same process as for 〈𝑇00〉 we find for the first 

line of (54)  

[
3

2
𝑘⊥

2 −
3

2

𝑔11

𝑔00
𝜔2 +

1

4
(𝜕𝑧

2 + 𝜕𝑧′
2 − 4𝜕𝑧𝜕𝑧′) + 𝜆0 − 3𝜆14(𝜕𝑧

+ 𝜕𝑧′)]𝐠𝐹 

=
1

4
[(1 − 3𝛾0 + 𝛾1 − 𝐵𝑧)

𝜔2

√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
+

𝑙2

4

𝑎𝜔2

𝑏

cos(√𝑏𝛽)cos(√𝑏𝑙)

sin2(√𝑏𝑙)
 

+
𝑙2

4

𝑎𝜔2

𝑏

sin(√𝑏𝛽)

sin(√𝑏𝑙)
+ 2𝑧

𝜖𝜔2

√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
+ (1 − 𝛾0 − 𝛾1)√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
 

−
𝑙2

4
𝑎

cos(√𝑏𝛽)cos(√𝑏𝑙)

sin2(√𝑏𝑙)
−

𝑙2

4
𝑎

sin(√𝑏𝛽)

sin(√𝑏𝑙)
− 2𝑧𝜖√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
 

+
𝑧

2

𝑎

√𝑏

cos(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
]  +

1

4
[(1 − 3𝛾0 + 𝛾1 − 𝐵𝑧)

𝜔2

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
 

−
𝑙2

4

𝑎𝜔2

𝑏

cos(√𝑏𝛼)cos(√𝑏𝑙)

sin2(√𝑏𝑙)
−

2𝑧2 − 𝑙2

4

𝑎𝜔2

𝑏

sin(√𝑏𝛼)

sin(√𝑏𝑙)
 

+
2

3
𝑧𝜖√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
+

𝑧

6

𝑎

√𝑏

cos(√𝑏𝛼)

𝑠𝑖𝑛(√𝑏𝑙)
−

2

3
𝜖

sin(√𝑏𝛼)

sin(√𝑏𝑙)
 (55) 

 

−
1

3
(1 − 𝛾0 − 𝛾1)√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
− 2𝑧

𝜖𝜔2

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
+

2

3
𝜆1

sin(√𝑏𝛼)

sin(√𝑏𝑙)
 

+
𝑙2

12
𝑎

cos(√𝑏𝛼)cos(√𝑏𝑙)

sin2(√𝑏𝑙)
+ 𝑎

2𝑧2−𝑙2

12

sin(√𝑏𝛼)

sin(√𝑏𝑙)
]  

The second line in equation (54) is easily obtained from 

equation (50). In fact, it is nothing but the equation (49) 

multiplied by a factor of 
𝑔00

𝑔11
 along with the exchange 𝜆0 ↔

𝜆1. Thus, again, using the integrations in the appendix B, 

we find  

〈𝑇11〉 = 〈𝑇22〉 

= −(1 − 2𝛾1 −
2

5
𝜆0(2𝑧 − 𝑙) −

2

5
𝜆1(3𝑧 + 𝑙))

𝐸0

𝑙
+

𝑐2

(Δ𝑧)4
 

−
𝐵

180𝜋2
[8𝑧𝐴1(𝛼) − 𝑙2𝐴2(𝛼) + (2𝑧2 − 𝑙2)𝐴3(𝛼) + 5𝐴4(𝛼)] 

+
1

12𝜋2 (𝜉 −
1

6
)[−6(1 − 2𝛾1 − 2𝜆0𝑧)𝐴1(𝛼) − 𝐵𝑙2𝐴2(𝛼) 

              +(2𝑧2 − 𝑙2)𝐵𝐴3(𝛼) + 2(2𝜆0 + 7𝜆1)𝐴4(𝛼)], (56) 

where  

𝑐2 =
1

2𝜋2 (1 − 2𝛾1 −
2

5
(2𝜆0 + 3𝜆1)𝑧). (57) 

 

3.6  computation of < 𝑻𝟑𝟑 > 

Using (26) and a similar process of previous subsections 

we find 

〈𝑇33〉 = 
1

6
lim
𝑧′→𝑧

𝐼𝑚 ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[−

3

2
𝑘⊥

2 −
3

2

𝑔11

𝑔00
𝜔2 −

3

4
(𝜕𝑧

2 + 𝜕𝑧′
2

− 4𝜕𝑧𝜕𝑧′) + 𝜆0 + 5𝜆14(𝜕𝑧 + 𝜕𝑧′)]𝐠𝐹 

+(𝜉 −
1

6
) lim
𝑧′→𝑧

𝐼𝑚  ∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
[
3

2
𝑘⊥

2 +
3

2

𝑔11

𝑔00
𝜔2 −

          
3

4
(𝜕𝑧

2 + 𝜕𝑧′
2 ) + 𝜆0 + 5𝜆14(𝜕𝑧 + 𝜕𝑧′)]𝐠𝐹 . (58) 

For the first line we find  
1

6
[−

3

2
𝑘⊥

2 −
3

2

𝑔11

𝑔00
𝜔2 −

3

4
(𝜕𝑧

2 + 𝜕𝑧′
2 − 4𝜕𝑧𝜕𝑧′) + 𝜆0 + 5𝜆14(𝜕𝑧

+ 𝜕𝑧′)]𝐠𝐹 

=
1

6
[
3

2
𝐵𝑧

𝜔2

√𝑏

cos(√𝑏𝛽)

𝑠𝑖𝑛2(√𝑏𝑙)
− 3(1 − 𝛾0 − 𝛾1)

√𝑏cos(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
 

+
3𝑙2

4
𝑎

cos(√𝑏𝛽)cos(√𝑏𝑙)

𝑠𝑖𝑛2(√𝑏𝑙)
+ 6𝑧

𝜖√𝑏cos(√𝑏𝛽)

sin(√𝑏𝑙)
 

+
3𝑙2

4
𝑎

sin(√𝑏𝛽)

𝑠𝑖𝑛(√𝑏𝑙)
−

9𝑧

4

𝑎

√𝑏

cos(√𝑏𝑙)

sin(√𝑏𝑙)
] 
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+
1

6
[−

3

2
𝐵𝑧

𝜔2

√𝑏

cos(√𝑏𝛽)

𝑠𝑖𝑛2(√𝑏𝑙)
−

3𝑧

4

𝑎

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
+

3𝜖
sin(√𝑏𝛼)

sin(√𝑏𝑙)
− (𝜆0 + 2𝜆1)

cos(√𝑏𝛼)

sin(√𝑏𝑙)
], (59) 

and the second line of (66) is found to be  

[
3

2
𝑘⊥

2 +
3

2

𝑔11

𝑔00
𝜔2 −

3

4
(𝜕𝑧

2 + 𝜕𝑧′
2 ) + 𝜆0 + 5𝜆14(𝜕𝑧 + 𝜕𝑧′)]𝐠𝐹 

= [−
3

2
𝐵𝑧

𝜔2

√𝑏

cos(√𝑏𝛽)

𝑠𝑖𝑛2(√𝑏𝑙)
−

3𝑧

4

𝑎

√𝑏

cos(√𝑏𝛽)

sin(√𝑏𝑙)
] 

+[3

2
𝐵𝑧

𝜔2

√𝑏

cos(√𝑏𝛼)

𝑠𝑖𝑛2(√𝑏𝑙)
−

3𝜆

4

sin(√𝑏𝛼)

sin(√𝑏𝑙)
+

3𝑧

4

𝑎

√𝑏

cos(√𝑏𝛼)

sin(√𝑏𝑙)
 

−
1

4
(𝜆0 + 5𝜆1)

sin(√𝑏𝛼)

sin(√𝑏𝑙)
]. (60) 

After doing the integrations we arrive at  
〈𝑇33〉 = 

=
3𝐸0

𝑙
(1 − 2𝛾1 −

2

3
(2𝜆0 + 𝜆1)𝑧 +

2

3
(𝜆0 − 𝜆1)𝑙) +

𝑐3

(Δ𝑧)4
 

       +(𝜉 −
1

6
)[−

1

4𝜋2 (𝜆0 + 2𝜆1)𝐴4(𝛼)], (61) 

where  

𝑐3 = −
3

2𝜋2 (1 − 2𝛾1 −
2

3
(2𝜆0 + 𝜆1)𝑧). (62) 

 

3.7  consistency check 

As said before, the energy-momentum tensor has been 

found for a Casimir apparatus hovering in a weak static 

gravitational field described by Fermi coordinates [33, 34, 

30]  

𝑑𝑠2 = (1 + 2𝑔𝑧)𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (63) 

This spacetime is equivalent to the spacetime of the 

Rindler accelerated observer [31]. Therefore, it 

corresponds to the case 𝛾0 = 𝛾1 = 𝜆1 = 0, 𝜆0 = 𝑔 in our 

calculations. They have found the following energy 

momentum tensor (see (4.5)-(4.7) in [33])  

〈𝑇00〉 = 〈𝑇00
(0)

〉 + 2𝑔𝑙〈𝑇00
(1)

〉+. .. 

                〈𝑇00
(0)

〉 = −
𝜋2

1440𝑙4
= 𝐸0, 

                〈𝑇00
(1)

〉 =. . . +𝐸0

𝑠 − 3𝜋

40

cos(4𝑠)

sin4𝑠
−. . . , 𝑠 =

𝜋𝑧

𝑙
 

           ⇒ 〈𝑇00〉 = 𝐸0 (1 +
6

5
𝑔𝑎 −

2

5
𝑔𝑧)), 

 

〈𝑇11〉 = 〈𝑇22〉 = 〈𝑇11
(0)〉 + 2𝑔𝑙〈𝑇11

(1)〉+. .. 

                          = −𝐸0 + 2𝑔𝑎 (
−𝐸0(𝜋 − 2𝑠)

5𝜋
),  

                          = −𝐸0(1 +
2

5
𝜆0𝑎 −

4

5
𝜆0𝑧), 

〈𝑇33〉 = 〈𝑇33
(0)

〉 + 2𝑔𝑙〈𝑇33
(1)

〉+. .. 

               〈𝑇33
(0)

〉 = 3𝐸0, 

               〈𝑇33
(1)

〉 = 𝐸0 −
2𝑠

𝜋
𝐸0 

             ⇒ 〈𝑇33〉 = 3𝐸0 (1 +
2

3
𝑔𝑙 −

4

3
𝑔𝑧)). (64) 

Note that we have selected only the part of their result 

which is finite at 𝑧 = 0 and 𝑧 = 𝑙. Thus, for instance, the 

only potentially finite term in 〈𝑇00〉 in that paper was the 

one containing the term cos(4𝑠)/sin4𝑠 which has been 

demonstrated in 〈𝑇00
(1)

〉 above. Also we have used 𝑙 instead 

of 𝑎 to show the separation between the plates. The 𝐸0 is 

also the traditional Casimir energy of the flat spacetime. 

The result in equation (72) equals our results for 𝛾0 =
𝛾1 = 𝜆1 = 0, 𝜆0 = 𝑔. 

Another consistency check concerns the covariant 

conservation of the energy momentum tensor. Since the 

energy momentum tensor is diagonal and only dependent 

to 𝑧, 〈𝑇𝜇0〉;𝜇 = 〈𝑇𝜇1〉;𝜇 = 〈𝑇𝜇2〉;𝜇 = 0. After a calculation 

for 𝜈 = 3, we find  

〈𝑇𝜇3〉;𝜇 = −
1

𝜋2 (2𝜆0 + 𝜆1)
1

Δ𝑧4 +
𝑐4

Δ𝑧5 , (65) 

in which  

𝑐4 =
6

𝜋2 (1 − 6𝛾1 −
4

3
(𝜆0 + 4𝜆1)𝑧). (66) 

To obtain (65) we have used the relation 𝜕𝑧𝐴4(𝛼) =
2𝐴1(𝛼). As is well-known, the Δ𝑧−𝑛 terms in (65) are the 

common effects of the point separation method which can 

be dropped away. Thus, the covariant conservation of the 

energy momentum tensor is guaranteed. Note also that the 

flat space limit can be easily checked out in view of (46).  

 

3.8  The energy and the force 

The energy in a static spacetime is given by  

𝐸 = ∫
𝑙

0 √−𝑔〈𝑇0
0〉𝑑3𝑥 (67) 

    = 𝑆∫
𝑙

0

(1 − 𝛾0 + 3𝛾1 + (3𝜆1 − 𝜆0)𝑧)〈𝑇00〉 

    = 𝑆(1 + 𝐴 + 𝐵
𝑙

2
)𝐸0 + (𝛼_𝑝𝑎𝑟𝑡) + (𝜉 −

1

6
)(𝛼_𝑝𝑎𝑟𝑡),  

where we have ignored the 𝛼-part as it diverges at 𝑧 =
0, 𝑙. S is the area of plates. 

Apparently, the first order correction 𝐴 = 𝛾0 − 𝛾1 has 

been appeared in the energy. This confirms the result 

recently found by author [40]. Although, in that work (see 

section 4 in [40]), sufficient arguments were introduced 

for the appearance of first order corrections, the current 

direct calculation shows that undoubtedly the 

gravitational corrections for the Casimir energy and force 

of parallel plate geometry is many orders of magnitudes 

greater than what previously found in the literature and 

thus can be measured employing current precision of 

experiments. 

The force by which the plates attract/repel each other is  

𝐹 = −
𝜕𝐸

𝜕𝑙
= −𝑆(1 + 𝐴 +

2

3
𝐵  𝑙)

𝜋2

480𝑙4

= −𝑆 (1 + 𝛾0 + 3𝛾1 +
2

3
(𝜆0 + 2𝜆1)  𝑙𝑝)

𝜋2

480𝑙𝑝
4 ,

 (68) 

where 𝑙𝑝 = ∫
𝑙

0 √−𝑔33𝑑𝑧 = 𝑙(1 + 𝛾1 +
1

2
𝜆1𝑙) is the 

proper distance between the plates. As a result, the change 

in the force by which the plates attract/repel each other 

depends on the sign of the first order correction 𝛾0 + 3𝛾1. 

We give examples indicating this point later. 

4. conformal invariance and trace anomaly 

It can be shown that the trace of the stress-tensor vanishes 

for 𝜉 = 1/6, i.e. for the conformal coupling of the field. 

After some calculations and using equations (51),(56) and 

(61) we find 

〈𝑇𝜇
𝜇〉 

= 𝑔00〈𝑇00〉 + 𝑔11[2〈𝑇11〉 + 〈𝑇33〉] 

= 0 +
1

24𝜋2
(𝜉 −

1

6
)[3(1 − 4𝛾1 − 2𝜆𝑧)𝐴1(𝛼) + 
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                                   6𝐵𝑙2𝐴2(𝛼) − 6(2𝑧2 − 𝑙2)𝐵𝐴3(𝛼) 

                                 −(13𝜆0 +  15𝜆1)𝐴4(𝛼)]     (69) 
Therefore, the trace has an anomalous divergent part 

unless the field be conformally coupled. 

Another feature of the obtained energy momentum tensor 

is related to the case the metric is conformal flat, i.e.  

𝑑𝑠2 = (1 + 2𝛾0 + 2𝜆0𝑧)(𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2), 
𝑔00 = 1 − 2𝛾0 − 2𝜆0𝑧. (70) 

In this case we have 𝛾0 = 𝛾1, 𝜆0 = 𝜆1, 𝐴 = 0, 𝐵 = 0 

and the energy momentum tensor takes the form  
〈𝑇00〉 = 

𝑔00 [
𝐸0

𝑙
−

1

2𝜋2

1

(Δ𝑧)4
+

1

2𝜋2
(𝜉 −

1

6
)𝐴1(2𝑧 − 𝑙)]

+
1

2𝜋2
(𝜉 −

1

6
) [−3𝜆0𝐴4(2𝑧 − 𝑙)] 

           = 𝑔00〈𝑇00〉
𝑓𝑙𝑎𝑡 − (𝜉 −

1

6
)
3𝜆0

2𝜋2
𝐴4(2𝑧 − 𝑙), 

 

〈𝑇11〉 = 〈𝑇22〉 

= 𝑔00[−
𝐸0

𝑙
+

1

2𝜋2

1

(Δ𝑧)4
−

1

2𝜋2
(𝜉 −

1

6
)𝐴1(2𝑧 − 𝑙)]

+
1

2𝜋2
(𝜉 −

1

6
)[3𝜆0𝐴4(2𝑧 − 𝑙)], 

= 𝑔00〈𝑇11〉
𝑓𝑙𝑎𝑡 + (𝜉 −

1

6
)
3𝜆0

2𝜋2
𝐴4(2𝑧 − 𝑙), 

 
〈𝑇33〉 = 

 𝑔00 [3
𝐸0

𝑙
−

3

2𝜋2

1

(Δ𝑧)4
] −

1

2𝜋2
(𝜉 −

1

6
)[3𝜆0𝐴4(2𝑧 − 𝑙)], 

= 𝑔00〈𝑇33〉
𝑓𝑙𝑎𝑡 − (𝜉 −

1

6
)

3𝜆0

2𝜋2 𝐴4(2𝑧 − 𝑙). (71) 

This is the reminiscence of the already known relation in 

the literature. If a metric undergoes a conformal 

transformation 𝑔̅𝜇𝜈 = Ω2(𝑥)𝑔𝜇𝜈, the new (renormalized) 

energy momentum tensor is given by (see (6.134) in [4])  

〈𝑇𝜇
𝜈[𝑔̅𝜇𝜈]〉𝑟𝑒𝑛. = (

𝑔

𝑔̅
)
1
2〈𝑇𝜇

𝜈[𝑔𝜇𝜈]〉𝑟𝑒𝑛. 

+
1

12
[(Ω−3Ω;𝜃𝜇 − 2Ω−4Ω;𝜃Ω;𝜇)𝑔𝜃𝜈                                     (72)   

+ 𝛿𝜇
𝜈𝑔𝜌𝜎 (

3

2
Ω−4Ω;𝜌Ω;𝜎 − Ω−3Ω;𝜌𝜎)𝑔𝜃𝜈]. 

  

Putting Ω2 = 𝑔00 = 1 + 2𝛾0 + 2𝜆0𝑧 we see that  

〈𝑇𝜇𝜈〉𝑟𝑒𝑛. = 𝑔00〈𝑇𝜇𝜈〉𝑟𝑒𝑛.
𝑓𝑙𝑎𝑡

+ 𝑂(𝜆2), (73) 

which differs from what we found in (71) by a factor of 

(𝜉 −
1

6
)

3𝜆0

2𝜋2 𝐴4(2𝑧 − 𝑙). This difference is related to the 

fact that equation (72) has been derived for quantum field 

theory in curved spacetime without boundaries while our 

result is obtained in the presence of boundary. An 

improved form of (72) and some other calculations related 

to quantum field theory in curved spacetime under the 

influence of boundaries will be published elsewhere. 

Again, equation (73) inspects equation (71) in the case of 

conformal coupling, i.e. 𝜉 =
1

6
. In other words, for the case 

of conformal triviality, the divergent part 𝐴4(2𝑧 − 𝑙) 

disappears.  

 

5. Examples 

5.1  The Kerr spacetime 

The Casimir effect in Kerr spacetime has been studied 

previously [15, 14, 39]. The metric of a slowly rotating 

source adapted to the Casimir plates, measured by a zero 

angular momentum observer (ZAMO), is given by [15]  

𝑑𝑠2 = (1 + 2𝑏Φ0 + 2𝑏𝜂𝑧)𝑑𝑡2 − (1 − 2Φ0 − 2𝜂𝑧) ×  

                                                  (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)  (74) 

in which  

𝑏 = 1 − 2𝑎Ω,      Ω =
𝑑𝜙

𝑑𝑡
,      𝑎 = 𝐽/𝑀

Φ0 = −
𝐺𝑚

𝑐2𝑅
, 𝜂 =

𝐺𝑚

𝑐2𝑅2 .
 (75) 

For more general observers see [15]. Note that 𝑚 is the 

mass of the source and the apparatus is located at distance 

𝑅 from the center of the source. 𝑎 is the angular 

momentum per mass. 

By comparing (82) with (1) we see that 𝛾0 = 𝑏Φ0, 𝛾1 =
−Φ0. Thus, in view of equation (76), we have 𝛾0 + 3𝛾1 =
−2Φ0(1 + 𝑎Ω) > 0 because for zero angular momentum 

observers Ω ≈
2𝑀𝑎

𝑅3  in the far field limit. As a result, the 

magnitude of the force between the plates increases. This 

is also the case for the Schwarzschild metric as it 

corresponds to Ω = 0 which does not alter the sign of 

𝛾0 + 3𝛾1. 

 

5.2  Extended theories of gravity(ETG) 

The metric (1) is applicable also for the case of the 

extended theories of gravity. The possible impact of such 

theories on the Casimir energy has been studied in [23] 

where they have found the related metric to be of the form  

𝑔00(𝐱) ≃ 1 + 2 Φ0(𝑅) + 2 Λ(𝑅) 𝑧

𝑔𝑖𝑗(𝐱) ≃ −1 + 2 Ψ0(𝑅) + 2 Σ(𝑅) 𝑧  ,
 (76) 

where  

Φ0(𝑅) =  −
𝐺𝑀

𝑅
[1 + 𝑔(𝜉, 𝜂)𝑒−𝑚+𝑅 + (

1

3
− 𝑔(𝜉, 𝜂)) 𝑒−𝑚−𝑅 −

                                 
4

3
 𝑒−𝑚𝑌𝑅] , Λ(𝑅)  =  

𝐺𝑀

𝑅2  (77) 

The parameters 𝑚+,𝑚−, 𝑚𝑌 and 𝑔(𝜉, 𝜂) have been 

defined in [23]. By now, it is sufficient to know that the 

main term in the above equations is the Newtonian 

potential 𝐺𝑀/𝑅 and extra terms in the brackets are 

corrections due to ETGs. Therefore, 𝛾0 = Φ0, 𝜆0 = Λ,
𝛾1 = −Ψ0, 𝜆1 = −Σ and the corresponding Casimir force 

is given by  

𝐹 = −𝑆 [1 + Φ0 − 3Ψ0 +
2

3
(Λ − 2Σ)𝑙𝑃]

𝜋2 

480 𝑙𝑝
4 , (78) 

which shows an increase in the magnitude of the force.  

 

5.3  Horava-Lifshitz gravity 

Modifications of the Casimir energy by the Horava-

Lifshitz theory of gravity has been studied in [16]. They 

have found a static black hole solution as follows (see 

eq.(8) in [16])  

𝑑𝑠2 = (1 −
2𝑀

𝑅
+

2𝑀2

𝜔𝑅4) 𝑑𝑡2 − (1 +
2𝑀

𝑅
−

𝑀2

2𝜔𝑅4) (𝑑𝑟2 +

                                                     𝑟2𝑑Ω2), (79) 
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which in turn gives 𝛾0 = −
𝑀

𝑅
= −𝛾1, 𝜆0 =

𝑀2

𝜔𝑅4 = −
1

4
𝜆1. 

Thus, the magnitude of the Casimir force increases as 

𝛾0 + 3𝛾1 = 2
𝑀

𝑅
> 0. 

6. Concluding remarks 

In this paper, we found the curved spacetime analogue of 

the energy-momentum tensor for Casimir effect of 

parallel plates first found by Brown and Maclay [1] using 

the point splitting method. We extended in detail the 

calculations of the energy momentum tensor of the 

arbitrarily coupled scalar field confined in between the 

Casimir plates to the metric given by equation (1). As we 

shown, the metric (1) covers all previously considered 

static weak gravitational fields for which the Casimir 

energy and force has been calculated in the literature. The 

explicit structure of divergencies was determined and the 

regularized stress tensor was obtained in equations 

(51),(56) and (61). Consistency with the previous results 

in the literature were done in subsection G and section IV. 

We found sufficient conditions according to which the 

force and energy decreases/increases. Also we proved 

directly that the leading order corrections to both the 

Casimir energy and force is 
𝐺𝑚

𝑐2𝑅
 rather than 

𝐺𝑚

𝑐2𝑅𝑟 where 

previously found in the literature. We found the energy 

momentum tensor in the case of conformal coupling of the 

field and shown the consistency of the results. Some 

previous studies in the literature were analysed and 

corrected through examples. 

Appendix 

A  some important computations 

To be concise, we use equation (17a) in the form  

𝐠𝐹 =
1−𝛾0−𝛾1−𝜖(𝑧+𝑧′)

2√𝑏sin√𝑏(𝑙+
𝑎

4𝑏
𝑙2)

[cos(𝑆1 + 𝑆2 − cos(𝑆1 − 𝑆2)],(A1)  

in which  

𝑆1 = √𝑏𝑧 +
𝑎

4√𝑏
𝑧2,

𝑆2 = √𝑏(𝑧′ − 𝑙) +
𝑎

4√𝑏
(𝑧′2 − 𝑙2).

 (A2) 

Using the above equations we find up to second order 

perturbations  

𝜕𝑧𝐠𝐹 =
−𝜖

2√𝑏sin(√𝑏𝑙)
(cos(√𝑏𝛼) − cos(√𝑏𝛽)) 

               −
𝑎𝑧

4𝑏sin(√𝑏𝑙)
(sin(√𝑏𝛼) − sin(√𝑏𝛽)) 

+
√𝑏

2𝑅
(1 − 𝜖(𝑧 + 𝑧′))(sin(𝑆1 + 𝑆2) − sin(𝑆1 − 𝑆2)), (A3) 

in which 𝑅 = −(1 + 𝛾0 + 𝛾1)√𝑏sin(√𝑏𝑙 +
𝑎

4√𝑏
𝑙2) and 

equation (39) has been used. In a same way we find  

𝜕𝑧′𝐠𝐹 =
−𝜖

2√𝑏sin(√𝑏𝑙)
(cos(√𝑏𝛼) − cos(√𝑏𝛽))

−
𝑎𝑧′

4𝑏sin(√𝑏𝑙)
(sin(√𝑏𝛼)

+ sin(√𝑏𝛽)) 

+
√𝑏

2𝑅
(1 − 𝜖(𝑧 + 𝑧′))(sin(𝑆1 + 𝑆2) + sin(𝑆1 − 𝑆2)), (A4) 

 

𝜕𝑧′𝜕𝑧𝐠𝐹 = 

= 𝜖
sin(√𝑏𝛼)

sin(√𝑏𝑙)
−

𝑎(𝑧 + 𝑧′)

4√𝑏sin(√𝑏𝑙)
(cos(√𝑏𝛼) + cos(√𝑏𝛽)) 

+
𝑏

2𝑅
(1 − 𝜖(𝑧 + 𝑧′))(cos(𝑆1 + 𝑆2) + cos(𝑆1 − 𝑆2)) (A5) 

𝜕𝑧
2𝐠𝐹 =

𝜆

2sin(√𝑏𝑙)
(sin(√𝑏𝛼) − sin(√𝑏𝛽)) 

                −
𝑎𝑧

2√𝑏sin(√𝑏𝑙)
(cos(√𝑏𝛼) − cos(√𝑏𝛽)) 

+
𝑏

2𝑅
(1 − 𝜖(𝑧 + 𝑧′))(cos(𝑆1 + 𝑆2) − cos(𝑆1 − 𝑆2)), (A6) 

𝜕𝑧
2𝐠𝐹 =

𝜆

2sin(√𝑏𝑙)
(sin(√𝑏𝛼) + sin(√𝑏𝛽))

−
𝑎𝑧′

2√𝑏sin(√𝑏𝑙)
(cos(√𝑏𝛼) − cos(√𝑏𝛽)) 

+
𝑏

2𝑅
(1 − 𝜖(𝑧 + 𝑧′))(cos(𝑆1 + 𝑆2) − cos(𝑆1 − 𝑆2)), (A7) 

The last term in equations (A5)-(A7) should be further 

simplified to be applicable practically. After some 

calculations we find that  
1

𝑅
(1 − 𝜖(𝑧 + 𝑧′))cos(𝑆1 + 𝑆2) = 𝑀,

1

𝑅
(1 − 𝜖(𝑧 + 𝑧′))cos(𝑆1 − 𝑆2) = 𝑁,

 (A8) 

where 𝑀 and 𝑁 were defined in equation (35a) and (35b). 

It is stressed again that all the above relations have been 

approximated up to second order perturbations using 

equation (39). Putting equations (A8) back into (A5)-(A7) 

will produce (35a),(36) and (37). 

 

B  Wick rotation for intergrations 

We begin this appendix by an example. Suppose we tent 

to compute the integral  

𝑌 = ∫
𝑑𝜔𝑑2𝑘⊥

(2𝜋)3

𝑎cos(√𝑏𝑙)

√𝑏sin(√𝑏𝑙)
. (B1) 

In this appendix we suppose 𝑏 = 𝜔2 − 𝑘⊥
2 . If 𝑏 = (1 −

2𝐴)𝜔2 − 𝑘⊥
2  which is the case for our problem in this 

paper, in any case, the variable change 𝜔′ = (1 − 𝐴)𝜔 

will recast the integration to our desired form for 𝑏. The 

Wick rotation is achieved by sending  

𝜔 → 𝑖𝜅𝑐𝑜𝑠𝜃, 𝑘⊥ → 𝜅sin𝜃  ⇒ √𝑏 → 𝑖𝜅, ⇒
𝑑𝜔𝑑2𝑘⊥

(2𝜋)3
=

2𝑖

(2𝜋)2
𝜅2𝑑𝜅sin𝜃𝑑𝜃.  (B2) 

Since 𝑎 = −2𝐵𝜔2 we find  

𝑌 =
−𝐵𝑖

3𝜋2 ∫
𝜅3cosh(𝜅𝑙)

sinh(𝜅𝑙)
𝑑𝜅 =

−𝐵𝑖

3𝜋2 lim
𝑧→𝑧′

𝐴1(𝛽), (B3) 

in which we have defined   

𝐴1(𝑢) = ∫
∞

0

𝜅3cosh(𝜅𝑢)

sinh𝜅𝑙
𝑑𝜅, (B4a) 

𝐴2(𝑢) = ∫
∞

0

𝜅4cosh2(𝜅𝑢)

sinh2𝜅𝑙
𝑑𝜅, (B4b) 

𝐴3(𝑢) = ∫
∞

0

𝜅4sinh(𝜅𝑢)

sinh𝜅𝑙
𝑑𝜅, (B4c) 

𝐴4(𝑢) = ∫
∞

0

𝜅2sinh(𝜅𝑢)

sinh𝜅𝑙
𝑑𝜅. (B4d) 

Other integrations which are needed in the paper can be 

find as follows: 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝜔2

√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
=

1

3

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-1) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝑎  𝜔2

𝑏

cos2(√𝑏𝑢)

sin2(√𝑏𝑙)
=

−2𝐵

5

2𝑖

(2𝜋)2
𝐴2(𝑢), (B5-2) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝑎  𝜔2

𝑏

sin(√𝑏𝑢)

sin(√𝑏𝑙)
=

2𝐵

5

2𝑖

(2𝜋)2
𝐴3(𝑢), (B5-3) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝜖  𝜔2

√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
=

1

2
(
𝜆

3
−

𝐵

5
)

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-4) 
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∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝑘⊥
2

√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
= −

2

3

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-5) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝑘⊥
2   𝑎

𝑏

cos2(√𝑏𝑢)

sin2(√𝑏𝑙)
=

4𝐵

15

2𝑖

(2𝜋)2
𝐴2(𝑢), (B5-6) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝑘⊥
2   𝑎

𝑏

sin(√𝑏𝑢)

sin(√𝑏𝑙)
= −

4𝐵

15

2𝑖

(2𝜋)2
𝐴3(𝑢), (B5-7) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝜖  𝑘⊥
2

√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
= −(

𝜆

3
−

𝐵

15
)

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-8) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝜖

sin(√𝑏𝑢)

sin(√𝑏𝑙)
= (

𝜆

2
−

𝐵

6
)

2𝑖

(2𝜋)2
𝐴4(𝑢), (B5-9) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

𝑎

√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
= −

2𝐵

3

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-10) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
=

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-11) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝑎

cos2(√𝑏𝑢)

sin2(√𝑏𝑙)
=

−2𝐵

3

2𝑖

(2𝜋)2
𝐴2(𝑢), (B5-12) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝑎

sin(√𝑏𝑢)

sin(√𝑏𝑙)
=

2𝐵

3

2𝑖

(2𝜋)2
𝐴3(𝑢), (B5-13) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
𝜖  √𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
= (

𝜆

2
−

𝐵

6
)

2𝑖

(2𝜋)2
𝐴1(𝑢), (B5-14) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3

sin(√𝑏𝑢)

sin(√𝑏𝑙)
=

2𝑖

(2𝜋)2
𝐴4(𝑢), (B5-15) 

∫
𝑑𝜔𝑑𝑘⊥

(2𝜋)3
√𝑏

cos(√𝑏𝑢)

sin(√𝑏𝑙)
=

2𝑖

(2𝜋)2
𝐴1(𝑢). (B5-16) 

In our calculations we need either 𝑢 = 𝛼 = 𝑧 + 𝑧′ − 𝑙 or 

𝑢 = 𝛽 = 𝑧 − 𝑧′ + 𝑙 = Δ𝑧 + 𝑙. Thus, we find the 

following results 

lim
𝑧→𝑧′

𝐴1(𝛽) = lim
𝑧→𝑧′

∫
∞

0

𝜅3cosh(𝜅(Δ𝑧 + 𝑙))

sinh𝜅𝑙
𝑑𝜅 

                  = lim
𝑧→𝑧′

2∫
∞

0

𝜅3 cosh(𝜅Δ𝑧)

𝑒2𝜅𝑙 − 1
+ lim

𝑧→𝑧′
∫

∞

0

𝜅3𝑒𝑘Δ𝑧 

                    =
𝜋4

120𝑙4
+ lim

Δ𝑧→0

6

(Δ𝑧)4
, (B6a) 

lim
𝑧→𝑧′

𝐴2(𝛽) = lim
𝑧→𝑧′

∫
∞

0

𝜅4cosh(𝜅(Δ𝑧 + 𝑙))cosh(𝜅𝑙)

(𝑒2𝜅𝑙 − 1)2
𝑑𝜅 

                    = lim
𝑧→𝑧′

[4∫
∞

0

𝜅4

𝑒2𝜅𝑙 − 1
+ 4∫

∞

0

𝜅4

(𝑒2𝜅𝑙 − 1)2

+ ∫
∞

0

𝜅4𝑒2𝑘Δ𝑧] 

                     =
𝜋4

30𝑙5
− lim

Δ𝑧→0

24

(Δ𝑧)5
, (B6b) 

lim
𝑧→𝑧′

𝐴3(𝛽) = lim
𝑧→𝑧′

∫
∞

0

𝜅4 sinh(𝜅(Δ𝑧 + 𝑙))

sinh𝜅𝑙
𝑑𝜅 

                     = − lim
Δ𝑧→0

4!

(Δ𝑧)5
, (B6c) 

lim
𝑧→𝑧′

𝐴4(𝛽) = lim
𝑧→𝑧′

∫
∞

0

𝜅2 sinh(𝜅(Δ𝑧 + 𝑙))

sinh𝜅𝑙
𝑑𝜅 

= − lim
Δ𝑧→0

2

(Δ𝑧)3
,  (B6d) 

in which we have used (45) for obtaining 

𝐴1(𝛽), 𝐴2(𝛽), 𝐴3(𝛽), 𝐴4(𝛽). 

For obtaining similar results for 𝛼-part, we use suitable 

decoposition to partial fractions and the relations 3.524(5) 

and 3.423(2) in [42]. Then it is found that   

lim
𝑧→𝑧′

𝐴1(𝛼) = ∫
∞

0

𝜅3 cosh(𝜅(2𝑧 − 𝑙))

sinh𝜅𝑙
𝑑𝜅 

                    =
3

8𝑙4
[𝜁(4,1 −

𝑧

𝑙
) + 𝜁(4,

𝑧

𝑙
)], (B7a) 

lim
𝑧→𝑧′

𝐴2(𝛼) = ∫
∞

0

𝜅4cosh(𝜅(2𝑧 − 𝑙))cosh(𝜅𝑙)

sinh2𝜅𝑙
𝑑𝜅 

                    = 2∫
∞

0

𝜅4[𝑒2𝜅𝑧 + 𝑒2𝜅(𝑙−𝑧)]

(𝑒2𝜅𝑙 − 1)2
𝑑𝜅

+ ∫
∞

0

𝜅4[𝑒2𝜅𝑧 + 𝑒2𝜅(𝑙−𝑧)]

𝑒2𝜅𝑙 − 1
𝑑𝜅 

                     =
3

4𝑙5
[2𝜁(4,2 −

𝑧

𝑙
) − 2(1 −

𝑧

𝑙
)𝜁(5,2 −

𝑧

𝑙
) 

      +2𝜁 (4,1 +
𝑧

𝑙
) −

2𝑧

𝑙
𝜁 (5,1 +

𝑧

𝑙
) 

                          +𝜁(5,1 −
𝑧

𝑙
) + 𝜁(5,

𝑧

𝑙
)], (B7b) 

lim
𝑧→𝑧′

𝐴3(𝛼) = ∫
∞

0

𝜅4 sinh(𝜅(2𝑧 − 𝑙))

sinh𝜅𝑙
𝑑𝜅 

                     =
3

4𝑙5
[𝜁(5,1 −

𝑧

𝑙
) − 𝜁(5,

𝑧

𝑙
)], (B7c) 

lim
𝑧→𝑧′

𝐴4(𝛼) = ∫
∞

0

𝜅2 sinh(𝜅(2𝑧 − 𝑙))

sinh𝜅𝑙
𝑑𝜅 

                     =
1

4𝑙3
[𝜁(3,1 −

𝑧

𝑙
) − 𝜁(3,

𝑧

𝑙
)], (B7d) 

where the following relation has been used to obtain 

𝐴2(𝛽) (see 3.423(2) in [42, 41])  

∫
∞

0

𝑥𝜈𝑒−𝜇𝑥

(𝑒𝑥 − 1)2
𝑑𝑥 = 

Γ(𝜈 + 1)[𝜁(𝜈, 𝜇 + 2) − (𝜇 + 1)𝜁(𝜈 + 1, 𝜇 + 2)] (B8) 

𝑅𝑒  𝜇 > −2, 𝑅𝑒  𝜈 > 2. 
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