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Abstract 
In most models, mesons consist of quark -antiquark pairs moving in a confining potential. However, it would be interesting to 
consider the effect of an extra residual interaction by introducing the quark particles which contain a dependent spin and isospin. In 
the Chiral constituent quark model, the hyperfine part of the potential is provided by the interaction of the Goldstone bosons, which 
give rise to a spin- and isospin-dependent part that is crucial for the description of the spectrum for energies lower than 1.7 Gev.  In 
this model we have, not only included the confinement potential at large separations but also the color charge as well as hyperfine 
interaction potentials. This combination of potentials yields meson spectra which are very close to the ones obtained in experiments. 
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1. Introduction  
The justification of the success of the naive quark model 
(NQM) in describing hadron masses is certainly 
controversial. However it is worth while to investigate to 
what extent the spectrum of meson works. Doing so, it 
enables one to understand how the results can be 
interpreted in terms of a more convincing model. Many 
theoretically attempts have been made to compute meson 
mass with a confining potential. The meson spectrum is 
usually described by various constituent quark models 
(CQM) .The main point in our model is that not only the 
confining potential is characterized by presence of long 
range part confinement, but also by the short-range 
potential, which is a Coulombic one, that depends on the 
color charge. Extra hyperfine dependent interquark 
potential, which contains spin-dependent )(xH s , isospin 
dependent )(xH I and spin isospin dependent )(xH sI , are 
also important [1, 2].  
 The complete interaction used, in this model is given 
by [3]: 

( ) ( ) ( ) ( ) ( )s I sIH x V x H x H x H x= + + + , (1) 

where ( )V x is the confining potential, and this problem 
has been solved in [4] .In our model, the confining 
potential, is a more realistic one, with the added spin and 
isospin dependent potential s I sIH H H+ + , these 
residual interaction potential is more important, in the 
quark interaction [1, 2]. A similar behavior holds for 
baryons spectrum by using an accurate hypercentral 

approximation for solving the nonrelativistic three-body 
equation describing baryons [5, 6]. 
 
2. Interaction potentials 
The confining potentials could be of any form (e.g, log, 
power law, etc). In many practical applications a 
harmonic oscillator (H.O.) potential yields spectra not 
much different from those found from potentials such as 
Coulombic plus linear that QCD prejudice would flavor 
[7, 8]. Since harmonic oscillator models have nice 
mathematical properties, they have often been employed 
as the confining potential, Isguar and karl [7]. On the 
other hand, the Coulmbic term alone is not sufficient 
because it would allow free quarks to escape from the 
system. In this article, the potential is taken as a 
combination of the Coulombic-like term plus a linear 
confining term ( / )ax c x− , as employed by QCD [8,9]. 
Here we have added the H.O potential which has a two-
body character. We have built up a potential scheme for 
the internal meson structure which has two-body forces 
between quark and antiquark. Our model is a 
combination of lattice QCD calculations plus Isgur-Karl 
[7] interaction. The Isgur-Karl model is an important 
example of the potential approach to the baryon internal 
structure. One of its features is the diagonalization in an 
analytical (H.O.) basis. However, there are now many 
calculations solving the three-quark Schrödinger 
equation numerically. To this end the q-q- potential is 
usually derived from the (heavy) quark-antiquark 
potential [10], since the colour dependence gives 
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2qq qqV V= % . A widely used expression can be found in 

references [11, 12, 13]  
21( )

2
s

ij ij
ijij

V Kr br c
r
α

= + + +∑ ,

where jiijij rrrx
rr

−== is the distance between qq pair. 
Where both the Coulomb-like and linear confinement 
terms are present, in agreement with the analysis of the 
meson spectrum. The subtraction of the H.O part simply 
states that the wave function is used as a convenient 
mathematical basis. Where the fit was performed using 
the constants in the potential as a free parameter, the 
results where not much different from the Isgur-Karl 
model. In this work we have added the confining 
hyperfine interaction potentials ( ( ), ( )s IH x H x and 

( ))IsH x . Which yield spectrum very close to the 
experimental results. By regarding )(xV as the 
nonperturbative potential and the other terms in eq. (1) 
as perturbative ones according to this explanation.Where  
the nonpertubative confining interaction potential now 
becomes 

2( ) /V x ax bx c x= + − , (2) (2)
the strength potential parameters a , b and c are 
constants. This potential has interesting properties since 
it can be solved analytically, with a good correspondence 
with physical results. Here the purpose is to use the 
Schrödinger equation to produce quark wave function in 
the nonpertubative potential (2).   
 The spin and isospin potential contains a δ − like 
term, an ad-hoc operator term [3]. We have modified it 
by a Gaussian function of the quark pair relative distance  

2 2
1 2exp( / )( )S S IH A x s sσ= − ⋅ , (3) 

where is is the spin operator of the i − th quark and 

2 1x r r= − is the relative quark pair coordinate. Further- 
more, we add two hyperfine interaction terms to the 
Hamiltonian quark-antiquark pairs similar to eq. (3).  
The first one depends on the isospin only and has a form 
analogous to [3]: 

2 2
1 2exp( / )( )I I IH A x t tσ= − ⋅ , (4) 

where it is the isospin operator of the i − th quark. The 
second one is a spin-isospin interaction, given by [3] 

2 2
1 2 1 2exp( / )( )( )SI SI SIH A x s s t tσ= − ⋅ ⋅ , (5) 

where is and it are the spin and isospin operators of the 
i th− quark respectively.The spin potential (3) is 
provided by the interaction with the Goldstone bosons, 
which gives rise to a spin- and isospin dependent part. 
This is good for the description of the spectrum of 
mesons for energies lower than 1.7 GeV [1, 2]. Recently, 
it has also been pointed out that an isospin dependence 
of the quark potential can be obtained by means of the 
quark exchange [14]. More generally, one can expect 
that the quark-antiquark pair production can lead to an 

effective quark interaction containing an isospin 
dependent term. On the other hand, based on the fact that 
the constituent quark model does not contain the 
hyperfine potential this mechanism may be the reason 
why the low 2Q behavior of the electromagnetic 
transition form factors is not reproduced in the CQM 
[14, 15]. 
 Then from eqs. (3, 4, 5) the hyperfine interaction 
(perturbation potential) is given by  

int ( ) ( ) ( ) ( )S I SIH x H x H x H x= + + . (6) 

The strength of the hyperfine interaction in eq. (6) has 
already been determined [3], 
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In this paper we solve the Schrödinger equation with the 
confinement potential (2) exactly. Then by using 
hyperfine interaction as a perturbation potential we try to 
find the meson masses. 
 
3. Exact solution of the radial Schrödinger 
equation with confining potentials.  
An exact analytical solution of the radial Schrödinger 
wave equation for unperturbed confined potential ( )V x ,
is presented here. 
 The method that we are going introduce, can easily 
be applied to a two-body problem, where each quark (q
or )q moves in confining potential, related to other with 
the potential as in eq. (2). Hence the Schrödinger 
equation becomes   

2
,2

,2
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where 
( )

q q

q q

m m
m m

µ =
+

is the reduced mass of q and q ,

v is the number of nodes,  and l is the angular 

momentum quantum number. If we set ( ) ( )r r
r

ψ ϕ=
1 ,

then the eq. (8) reduces to:  
2

2 2
2 ( 1)( ) ( ( ) ) ( ) 0

2
l lx E V x x

x
µ

ϕ ϕ
µ
+′′ + − − =h

h
. (9)  

Now for the wave function )(xϕ we make an ansatz by 
assuming 1== ch [16, 17, 18 , 19]. 

[ ])(exp)()( xgxfx =ϕ , (10) 
where  

,..2,1)()(
1

=−=∏
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vxxf
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v
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( ) 1f x = 0=v ,
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21( ) ln
2

g x x x xα β δ= − + +  .            (12) 

Using eq. (10) we have, 
2 ( ) 2 ( ) ( )( ) ( ( ) ( ) ) ( )

( )
f x g x f xx g x g x x

f x
ϕ ϕ

′′ ′ ′+′′ ′′ ′= + + .

(13) 
Comparing eqs. (9) and (13) we can write: 

2
1 2

( 1) ( ) 2 ( ) ( )( ) ( ) ( ) .
( )

l l f x g x f xV x g x g x
f xx

ε
′′ ′ ′+ +′′ ′+ − = + +  

(14) 
First let us take the 0=v state in which ( ) 1f x = and 

( )g x as in eq. (12) which results in 

2 2 21
1 1 2

2
2

( 1) 2

2 ( 1)(1 2 ) ,

c l la x b x x x
x x

x x

ε α αβ

βδ δ δα δ β

+
+ − + − = −

−
− + + + +

 (15) 

where the strengths of the potential (2) and energy 
becomes: 

1 1 1 ,2 , 2 , 2 , 2 v la a b b c c Eµ µ µ ε µ= = = =  
Using eq.(15) with simple calculations and by equating 
the powers of x on both sides we find the following 
corresponding energy and potential parameter relations 
[17, 18, 19], 

1 1 1, / 2 , 1a b a lα β δ= = − = + ,

( )ε α δ β= + − 21 2 , (16) 

2
1 1
ac

b c
l l
µ µω

= =
+ +

,

where ω is given as, 
2a kω
µ µ

= =  ,              (17) 

and 2k a= is similar to the spring constant. Then the 
energy eigenvalue from eq. (16) for the node 0=v state 
and the angular momentum l is   

2
2

0 2
3/ 2 (2 3) / 4 ( )
2 2( 1)

l
cE a l b a l

l
µµ ω= + − = + −
+

(18) 
The constraining conditions cf. eqs (16), (17) and (18), 
are the restrictions on the coefficients of the potential 
strength parameters and energy.   
 From eq. (10) and these constraints, the unperturbed 
wave function for the 0=v state is  

2 2
0 0( ) exp( )

2
l

l
bx N x x xµωψ
ω

+= − − . (19) 

Second, for the first node ( 1)v = , therefor 
1
1( ) ( )f x x α= − in eq. (10) and ( )g x given as in eq (12), 

eq. (14)  is solved again. By repeating this procedure, 
parameter 1

1α is found from the constraint equation 

1
1

1

2( 1)
2 ( 1)

l
l c

α
β

+
=

+ +
. Then the relation between the 

potential parameters and the coefficients a , b , c and 
1
1α can be extracted as 2

1a α= , 1 2b αβ= − and the 
restriction equation on the coefficients of the potential 
parameters for the  first unperturbed state 1=v is 

2
2

3
(2 3) ( 1)( 2) 2 ( 1) 0

22
b l c b l l ac l

aa µµ µ
+ + +

− + − + = . (20) 

Now the energy eigenstate for the first node 1=v with 
angular momentum l is  

2 2

1
5(2 5) ( )

2 4 2 2l
a b bE l l

a
ω

µ µω
= + − = + − . (21) 

The unperturbed eigenfunction of the first excited state is 

1 1
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one can similarly continue for other nodes 2,3,...v =
Note   that since the energy difference between any two 
successive nodes is equal to ω , it is an indication of the 
validation of this approach. 

1 0
2(2)

2l l
a a kE E E ω
µ µ µ

∆ = − = = = = . (23) 

Also for 1=a from eq.(16) 1=b ; the potential in eq. 

(2) turns out to be the Coulomb potential 1
2

( 1)( )
c l l
x x

+
+

with its exact energy spectra given as 

2

2

)1(4 ++
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vε where c is an, independent constant, 

and the corresponding eigenfunctions are, 
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vvvl ω

ϕ

For the zero nod 0,1)( == vxfv , we have  
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It is clear that 
1

( ) ( )
v

v
v i

i
f x x α

=
= −∏ are equivalent to 

Laguerre polynomials [15]. Also, for 0=b and 0=b ;
the potential in eq. (2) becomes harmonic oscillator 

(H.O) potential only 2
2

( 1)( ) ( )l lV x ax
x
+

= +  and its exact 

energy spectra is given as  
1(2 3) (2 3) 0,1, 2,3,...

2 2v
aE v v vω
µ

= + = + =  (25) 

where a is the H.O potential strength and is a constant 
independent of v where the corresponding eigenfunctions 
are: 
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Table 1. The mass of the ρ family mesons with the potential 

parameters 3 20.98( ), 1.15( ), 2.12a fm b fm c− −= = = .
ρ family v l Theory (MeV) Exp (MeV) 

(770)ρ 0 0 770 770 3±

1 21/ 2( )a a+ 0 1 1291 1295 15±

3(1960)ρ 0 2 1691 1691 5±

4 (2040)α 0 3 2031 2037 25±

5 (2350)ρ 0 4 2371 2350 20±

(1600)ρ 1 0 1610 1590 20±

(2150)ρ 2 0 2159 2100-2200 

3(2250)ρ 1 2 2243 2225 75±

1 2 21 1( ) ( ) exp( ) ( ) exp( )
2 2

+= − = −l
vl v vlx f x x x F x xϕ α α .

(26) 
It is clear that 

1 1
0 0

1
( ) ( ), ( )

v
l v l

vl v i l
i

F x A x x F x A xα+ +

=
= − =∏ (27) 

The polynomial )(xFvl  above is a spherical Hermite 
polynomial and the eigenfunction for 0=v with the 
angular momentum l becomes 

1 2
0 0

1 2
0

1( ) exp ( )
2

1exp( )
2

l
l

l

x A x x

A x x

ϕ α

µω

+

+

= − =

−
(28) 

The Schrödinger equation has been solved and the 
eigenvalues and eigenfunctions vlE for nonperturbative 
interacting potentials are found analytically. Now, by 
using the hyperfine interaction as a peturbative potential 
we can try to find the meson masses as follows.  
 
4. Determining the meson masses family 
The mesons masses are given by quark, antiquark mass 
and the eigenenergies lvE , of the radial Schrödinger 
equation E , is a function of , , qa b m and qm and the 
first order energy correction from nonconfining potential 

inH can be obtained by using the unperturbed 
wavefunction eqs. (19 and 22). 
The perturbed wavefunction ( )xγψ for the ground state 
as well as the other states can be written as   

inH

E E

γ γ γ
γ γ

γ γ γ γ

ψ ψ ψ
ψ ψ

′ ′ ′

′≠ ′

′
′= +

−
∑

0 0 0

0 0
 .          (29) 

Summarizing the results one can obtain the perturbed 
energy level E , and the first order corrected energy 

in inH H d xγ γψ ψ= ∫ 3 due to the perturbation of the 
system to the first order. By using the above method one 
can compute the other orders of energy. The meson  

Table 2. The masses of the ϒ family mesons with 
3 21.568( ), 1.84( ), 2.396a fm b fm c− −= = = .

ϒ families v l Theory (MeV) Exp (MeV) 

(9460)ϒ 0 0 9460 9460 0.2±

(10023)ϒ 0 1 10023.4 1023.4 0.5±

(10355)ϒ 0 2 10355.5 10355.5 0.5±

(10575)ϒ 0 3 10615 10577 4±

(10860)ϒ 0 4 10842 10865 8±

(11020)ϒ 1 0 11070 11019 9±

(9915)ϒ 2 0 9910 9903 12±

(10255)ϒ 1 2 10255 10261 2±

spectrum then becomes the sum of the quark and anti-
quark masses and energy of the perturbed system, thus 
becomes. 

><+++= invlqqqq HEmmM , (30) 

( ) 2(2 3) ,
2 4

q q
qq q q in

q q

a m m bM m m l H
m m a
+

= + + + − + < >

(31) 
which depends on the terms of the constituent quark and 
antiquark masses qm and qm and the potentials 

parameters a and b respectively. Again here l is the 
angular momentum and v is the number of nodes of the 
radial wave eigenfunction )(xvlψ . The quark masses 
used for the various meson families [3] are 

257MeVu dm m= =  501.5MeVsm = 1784MeVcm = ,
5202.2MeVbm = . In order to fix the potential 

parameters we try to fit the ρ and ϒ families which 
are mainly sensitive to the long and short range parts of 
the potential respectively. In tables 1, 2 and 3 the 
theoretical and experimental masses of ( , )ρ ϒ and 

),( kϕ mesons families are shown in our model. First 
let’s use the well known masses of (770)ρ and 

3ρ (1690) as input to determine the two coefficients 
potential parameters a and b . The theoretical and 
experimental ρ family meson masses are then shown 
in table 1. 
 By consideration of table 1 the masses of the ρ
family have been investigated for l ranging from 0 to 4 
and ..2,,1,0=v .

To find the spectrum of ϒ family the well known 
masses of (9460)ϒ and (10355)ϒ have been used as 
input to determine the potentials strength a , b and c for 
ϒ family mesons masses.  
 By careful consideration table 2 is in a good 
agreement with ϒ family with l ranging from 0 to 4 
and ,..,2,1=v is observed. To find the spectrum of ϕ
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Table 3. The potential parameters a , b and c for ϕ
and k mesons families are equal to. 

3) 2)1.107( ) , 1.299( ), 1.631a fm b fm c− −= = = .
ϕ and k v l Theory 

(MeV)
Exp 

(MeV) 
(1019.5)ϕ 0 0 1020 1019.5

1
1 22 ( (1420) )f f− 0 1 1468 1474 8±
(1850)jϕ 0 2 1843 1853 10±

(1680)ϕ 1 0 1703 
75

1685
15
+
−

(898)k 0 0 892 892 
1

1 22 ( (1400) )k k+ 0 1 1415 1416 6±

3 (1780)k 0 2 1785 1782 4±

4 (2060)k 0 3 2058 2060 30±

and k family the well known masses of (1019.5)ϕ and 
)2060(4k are used as input to determine potential 

strength a,b and c for ϕ and k family mesons. 
In this table a good agreement has been obtained by our 
model for ϕ and k quark families.  
 
5. Conclusion 
An exact analytical solution for the potential in the form 
of the confinement potential is presented .The complete 
interaction including the spin and isospin terms which 
reproduces the position of the quarks is also considered 

eqs (3,4 and 5). As it is shown in tables 1, 2 and 3 the 
models in [4, 16] have certainly been improved in this 
research .It have also been demonstrated that it is 
possible to find a meson mass by a suitable confining 
and spin , isospin interacting potentials. In the first 
column of tables 1, 2 and 3 the various mesons are 
identified by their symbols and nominal masses, in the 
second column. The associated v and the quantum 
numbers l are shown. The experimental data are given 
in the last column. In all cases, the theoretical and 
experimental masses are in complete agreement. 
Comparing the results of tables 1, 2 and 3 with the 
results reported in [4, 20], one can see that this model 
gives better results as it not only includes the 
confinement but also the color charge and hyperfine 
potential intH . Furthermore, It is interesting to note that 
our confining and flavor dependent potential model also 
covers both upsilonium ( )bb and charmonium ( )cc
(Kwong, Rosner) [4]. Therefore this model might be 
used to provide a better understanding of the 
hypothesized top quark and study of bottomonium as 
[20,21]. 
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