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Abstract
In this article nucleons are discussed based on constituent quark model. This model aims at studying the forces among three particles 
and the corresponding standard two-body potential contribution. The quark potential contains a hypercentral interaction. The 
confining potential is composed of four components: color charge, the oscillatory potential, the interaction quark and neutral gluon, 
and the dipole – dipole electromagnetic interaction. Dirac equation can be solved carefully and analytically by means of these 
potentials. In addition to the above potentials, there is a hyperfine potential which is related to isospin – isospin and spin –isopin 
interactions. These potentials were considered as perturbation potentials and their energy shift was calculated. 
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1. Introduction 
Nucleons are usually described quite well by different 
Constituent Quark Models (CQM). Constituent Quark 
Models have been widely used recently for investigation 
of nucleon structure. There are different methods for 
studying the nucleons. Although many different 
potentials for quarks have been studied but the study of 
the structure of nucleons is not sufficient. In this paper 
we take the potential between quarks as hypercentral. 
This potential has four subcomponents. 
The first potential is the corresponding short range 

interaction which has an attractive hyper coulombic 

potential ,can be considered as 
x
c

− . [1,2,3] it originates 

from the interaction of color charge. In this formula x  is 
the hyperradius defined in terms of quarks interaction 
[4, 5, 6, 7 ]:
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ρ  and λ are Jacobin coordinates and ξ  is hyperangle, 
together with the angles ρΩ , λΩ  while at large 
separations the hyperoscillator potential which has a 
two-body character turns out to be hypercentral. This 
potential can be formulated as follows. 
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These terms show the oscillation of one quark relative to 

the other quarks [8, 9, 10, 11, 12]. 
The other potential is the interaction of one quark 

with a neutral gluon. This interaction can be shown as

4)(
x
dxv = , the origin of which is the electrical 

charge. 
The last potential is the interaction of one color 

magnetic filed with the external dipole field of the other 
interaction containing the spin-spin.
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This formula can be simplified as: 3)(
x
bxv =  where 

2
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b sf α
=  and 12s is tensor operator.

Extra hyperfine dependent quark potential which 
contains isospin-isospin dependent )(xH I and spin –
isospin dependent )(xHSI  are also important. The 
interaction will be complete by adding the following 
components. 

)()()()( xHxHxvxH SIi ++= .  (4) 

In this formulation )(xv  is the confining potential. The 
interaction hyperfine potential isospin is more important 
in the quark interaction. 
The aim of this paper is threefold: adding )(xv to the 
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Dirac equation, providing an exact solution, and finally 
considering the hyperfine interactions as perturbation 
potential thereby calculating first order energy shift. 

2. Dirac equation with hypercentral potential
The Dirac equation may transform in various ways under 
a Lorentz transformation. The form in common use for 
scalar hypercentral potential )( 0u and vector 
hypercenteral )( 0v is: 

εϕϕχσ =+++ )().( 00 vump  , (5-a)

εχχϕσ =−+− )().( 00 vump  . (5-b)
The internal quark motion is described by Jacobian 
coordinates:

2
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By using the Jacobin coordinate for λρ ,  the Dirac 
equation for the λ component is as follows:

εϕϕχσ λ =+++ )().( 00 vump  ,  (7-a)

εχχϕσ λ =−+− )().( 00 vump  .  (7-b)
In the introduction section of the article we assumed four 
potentials. Now in the foregoing equations we can 
replace )(0 xv  with the defined components [13,14 ,15]:  
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Now by combining (7-a) and (7-b), we obtain:

0)(2)( 0
222 =++−+ ϕεϕεϕλ mump  .  (8) 

To avoid repletion, it should be noted that the same 
calculations can be applied to ρ component.  

0)(2)( 0
222 =++−+ ϕεϕεϕρ mump  .  (9) 

By adding (8) and (9), we can get to:

0)(4)(2)( 0
2222 =++−++ ϕεϕεϕλρ mumpp  . (10)

 For the upper component, the wave function can be 
taken as follows: 

),()()()(),( 3210 λρλρ ϕψ pppupupuppp ==  , (11)

where ),( λρϕ pp  is the eigenfunction and the 
parenthetical operators can be obtained from: 

2
21 pp

p
−

=ρ  and 
6
2 321 pppp −+

=λ , and where 

)( ipu is the Dirac spinor of the i-th quark and ip  is 
momentum of the i-th quark in the nucleon rest frame. 
The internal quark motion is usually described by 

means of the Jacobi relative coordinates. By separating 
the common motion, the P2 operator of a quark in the 3q 
system becomes ( )1== ch  [2]. 

))(5()(
2

2

2

2
22

x
L

xx
Ω

++
∂

∂
=∆+∆ λρ  .      (12)

The eigenvalues of )(2 ΩL  are given )4()(2 +−=Ω γγL
where γ  is the grand angular quantum number and can 
be given by λργ lln ++= 2 . In this relation λρ ll ,  are 
the angular moments associated with the ρ  and λ
variable. Considering the defined potentials, (10) can be 
embedded in (12) and the result will be:
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To simplify the above equation, we can replace the 
constants as follows:
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With the foregoing assumptions at hand, eq. (13) can be 
simplified as:
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This equation is too difficult to solve. However the 
author found an ansatz solution [16, 17].

[ ])(exp)()( xyxhx =ϕ  . (16)

We logically propose )(xh  and )(xy as functions the 
coefficients of which should be determined [18, 19].
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We put the answer to eq. (16) in eq. (15). From the 
equality of the coefficients we have:

c
m

m
)(
)3(,

)3(2
)(,
22

−
+

=
+
−

==
ε
γ

δ
γ

ε
αγβ  . (18)

Taking this answer, now we can obtain the coefficients 
in eq. (14).
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with the obtained coefficients, we can now obtain the 
upper component as follows:
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The lower component χ  of the Dirac hyper-central 
spinor can be derived from eq. (5) χ  can be derived 
from eq. (5-b) as follows:
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If we add these two equations and take ρλ ppp
rrr

+= , 
then:
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Based on the upper and lower components the wave 
functions for grand state, i.e., 0== lγ would be as 
follows:
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For a closer study of the structure of nuclons, the 
potentials spin-isospin should also be taken into account. 
In what follows we will introduce these potentials. This 
will help us to calculate the energy shifts based on 
perturbation theories. 

3. The effect of spin-isospin  interaction in 
structure of nucleon 

There are different motivations for the introduction of a 
residual flavor dependent term in the three quark 
interaction. The standard hyperfine interaction is used to 
reproduce the splitting within the SU (6) multiplets. It 
contains a δ -like term which is an illegal operator [20]:
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where is  is the spin operator of the i -th quark and 

ijx r=  is the relative quark pair coordinate. The strength 
of the hyperfine interaction is determined by the N−∆
mass difference. The fitted parameters are :

21964 fmBs = , 6.1=Λ s fm.
To introduce the isospin nonconfing potential we 

have the Chiral Constituent Quark Model (CQM) 
[21,22]. The nonconfining part of the potential is 
provided by the interaction with the Goldstone bosons, 
giving rise to a spin- and isospin dependent part, which 
is crucial for the description of the spectrum for energies 
lower than 1.7 GeV. It has also been pointed out quite 
recently that an isospin dependence of the quark 
potential can be obtained by means of quark exchange.
More generally, one can expect that the quark-antiquark 
pair production can lead to an effective quark interaction 
containing an isospin (or flavour) - dependent term. On 
the other hand, the fact that the constituent quark model 
does not explicitly contain this mechanism, may account 
for the low 2Q behaviour of the electromagnetic 
transition in which form factors are not reproduced. With 
these considerations, we have introduced isospin-
dependent terms in the hCQM Hamiltonian. To this end 
we have added two terms in the three-quark Hamiltonian 
with the hyperfine interaction. 
The first one depends on the isospin-isospin and has 

the form:
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where iI  is the isospin operator of the quark and ijrx =

is the relative quark pair coordinates and 27.51 fmAI = , 
fmI 45.3=σ

Based on the perturbation theory for the grand state 
0=l , first order shift energy can be shown as : 1

I∆  and 
the value of which was calculated. 
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The second potential is a spin-isospin interaction, 
given by
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Where is  and iI  are respectively the spin and isospin 
operators of the thi − quark and ijx r= is the relative 

quark pair coordinate and 22.106 fmASI −=
fmSI 31.2=σ  [22]. 

The first order energy shift can be shown as : 1
SI∆

and the value of which is as follows:

2
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(28)
In this paper we consider the completely interaction 
between quarks in a nucleon  including spin and  isospin  
interaction. The results are applied to all of the baryons 
as well. The higher-order correction will give better 
results. Since this model gives reasonable results, it 
would lead us to determine the kind of modification 
which yield the observable static properties of a nucleon 
that is super singly close to the experiment and we can 
determine the form factors of nucleons and root mean 
square radius (RMS)

4. Conclusion
An exact analytical solution for potential in the form of 
the confinement is presented. The hypercenteral 
potential is a good starting point for investigation of 
nucleon structure 
A considerable improvement in the description of the 

static properties of nucleon is obtained with an isospin-
dependent potential. In fact in this model the energy shift 
comes from the spin –isospin term is considerable. By 
Using this model we can investigate the other baryons.
The splitting which are in general spin and isospin 

dependent, can be treated pertubatively. Finally one can 
use this model and determine the mass of baryons. 
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