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Abstract

Brown and Maclay [1] found the energy-momentum tensor for the Casimir effect of parallel plates in 1969. We find its
curved spacetime version in a static background using the point splitting regularization method. Previous results in the

literature are reinforced and some consequences discussed.
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1. Introduction

Some aspects of the final theory of quantum gravity may
reveal themselves through a probable asymptotic theory
such as quantum field theory in curved spacetime. The
theory has predicted important phenomena such as
Hawking radiation [2] and particle production in
expanding universe [3] as well as the Casimir effect and
radiation from accelerating conductors. The energy-
momentum tensor, occupies a crucial and central role in
semi-classical approach to the theory of gravity [4,5].

On this ground, and after derivation of the energy
momentum tensor for the Casimir effect of parallel plates
in flat spacetime by Brwon and Maclay [1], the Casimir
energy in curved spacetime has been studied by many
authors investigating some physical notions such as weak
principle of equivalence [6-10], quantum vacuum
structure [11,12] and the question that whether the
vacuum energy is responsible for the cosmological
constant problem or not [13]? Some studies have been
devoted to calculating the Casimir energy in a classical
background [14-29] while few others concerning the full
energy-momentum tensor [30-34].

In Ref. [33], the energy-momentum tensor has been
derived and analysed in Fermi coordinates for a massless
scalar field confined between two conducting parallel
plates in the case of weak gravitational field. However, as
is well-known and indicated in Ref. [32], there is no
mathematically essential difference between Rindler
spacetime and the Fermi coordinates in curved spacetime
if we neglect curvature effects (see also equation (13.73)
in Ref. [35]). In this paper, we find T,,,, in a general static
curved spacetime. Although it is a hard and tricky
computation, it can be more efficiently presented using
the point splitting method [4,36]. In section I, after

defining our set up for the Casimir apparatus, we find the
Green function using a method different from the one
usually used by others. We find it more simply by
employing the WKB method with the aid of a known
theorem in the general theory of differential equations. In
section Il we compute the energy-momentum tensor
using the point-splitting method. Then, the Casimir
energy and force will be found. Taking advantage of the
Wick rotation, we find the explicit type of the
divergences. To check out consistency of the
computations, we reinforce the previous results in the
literature. Covariant conservation of the obtained T, is
examined. A careful analysis of conformal invariance and
trace anomaly is done in section IV. In section V, we
provide some examples in support of the developed
method. The final section is devoted to some discussions.

2. The Green function

The apparatus is a system of two parallel plates separated
by a small distance a and located at distance R from the
source of the gravitational field. The scalar field is
massless and arbitrarily coupled to gravity with Dirichlet
boundary condition on plates. The spacetime metric is
assumed to be
ds? = (1 + 2y + 2202)dt? — (1 + 2y, + 24,z) X
(dx? + dy? + dz?) @)
Our motivation for using this type of metric is related to
the fact that a typical gravitational potential can be
expanded, up to second order perturbation, in the space
between the plates as Gm/c?r = 1 + 2y, + 24yz+... where
Yo =—Y1 = —CGz—rZ << 1, gz = —Myz =%z <<1 [18].
Hereafter we assume ¢ = h = 1.
To regularize the energy-momentum tensor, we use the
point splitting method. The energy-momentum tensor can
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be written according to the Hadamard two-point function
which is related to the Feynman Green function by
H(x,x") =< [p(x), p(x")]+ >= 2Im Gp(x,x") )
The Feynman Green function satisfies

(@ —ER)Gy(x,x) = =22, ®)
Some calculations show that the Ricci scalar R ~ 0(y?),
i = 0,1, hence should be neglected by now as we will
compute everything up to second order perturbation only.
This does not delete & in the next calculations since it still
presents in the energy momentum tensor. Thus we have
0u([=99" 9,Gp(x,x)) = =6 (x, x). (4)
The planar symmetry of the apparatus in the directions x
and y makes it easier to work with the reduced Green
function g (z, z") defined by [30]

—iw(t—tr)+ky .(X—%7)

, dwdk ,
Grlxx) =] ((;’11)3l gr(z,2)e )
dwdk -
= (Zn); U(x,y,zt; 0, k),
where
U=gr (Z, Zl)e—iw(t—tl)+ikl.(f—ﬁ)’ (6)

and a Feynman contour is chosen in integration. Using the
same relation as (5) for §(x,x") and expanding the left
side of (4) we find
\/__ggllazng(Z’Z’) + 62(\/—_gg11)62gF(Z, z') -
V=991 (K} + 22 0N)ge(z,2) = =8(z —2'). (7)
Here we do not use the iterative procedure to find g(z, z),
the perturbation method used in Ref.[30]. Instead, we use
the general theory of differential equations and the
following theorem [37]:
Theorem 1: The Green function for the differential
equation
Po(2)y"(z) + p1(2)y'(2) + 2y (2) = f(2,2), ®)
which is defined on the interval [a, b], along with the
boundary conditions

ary(a) = a,0,y(a), B1y(b) = B,0,y(b), 9)
is given by

G(x,x") = % z<z (10a)
Glx,x") = —;1((221))171?((;’)) z>7 (10b)

in which Y;(z) and Y,(z) are two independent solutions
of the corresponding homogeneous differential equation
and W (z) is the Wronskian of Y; (2), Y,(2).

To find Y; (z) and Y, (z) we use the general solution to the
homogenous part of (6) (see Ref.[25] equation (15))

V(2) =D (1= G+ Dz)sin(Vbz(1 +22) +0;),  (11)
in which ©, and D, are arbitrary constants to be
determined by imposing the boundary conditions and
a=—-2Bw? b=(1-24)w*—-k3 (12a)
A=yo—V1, B=4 -4, A=1 + 4. (12b)

The Dirichlet boundary condition is given by
Gr(2,2")|z=01 = 0. (13)
According to (5), (9) and (10a)-(10b) this boundary
condition is equivalent to

Y1(0) =0, Y,())=0. (14)
Therefore, it is found that

Yl(z)—(l—(— 4b) )sm\/_(z+—z) z <z, (15a)

A a
YZ(Z) = (1 - (E‘FE)Z) X
sinvb <(z -D+ %(z2 - lz)>, z>2z. (15b)
A computation shows that the Wronskian for Y; and Y, is
given by
W(z') = (1 — 2z)Whsinvb (1 + = 12). (16)

Using po(z) = /—gg** = —(1 +y, + v, + Az) we arrive
at
A-v—r)A-e@z+2)) _ a
2) =~ Vbz + — 7
8r(2,2) \/Fsinﬁ(l+f—blz) sm( z 4\/52 )><
sin (\/E(Z’ -D+ ﬁ (z"? - lz)), z<z, (17a)

A-v-1r)A-e@z+2)) . r, a2

(27) = — bz +—=
B (12 \/Esim/_(l+izz) Sm<rz wb )X

sin(VB(z— ) + 2=(z2 - %)), 7 <z (17h)
Notice that the above green function is symmetric due to
the fact that the differential equation (7) is self-adjoint. In
fact, the sufficient condition for (8) to be self-adjoint is
that 222 = p, (2) [38].
By expanding in terms of a, we finally find the green
function up to second order perturbation as follows:
< Z

—Yo—V1—Az+2)
2\/_51m/_ (l + —12)
+-5((22 = 2 + P)sin(VBp) — (2% + 22 — )sin(Vha))}, (18a)
a=z+z -, B=z—-72+l=Az+1 (18Db)
To find gr(z,2z) for z>2Z it suffices to do the
interchange z < z' as the green function is symmetric.

gr(2,7) = {cos(Vba) — cos(Vbp)

3. The energy-momentum tensor

The classical energy-momentum tensor of a scalar field in
an arbitrary n-dimenstional spacetime is given by [4]:

1
Tow = (1= 26y + (26 = 5) G702 — 26600

2 2(n—1) 2
+;€guv¢ (;b - f(G[w + n nguv)d)

+2[; — (1 - DéImP g2, (19)
in which B= g ¢, and G,,, is the Einstein tensor. As
is commonly known, the expectation value of this energy-
momentum tensor is divergent when evaluated at a typical
point in curved spacetime. In fact, this is a typical
behavior of the problems consisting of taking the
expectation value of the operators quadratic in terms of
the filed strength [4].

One can see [36] that after employing the point splitting
method the enenergy-momentum tensor takes the form

(Tw) = lim [(1 = 264G}, + G5
+E - 14)ng(n o _ g (6(1) n G(1) )
+889,, (6% 7+ G, %) + €26, G<1>

+2£2Rg,, 6D + E2m2g,, W], (20)
in which
GO, x") = ([p(x), p(XN]4) = 2Im Gp, (21)
is the Hadamard function and ; u’ denotes differentiation
with respect to x’. The main idea behind the point splitting
(point-separation) method is that we avoid taking the
above limit by separating the points using the bivector P
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which is responsible for the parallel transport of any
tensor field from point x to another distinct point x’ along
a geodesy which connects x to x'. Thus, for instance, we
do the replacements such as

lim G - B} gl (22)

X SUrv Surv?

in order to carry out the above limiting process. After the
calculations done, P will be replaced by unity, i.e. by
8,/ The bivector B is given by [33]

Pl:// = gupnabebpe%l- (23)
The normalized vielbeins ebp for the metric (1) are

60# = ‘190060”, ei# =4/ |911|5L# i= 1,2,3. (24)

Therefore, we find

Pu — M’ M’ 91/11 glll! . 25
v (\/ Yoo \/911 911 '+ 911 ( )

Now, we return to (20). First, note that the last term in (20)

which contains G,,, vanishes for the metric (1) as it is a

second order term. By using (5) and the replacements like
(22) we rewrite (20) for the massless case as

w ’ U U
(T} = gIm on ——F[2(BU sy + BY'U ) — 90 PEUC
’ , 1 1 1
- uv Pit# P'u ;;uv') + Zguv(U;aU +F7 ParrrU;rﬂU )]
1 dwdk, w - o1 or
"'(Sz - g)lm (271,)3 [_(Pu U UV + Pv U ;uvr) + Zgﬂ'I/PUVU;G

~(U s + BEPYU ) + 5 90 (Ug® + PEBEULT]. (26)

To find individual components of the above energy-
momentum tensor we need the Cristoffel symbols
associated with the metric (1) as
TG =T0s =2+ 0(€?), Ty =T} =TI =-T} =
—T3, =1 + 0(€?), (27)
and the following relations

8U = —iwU, 0,U = —ik,U, 8,U = —ik, U,

Ugor = w2U, Uy = k2U, Uyyp = K2U, Ug,s = 8,0,,U,

Ugo = —w?U — 208,U, Uy, = —w?U — 140,,U,

Ugy = —k2U + 4,0,U, U,y,y, = —k2U + 2,0,,U,

Ugy = —k2U + 2,0,U, Uy, = —k2U + 4,0,,U,

Uss = 02U — 2,0,U, Ug,s, = 02U — 1,0,,U.
Before tending to find energy-momentum components,
we need to compute scalars PSU,°" and U,° +
PY'PS U, as follows.

Pgu;dar = gO/Or MU_ o +g1/1r M{U.u, + U;ZZ! + U;33,} (29)

=g"%w 2U +g“(klU +d,0,U),
in which we have used equations (30) and (33). The same
calculation shows

U,° +PZ'PIU 7 =

-gOOU;OO + gll{U;n + Uy, + U;33} + QOIOIU;O’O’ +
gllll{U;l’ll + U;Z’Z’ + U;S’S’} - Zgoosz
—2k3g**U—2(a,+9,)U + g" (32 +3%)U. (30)
Note that in the above equation it is eligible to take x —
x' after the differentiation is done.

(28)

3.1 non-diagonal components
The non-diagonal components of the (T,,) vanish. For
instance, we find (T, ). Since go,, = 0, the second and the
last terms in (26) vanish. For the first and third terms, we
see after usmg (6) and (28) that

Pl U +P0U1VI—P(J (U01+U10)

= (—wk,U - k,wU) = -2k,wU,
U1+ PYPY'U Ly = 2k, (31)
and arrive at
(To;) = lim 21 f dodky 1o WUl
= lim 2Im wU] =

01 x> (2 )3 x
2f., dky [o dogs [ dia(2ke0Z(2,2)] =0, (32)
since w and Z(z,z") are even functions in terms of k.,

hence the integrand in (32) is an odd function in terms of
k,.

3.2 computation of < Ty >

After using (26)-(30) we find
(Too) = deodi
1 o)
sm | i 220U = goolg**w?U + g™ (kEU +
0,0,U0)} — (—2w?U — A4(0, + 3,)U)

1 00,,2 2 411
+Zg00(—2g wU —2kig"U— A0, +09,)U

+ g™ (97 + 92)U)]
dwdk
((;) );[ 202U + 2g0o{g°°w?U + gt (k32U
) + 0,0, U0)} — (—2w?U — 44(8, + 9,)U)
+7900(—29%°w?U — 2k} g™ U — A0, + 0,)U + g™ (97 +

+(€ - %)Im f

;)W) (33)
which can be written as follows
(Too) = dodk
1 wdk, 9 3 9oo Yoo
—lim/ w2 -0 2 02 + 02
62}212 " (2m)® 2 “ 2911 * 4911( i
—40,0,,) + 310 2,4(0, + 3,,)]18F
1 dwdk 3
(f——)hm v ;[ w? + 220 2
6 g(z ) 2 911
00 2 2 ,
. ((02 + 02) +80,0,/) + 34
~ 2440, + 0, s (34

Before doing integrations in the above equation, we need
to find gp, (0, + d,,)gr and d,0,,8r separately. After a
careful calculation, we find up to second order
perturbations in terms of A,y (see Appendix A)

= g(N - M), (35a)
PR cos(Vba)
S G SO earey 7
N al? cos(Vba)cos(Vbl) N

4b sin?(Vbl)
sin(vVba) cos(Vba)

2,2 _
AR ) Fosinisn T 26 Tosincan (35b)
cos(VBR)
N=—(1—v. —
( Yo — Y1) \/Esin(\/gl)
al? cos(VbB)cos(Vbl)
o +
4b sin2(Wbl)
A 2 _ 2 24 _Sin(¥bp) cos(Vbp)
W (z2—=27"%+ 1% Vosin(bD) + 2ez Tosin(VBL) (35¢)
A a
€=t w (35d)
and
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,0,)8r = sin(vba)  az (cos(\/—a)

€ sin(vbl) T 2vp sin(v/bl)

)yt

8 = i)~ i)
+ b(M N), 37)

21(0, +0,)8r = (\/_ ) (sin(vba) — sin(Vbg)) +
o (S F) + ()
oy

Note that in our calculations we frequently use typical
approximations of the kind
ef(e,...) = f (0,...) + O(£?). (39)

For example

1-€(z+zr) _ 1
L Vbsin(Vba+iez) A Vbsin(vba) +0(do) + 0(4e).  (40)

To have insight into the divergent parts of equations (34)-
(38), we need to first analyse the flat spacetime case.
Explicit computations will be done to clear the type of
divergences.

3.3 flat spacetime analysis of the energy-momentum
tensor
The flat space (Ty,) is given by letting 1o =4, =y, =
y, = 0 in equation (33). For sake of simplicity we analyse
the case é = 0, i.e.
(Too) = ;;_rgélm w® + k2 +0,0,]1gr.  (41)
After using (40) and (44) we find

1 dwdk; w?cos(VbB)—k3 cos(Vba)
(Too) = ;}anl mJ (2m)3 Vbsin(vbl) (42)
To compute this integral we use the Wick rotation
technique discussed in Appendix B. Thus, we find

<Too> =
___ 1y f“’ K3 die 8 4 2e0sh
T 12m2 Z}EIZ 0 sinhxl [cosh(kf) cosh(ka)]

1. o K3d
=— ?nzzl}r_{lz fo s’icnh:l [cosh(k(Az + 1)) +
2cosh(k(2z = 1)]  (43)

fdwdkl[

which in turn gives
(Too) =
1 [oe]
[lim | wx3dre"? +f
0

® 2K3dk @ x3e2KZdy
127‘[2 215z )

7_'_ —_—
Kl 1 o e2kl _ 1

o K3e2K(a— Z)dK
e2kl_1q (44)

+2 f)
After using [42]
e(B—wx 1 U
fo r— dx=ﬁv+1[‘(v+1)('(v+1,§),
Ref >0, Reu>0, Rev>1, (45)

we find
T _ | 1 2
Tood = =02 10 Gy~ Taaor®
1 z Z
“mf(#1-) (4] @
in which
{(m,x) = Y3-, (47)

(n+x)m'

is the Riemann’s zeta function.

Notice that the first bracket in (46) is originated from the
B-dependent part of equation (42) while the second
bracket is due to the a-dependent part. We will use this
point later in next sections. As is evident from the -
dependent part, the first term diverges when z' — z. This
is the typical behaviour of the point splitting method and
is not an special effect here [36]. Except for this point, the
B-dependent part is the finite one.

A simple computation shows that the a-dependent part is
completely divergent. In fact,

E, = —ﬁf[c(m —5) + ((4,;)]dz

ld l
B 161t2 f Pt o (L— z)4
f dZZ (z +nl)4 [(n+1)l—z] )]
- _4_712(ZL0+Z_3 + Zl_)r}n (- 1z)3) (48)

Therefore, the a-dependent part does not produce any
finite contributions to the energy.

3.4 regularization of < Ty >

Based on the analysis presented in the previous section,
the terms containing « are divergentat z = 0,z = [ while
the B-terms converge. Hereafter we first calculate S-terms
in each case. Note also that M is a totally a-term.

For the first line of (34), after using (35a) and (36)-(38)

we find
3
[2 —@ i+ﬂ(az+az—4aa )+ 32— Ay

o l w_cos(\/_[i) _aicos(\/—[f)cos(\/—l)
[-3(1 -, V1+232)ﬁ75in(\/51) + T3 ST e

312 aw? sm(\/—ﬁ) 1628 w? cos(VbB) 3z a cos(Vbp)

4 b sin(WbD z Vb sin(Vbl) 4 \/—sm(\/—l)]
\/_cos(\/_a) 12 cos(\/_a)cos(\/_l)
sin(vbl) T3 sin2(vbl)
sin(vba) 2y evbcos(Vha)
sin(vbl) sin(vbl)
(u cos(\/_a)_3_lza_wzcos(\/_a)cos(\/_l)
\/_ b sin(bl) 4 b sin2(\/bl)

_§ 2,7 _ Z)ﬂsm(\/_a) 62 €w cos(\/_a)_zicos(\/l;a)
S b sin(vbl) Vb sin(vbl) 4+/b sin(v/bl)
__ Asin(Wba) | A1-34gsin(vba) sin(vba) 49

4 sin(v/bl 4 sin(v/bl) € sin(\/El)] (49)
In a similar manner, for the second line of (34), after using
(35b) and (36)-(38), we find

3 9oo 900
[2 W 45 kg ((02+a)+saa)

+[—(1 + vy, — 3y, + 2B2)

1
+—(Zz —1®a

3A-vo—n+

+(3/10—/11)4(a +0 ,)] —M_

[—B w cos(\/_ﬁ)+§icos(\/_ﬁ)]+[__3 w? cos(vba)
2 b sin(¥bl) 4 b sin(vbl) 27°Vb sin(v/bl)
cos(vVba) 1> cos(vba)cos(vbl)

+(1+y, =3y, + 2B2)Vb T 79 -
2z2 —[? sm(\/_a) bcos(\/Ea) a cos(vba)
4 sm(\/—l) sin(vbl) \/— b sin(vbl)

_ 1 _sin(Wba) 3Ag—2;sin(vba) asin(vba) 50
E sin(v/bl) 4 sin(vbl) 4 sin(\/El)]' (50)
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As is evident from (50), the second line of (34) is
completely divergent at z = 0 and z = L. This divergent
part is absent in the case of conformal coupling of the
field, i.e. for £ = 1/6. Thus, after a Wick rotation and
using other integrations in appendix B, we finally find
(Too) =

E 2
—°(1 +2y0 — 4y1 + 2 Aol - 2) - ,11(31 +42)) +

5 (A )4
90 —— [-82A; (@) + I?Ay(a) — (22% — [?)A3(a) + 544(a)]
1 1

12722 ¢ - )[6(1 + 2y — 4y1 — 21,2)A; (@) + BI2A, (@)

—(222 —lZ)B Az(@) = 2(421 + 520)As(@)],  (51)
in which

co = —# [1+2y0 — 411 — (Ao + 44,)7], (52)
and
A(@) = g K1~ ) 4 (4],
3
Ax(@) = 1512842 =D =201 = DE(52 — )
+2((41+l)——5(51+ )+z(51 D+IGDL
As(@) = 415 (5,1~ =Gl
A4@) = G- 135
and E, = —n2/144014 is the Casimir energy in flat

spacetime. An important point should be stressed here. In
equations (49) and (50), everywhere, we can replace b =
(1-24)w?—k% by b=w?—k?% in view of the
application of equation (38). However, since the first and
fifth terms in (49) and the second term in (50) are not
proportional to O(A1), hence the replacement is not
eligible. In such terms, we can use the variable change
w' - w(l—A)andsend b = (1 — 24)w? — k2 to by =

—k? again. Consequently it makes an extra
multiplicative factor of 1 + 34 which should be taken into
account. Another point is that all the functions A, A,, A
and A, are divergent near the surfaces, i.e. at z =0 and
z =1

3.5 computationof < T{; >and < T,, >

The fact that there is horizontal symmetry in the space
between the plates, the energy momentum tensor is the
same for both x and y directions, i.e. (T;,) = (T,,). The
same reasoning will ended up with the following relations
which we use later:

dwdk, dwdk,

2 —
;}gnzlmf ams Ko8r = limim [ 7t ligy =
dwdk
;;}_IPZI m [ I )3l kigr (53)
By using (26) we find
(Tn)—(Tzz) dodk 5 .
waky = k2 _291 5, 1o 2
6213312 2o M T 5, T g0t
—40 az,) + Ao —34,4(0, + 9,)]18F

144. 1
+(§ _g);}_rglm f d((;)d)k; [Z‘ ki _I_ 3911 2 +Z(azz +

0%, +80,0,,) + Ay — 3/114(6 + 0,)18F- (54)
After the same process as for (T,,) we find for the first
line of (54)
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32391 o Lo b2 _
[2 ki 2900w +4(6Z + 04, —40,0,) + 19 — 31,4(0,
+ azr)]gF \/_ \/_ \/_
1 w? cos(VbB) I? aw? cos(vbB)cos(Vbl)
=421A =37 +r— Bz)ﬁm-l_ZTsmz(—\/_l)
12 aw? sin(vVbp) L@ 2 cos(vbp) cos(v/bB)
4 b sinWBl) Vb sin(VB) +A-ro—yvb sin(vbl)
_E cos(\/Fﬁ)cos(\/—l)_E sm(\/_ﬁ) bcos(\/zﬁ)
4 sin2(v/bl) 4 sin(v/bl) sm(\/_l)
z a cos(vb w? cos(vVba
t5—= ( ﬁ)] +-[(1-3yo+y:,— Bz cos(Vba)
24/p sm(\/—l) 4 Vb sm(\/—l)
I2aw cos(\/Ea)cos(\/—l) 222 — 12 aw? sin(vVba)
4 b sin2(v/bl) 4 b sin(v/bl)
cos(Wba) |, z a cos(vba) 2 sin(Vba)
zevb sin(v/bl) +6«/_ b sin(v/bl) 3€ sin(+v/bl) (55)
1 cos(vba) ew? cos(vVba) sin(vha)
3% rovb sin(vbl) —2 Vb sin(vbl) +3 sin(vbl)
+£ cos(vVba)cos(vVbl) 2z2-1? sin(Vba)
sin2 (vbl) 12 sin(\/Ez)]

The second line in equation (54) is easily obtained from
equation (50). In fact, it is nothing but the equation (49)

multiplied by a factor of ? along with the exchange 1, <
11

2. Thus, again, using the integrations in the appendix B,

we find

(T11) = (T22)

2 2 &
(1 21 - A2z - D -G+ 1))—+

(az)*
[8zA, () — 124,(a) + (22% — 1) A3(a) + 544()]

B
B 180m%
+ 555 (€ — DI=6(1 = 21 = 2402)A1 (@) — BI4,(@)
+(22%2 — 1)BAs () + 2(24¢ + 721) A4 ()], (56)
where

1 2
) = ﬁ(1 =2y =2 (22, + 3/11)2). (57)
3.6 computation of < T35 >

Using (26) and a similar process of previous subsections
we find

<1T33) B dwdk, 3 3 3
qodky 2,2 2911 5 2 52 52
621}—11’12 (271,)3 [ 2 1 2g00w 4(62 +azl
—49,0,) + Ao + 51,4(0, + 9,,)]8r
+E-Dlmim [ ELLIE 4 0 —

(2m)3
—(a2 +02) + A + 5,114(0 + az,)] (58)
For the first line we find
1 3 3 3
AN E—E%wz =402 +0Z
\/i' 0,)18F
_13, @rcosGbf) o
52575 sin2(v/bl) A=Y 1) sin(vbl)
3lzacos(\/_ﬁ)cos(\/_l) + 62 evbcos(VbB)
4 sin2(Vbl) sin(v/bl)
312 s1n(\/_ﬁ) 9z a cos(Vbl)

4 sm(\/_l) _Tfsm(\/_l)

—40,0,,) + Ao + 51,4(0,

Vbeos(vbp)
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1 E w? cos(vbB)
+ 6 =382 Vb sin2(vbl)
sm(\/—a) cos(vba)
€ sin(v/bl) B (/10 1) sm(\/—l)]
and the second line of (66) is found to be
3 3911 3
[2 k? + -—w? - —(62 +02%) + Ao + 51,4(0, + 3,)]gr

2900
3 w cos(\/_ﬁ) _3_ZiCOS(\/_/3)

=l=g52 4 /b sin(vbl)

2 \/_smz(\/_l)
+[3 W cos(\/—a) 3/15111(\/—0() 3z a cos(\/za)

25 Vbsin?(Wbl) 4 sin(vbl) T Vb sin(Wbl)
Vb
—~ (Ao +54) Ss‘:](( \/_‘f))] (60)
After doing the integrations we arrive at
<T333b} =
2 (1-2n-
+E - DI-
where
;= —i(1 =2y =22 + /11)2). (62)

_ 3z a cos(Vba)
4 +/b sin(+v/bl)

(59)

(2/10 + 207+ 5 (o = ,11)1) + e
m (Ao + 241)Ay(a)], (61)

2m?

3.7 consistency check

As said before, the energy-momentum tensor has been
found for a Casimir apparatus hovering in a weak static
gravitational field described by Fermi coordinates [33, 34,
30]

ds? = (1+ 2gz)dt? — dx? — dy? — dz>. (63)
This spacetime is equivalent to the spacetime of the
Rindler accelerated observer [31]. Therefore, it
corresponds to the case y, =y, =1, =0, 4, = g inour
calculations. They have found the following energy
momentum tensor (see (4.5)-(4.7) in [33])

(Too) = (T33)) + 2gUTe ) +. .
2

(0 T

7Oy = =E
(Too") 14401 ] o (4s)

€)) S — O COS(4S Tz
Ty = +E —— s =—
(Too") tho 40  sin%s s

6 2
= (Too) = Eo (1 + cga— —gz))

(1) = (Tpp) = (T + 2gUT )+

—Ey,(m — 25)
=—FE +2 LA ——
ot ga( 5t )'

2 4
= —Eo(l + gﬂ.ga - gloz),

(Ts3) = (T3 + 2gUT3 )+

(Tz,(g)) = 3E,, )

S
(T33) = By = —Eo
= (Ty3) = 36, (1+2 gl -2 g2)). (64)

Note that we have selected only the part of their result
which is finite at z = 0 and z = L. Thus, for instance, the

only potentially finite term in (T,,) in that paper was the
one containing the term cos(4s)/sin*s which has been

demonstrated in (TO(;)) above. Also we have used [ instead
of a to show the separation between the plates. The E; is

also the traditional Casimir energy of the flat spacetime.
The result in equation (72) equals our results for y, =
1=4=0 4 =g

Another consistency check concerns the covariant
conservation of the energy momentum tensor. Since the
energy momentum tensor is diagonal and only dependent
to z, (T0),, = (T#'),, = (T#?)., = 0. After a calculation
forv =3, we find

(TH)y = =5 QA + ) g + s (65)
in which
cs = = (1= 6y1 — 3 (Ao + 4A4,)2). (66)

To obtain (65) we have used the relation 9,4,(a) =
24, (a). As is well-known, the Az~™ terms in (65) are the
common effects of the point separation method which can
be dropped away. Thus, the covariant conservation of the
energy momentum tensor is guaranteed. Note also that the
flat space limit can be easily checked out in view of (46).

3.8 The energy and the force
The energy in a static spacetime is given by

E = [ J=g(T)d* (67)
l
=sf(1—n+3n+(mq—%yxna
0

=S(1+A+B é)Eo + (a_part) + (€ — %) (a_part),
where we have ignored the a-part as it diverges at z =
0, L. S is the area of plates.
Apparently, the first order correction A =y, —y; has
been appeared in the energy. This confirms the result
recently found by author [40]. Although, in that work (see
section 4 in [40]), sufficient arguments were introduced
for the appearance of first order corrections, the current
direct calculation shows that undoubtedly the
gravitational corrections for the Casimir energy and force
of parallel plate geometry is many orders of magnitudes
greater than what previously found in the literature and
thus can be measured employing current precision of
experiments.
The force by which the plates attract/repel each other is

0E
F o =-2=-SA+A+2B )——0
(68)
=-5 (1 +70+ 3y +2 (o + 2,11) I )48014,

proper distance between the plates. As a result, the change
in the force by which the plates attract/repel each other
depends on the sign of the first order correction y, + 3y;.
We give examples indicating this point later.

4. conformal invariance and trace anomaly

It can be shown that the trace of the stress-tensor vanishes
for & = 1/6, i.e. for the conformal coupling of the field.
After some calculations and using equations (51),(56) and
(61) we find

(T))

— 00 11

= 9" (Too) + 9 " [2(T11) + (T33)]

S04 5301 - 4y, - 2204
=0+ ¢ -3 -4 - 204, (@) +
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6BI%2A,(a) — 6(22% — 1*)BA;s(a)

—(1329 + 151,)4,(@)] (69)
Therefore, the trace has an anomalous divergent part
unless the field be conformally coupled.
Another feature of the obtained energy momentum tensor
is related to the case the metric is conformal flat, i.e.
ds? = (1 + 2y, + 2192)(dt? — dx? — dy? — dz?),
g% =1-2y,— 2,z (70)
In this case we have yo=v;, 1, =4, A=0, B=0
and the energy momentum tensor takes the form

(Too) =
J[E0 1 1 1

I 2m? (Az)4 2m? (f - %) A2z = l)]

1 1 A ]
+55(8-¢) 30442 - D)

134
= 9°%Too)™ = (€ = D) 55 A2z~ D),

(Tn) = (T22>

11
=g°°[—7°+

2m? (Az)4 B 2_7't2 ¢
2 (f )[310144(22 DI,

1
- D4z -]

=g°°(T11>“‘”+(€— Do A2z )
(T33) =E 3 1
0 (35 = 5 gyl 7z € ~ PI3heAs2z - D)

= g°%(T5) 14t — (§ — )“" 4,22 - 1). (71)
This is the reminiscence of the already known relation in
the literature. If a metric undergoes a conformal
transformation g, = 02 (x) Juv, the new (renormalized)
energy momentum tensor is given by (see (6.134) in [4])

1
(T (G ren. = (%)w (G Dren.
+ 11—2 [(9-39;9# — 29-49;9941)99” (72)

vV 4P0 3 —4 -3 6v
+ 6,9 EQ QpQe — Q755 ) g%V |

Putting Q% = goo = 1 + 2y, + 210z We see that

(Thren. = §°(T Ve, + 022, (73)
which differs from what we found in (71) by a factor of

(& -3 20 4,22 - 1). This difference is related to the

2m?
fact that equation (72) has been derived for quantum field
theory in curved spacetime without boundaries while our
result is obtained in the presence of boundary. An
improved form of (72) and some other calculations related
to quantum field theory in curved spacetime under the
influence of boundaries will be published elsewhere.

Again, equation (73) inspects equation (71) in the case of
conformal coupling, i.e. & = % In other words, for the case

of conformal triviality, the divergent part 4,(2z —1)
disappears.

5. Examples

5.1 The Kerr spacetime

The Casimir effect in Kerr spacetime has been studied
previously [15, 14, 39]. The metric of a slowly rotating
source adapted to the Casimir plates, measured by a zero
angular momentum observer (ZAMO), is given by [15]
ds? = (1 + 2b®, + 2bnz)dt? — (1 — 2d, — 2nz) X
(dx? + dy? + dz?) (74)

in which
b=1-2a0, Q=2 a=j/M
o, = _Gm o _ om (79)
0= Tagr 1T 2Rz

For more general observers see [15]. Note that m is the
mass of the source and the apparatus is located at distance
R from the center of the source. a is the angular
momentum per mass.

By comparing (82) with (1) we see that y, = b®,, y; =
—®,. Thus, in view of equation (76), we have y, + 3y; =
—2®,(1 + aQ) > 0 because for zero angular momentum

observers = 224—3“ in the far field limit. As a result, the

magnitude of the force between the plates increases. This
is also the case for the Schwarzschild metric as it
corresponds to 0 = 0 which does not alter the sign of

Yo + 371

5.2 Extended theories of gravity(ETG)

The metric (1) is applicable also for the case of the
extended theories of gravity. The possible impact of such
theories on the Casimir energy has been studied in [23]
where they have found the related metric to be of the form
Foo(X) =1+ 2D,(R)+2A(R) z

gij(x) = =1+ 2%, (R)+23(R) z , (76)

where

®y(R) = —%[1 + g(&,me ™R (l—g(fﬁl)) e~mR _
FemR], AR = (77)

The parameters m,,m_,m, and g(f,n) have been
defined in [23]. By now, it is sufficient to know that the
main term in the above equations is the Newtonian
potential GM/R and extra terms in the brackets are
corrections due to ETGs. Therefore, y, = @y, 1 = A,

y1 = —%¥,, 4, = —X and the corresponding Casimir force
is given by
F==5[1+d,—3% +2(A- ZE)IP] a9

which shows an increase in the magnitude of the force.

5.3 Horava-Lifshitz gravity

Modifications of the Casimir energy by the Horava-
Lifshitz theory of gravity has been studied in [16]. They
have found a static black hole solution as follows (see
eq.(8) in [16])

ds? = (1 L

Y a2~ (1+2 - M R4)(dr +
r2d0?), (79)
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whichintum gives yp = == = =y, dg = = = == A,.

Thus, the magnitude of the Casimir force increases as
y0+3y1=2%>0.

6. Concluding remarks

In this paper, we found the curved spacetime analogue of
the energy-momentum tensor for Casimir effect of
parallel plates first found by Brown and Maclay [1] using
the point splitting method. We extended in detail the
calculations of the energy momentum tensor of the
arbitrarily coupled scalar field confined in between the
Casimir plates to the metric given by equation (1). As we
shown, the metric (1) covers all previously considered
static weak gravitational fields for which the Casimir
energy and force has been calculated in the literature. The
explicit structure of divergencies was determined and the
regularized stress tensor was obtained in equations
(51),(56) and (61). Consistency with the previous results
in the literature were done in subsection G and section IV.
We found sufficient conditions according to which the
force and energy decreases/increases. Also we proved
directly that the leading order corrections to both the

Casimir energy and force i

previously found in the literature. We found the energy
momentum tensor in the case of conformal coupling of the
field and shown the consistency of the results. Some
previous studies in the literature were analysed and
corrected through examples.

Appendix

A some important computations
To be concise, we use equation (17a) in the form
gr = 1_Y(’_yl—_e(ﬁzl)[cos(S + 5, — cos(S; — S)],(AL)

B 2vbsinvB (1+.512) 12 1 2b
in which

5, = bz +;%=22,
=Vb(z' — ) + = (27~ ).

Usmg the above equations we find up to second order
perturbations

—€
0:8r = 2sin(VB0)

4b51 (\/_l)
+2 (1~ e(z + 2))(sin(S; + ;) — sin(S; — S,)), (A3)
in which R = —(1 + y, + y;)Vbsin(¥/bl + %zZ) and
equation (39) has been used. In a same way we find

€
0,,8r = m (cos(\/za) - cos(\/E/)’))

(A2)

(COS(\/ECZ) - cos(\/zﬁ))
(sm(\/_a) - sm(\/_ﬁ))

az )
~ 4bsin(vb) (sin(/b)

+sin(VbpB))

+£(1 —e(z+ z"))(sin(S; + S,) + sin(S; — S3)), (A4)

0,0,8F =

B sin(vba) _a(z+ z")
=€ Sn(VBD  4vBsin(VhD) (cos(\/za) + Cos(\/zﬁ))

+%(1 —€(z + 7"))(cos(S;y + S;) + cos(S; — S3)) (A5)
(sm(\/_a) - sm(\/_/?))

(cos(Vba) — cos(Vbp))

2
0:8r =5 (\/_l)

2\/_5 n(vbl)
+(1- e(z +2))(cos(S; + S,) — cos(S; — S,)),(A6)
02gp = (\/_l) (sm(\/—a) +sin(Vbp))
2\/_51 (\/—l) (cos(\/_a) cos(\/Z,B))

+ % (1 —€e(z +z"))(cos(S; + S,) — cos(S; — S,)),(A7)
The last term in equations (A5)-(A7) should be further

simplified to be applicable practically. After some
calculations we find that

%(1 —e(z +2))cos(S, +S,) =M

—(1—e(z+2))cos(S; = $,) = N
where M and N were defined in equation (35a) and (35b).
It is stressed again that all the above relations have been
approximated up to second order perturbations using
equation (39). Putting equations (A8) back into (A5)-(A7)
will produce (35a),(36) and (37).

(A8)

B Wick rotation for intergrations

We begin this appendix by an example. Suppose we tent
to compute the integral
dwd?k, acos(Vbl)
= f (2m)3 Vbsin(Vbl)’ (B1)
In this appendix we suppose b = w? — k2. If b = (1 —
2A)w? — k% which is the case for our problem in this
paper, in any case, the variable change w' = (1 — Aw
will recast the integration to our desired form for b. The
Wick rotation is achieved by sending

2
w — ikcosB, k, = ksinf = b - ik, ﬁ%_
o 1)2 k2dksinfdeé. (B2)
Since a = —2Bw? we find
_ -Bi i3 cosh(xl) _ -Bi.
=5a] “smnoa) K = 5z im A, (), (B3)
in which we have defined
© h(ru)
A = [, %dk, (B4a)
oo k*cosh?(ru)
z(u) f SnhZrl dk, (B4b)
oo k*sinh(ku)
A =y o e (B4c)

sinhkl

Other mtegrations which are needed in the paper can be

find as follows:

f dwdk) ? cos(¥bu) _ 1 2i
(2m)3 Vb sm(\/—l) 3 (2m)2
dwdk; a w? cos (\/—u) —2B_2i
@m3 b sin?2(Wbl) 5 (2m)?

/
J-dwdkla w?sin(Wbw) _ 2B _2i As(w), (B5-3)
/

A (u), (B5-1)

A, (w), (B5-2)

(2m)3 b sin(Gbl) 5 (2m)?

dwdk, € w cos(\/—u) 1.4 By 2
(2m)3 Vb sin(bl) (3 5) (2n)2A1(u)’

(B5-4)
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dwdklﬁcos(ﬁu) 2 2i ) ® k2 sinh(k(Az + 1)
I (2m)3 Vb sin(bl) 3 (2m)2 A (W), (B5-5) limA,(B) = lim,f ( el )
dwdk; k3 acos?(Vbu) _ 4B 2i =z z=2z0 Jo sinhk
J @m3 b sin2(Vbl) 15 (2m)2 A, (w), (B5-6) = —lim %, (B6d)
dwdk sz_ a sin(\/Eu) _ 4B 2i . AZ—’.O (A2) .
) 2n° b snbh 15 @m? Az(u), (B5-7) in which we have wused (45) for obtaining
dwdk) € k3 cos(vbu) 2i B A (B), A? (ﬂ)' A'3 (ﬁ)' Ay(B). )
| s 7 smeden —(‘ - g)mfh(“)' (B5-8) For obtaining similar results for a-part, we use suitable
[ dwdky sin(vbu) (_ _ _) W, (B5-9) decoposition to partial fractions and the relations 3.524(5)
(2m)3 * sin(Vbl) (271:)2 Ay and 3.423(2) in [42]. Then it is found that
dwdklicos(\/—u) _ 2B 2i ) 00 ,.3 h(x(2z — 1
/ (2m)3 Vb sin(vbl) 3  (2m)? Ay (w), (B5-10) limA; (a) = f £ (Kh( lZ ))
dwdk; - cos(Vbu) ) z-z' o sinhk
/ d(zZ)’: Vb Sl;;\(/{l)) (;g)z :11 @, (B5-11) 814 [C(41 - —) +{(4, )] (B7a)
w cos bu el 13
[ (Zﬂ);a preTa T e 2(w), (B5-12) lim A, (a) = f cosh(K(Zz —2 l))cosh(;cl)
dwdky sin(Wbu) _ 2B 2i ) z-z1 0 sinh?kl
f d(f)g): a sm(\ﬁ_ols)(\;u)S (2m)? A3(u) (B5-13) _, jooK4[eZKz + e2K(- z)] e
| G € e Vb sm(\/_l) (_ B _) (271)2 A4, (BS-14) 0 (e —1)2
dwdk, sin(\/_u) ) K4[62xz + eZK(l—Z)]
f (2m)3 sin(Vbl) (211:)2 A4(u) (85-15) +J(; e2xl _ 1 dx
dwdk | cos(Wbu) _  2i
| s VP sy = G- (B5-16) 3 g2 - —) —2(1- —){(5 2 —)
In our calculations we need either u =a =z+2 —1or Kl
wu=p=z—7+1=0Az+1. Thus, we find the +2¢ (41 +7)_T<(5'1 +7)
following results z z
* ,3cosh(k(Az + 1)) +HG1-D)+4GD] (B7Db)
11mA1(ﬁ) = lim f - dx ® ic* sinh(k(2z — 1))
z-z1 ) sinhkl lim,A3(a) — f -
~ lim2 K3 cosh(kAz) i © A zoz 0 sinhkl
= Jim f T i) K =2[G1-H-¢59) (B70)
= %(:’l‘l' + Alll"ﬂo (A%)‘U (BGa) llmA4(a) _ J Slnh(K(zz - l))
zZ— 4 - ;
_ . k*cosh(x(Az + 1))cosh(kl) oz 0 sinhxl
limA,(B) = lim (2 —1)? dx [{B1--¢BL (B7d)

VARIAS Z—Z! 0

_ 4 o] K4 A oo K4
- Z‘_{?,[ J; e2xl — 1 + jo (e2xl — 1)2
+ fooKA—eZkAZ]
0

== _ lim 22 (B6b)

3015 Az—0 (A2)5

® k* sinh(x(Az + 1
lim,A3(,8) _ lim,f K* sin (K( Z ))
ZoZ ZoZ 0

4l3
where the following relatlon has been used to obtain
A,(B) (see 3.423(2) in [42, 41])

© xVeTHX dr =

0 (ex_1)2 X

T+ DEv,p+2)—(p+1D{v+1Lu+2)] (B
Re u > -2, Re v > 2.
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