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Abstract
We use a  nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the 
resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet  formalism. We illustrate 
this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained 
in the strong-coupling  regime, are valid in the whole range of the coupling constant  for the one-photon zero-field resonance.

Keywords: quantum averaging, two-level atom, Floquet formalism, resonant transformation,  nonlinear resonance

1. Introduction 
Treatment of resonances in quantum systems cannot  be 
performed by  perturbative approaches. In the vicinity of 
resonances the perturbative formulas display small 
denominators that lead to the divergence of the 
perturbative expansions. A widely use model that 
incorporates a one-photon  resonance is the Jaynes-
Cummings Hamiltonian extracted from the full dressed 
Hamiltonian that describes a two-level system coupled 
with a single mode of a quantized field [1]. Its 
counterpart for an interaction with a classical laser field 
in the rotating-wave approximation (RWA) is the RWA 
Hamiltonian [2]. The RWA is valid only when an atom 
is perturbed by a weak and near-resonant (classical or 
quantized) field. For large values of the field amplitude 
(or coupling constant), the RWA cannot be invoked and 
one has to take in to account additionally the counter-
rotating terms of the Hamiltonian. The goal is to obtain 
the spectrum for a whole interval of values of a 
parameter like the coupling constant beyond RWA. This 
is needed e.g. in applications where the coupling changes 
adiabatically [3], corresponding e.g. to  envelopes of 
laser pulses or to transversal spatial profiles of cavity 
fields.

The semiclassical  model of a two-level atom 
coupled with several incommensurate frequencies [4] of 
a classical field has been treated by different methods in 
Refs. [5-8]. In Ref. [9], we used the method of quantum 
averaging and resonant transformations proposed in [10] 
to detect the resonances of the model of  a two-level 
atom interacting with a single-mode quantized field in 
two regimes of weak and strong coupling.

In this paper, we use the same method as [10] with an 
adapted form of resonant transformation to obtain the 
effective Hamiltonians of the model of a two-level atom 
interacting with a single-mod classical (laser) field in 
Floquet formalism. In the weak-coupling regime we 
have to iterate this procedure several times to derive the 
essential structure of the spectrum in large ranges of the 
coupling constant. In the strong-coupling regimes, the 
qualitative properties of the spectrum can be globally 
obtained by some preliminary unitary transformations 
and one resonant transformation which treat the zero-
field resonances. In the case of zero-field one-photon 
resonance we obtain an accurate approximation, valid for 
all values of  the coupling constant, that contains all the 
qualitative structure. Once this main structure is 
obtained, one can systematically improve the 
quantitative accuracy of the spectrum by applying 
perturbative methods.

This paper is organized as follows: In the next 
section, we explain the quantum averaging technique, 
the resonance concept, KAM-type perurbative 
transformations, and resonant transformation.  In Sec. 3
we overview the Floquet formalism, to be self-contained, 
which is an essential tool to study laser-driven systems. 
Section 4 is devoted to the presentation of the model and 
some preliminary considerations. In Sec. 5, taking into 
account the resonances of this model in the weak-
coupling regime, we extract the effective Hamiltonians 
by quantum averaging technique and resonant 
transformations. In Sec. 6 we extract the effective 
Hamiltonians in the strong-coupling regime. Finally, in 
Sec. 7 we give some conclusions and summary. 
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2. Resonance analysis and the method
We consider a Hamiltonian 0 VΗ Η ε= + where 0Η is 
the reference (unperturbed) Hamiltonian, Vε is the 
perturbation and ε  is an ordering parameter [18]. The 
first analysis of this problem is in terms of perturbation 
theory: we look for a KAM-type unitary transformation 

1Weε close to the identity that allows reducing the order 
of the perturbation from ε  to 2ε :

1 1 2
0 1 2.w we e D Vε εΗ Η ε ε− = + +            (1) 

1Dε  is a remaining term of order ε  that satisfies

0 0[ , ] 0H D = . The unknown 1W  and 1D  are solution of 
the following equations (Cohomological equation) [10, 
11]:

0 1 1 1[ , ]H W V D+ = , (2a) 

0 1[ , ] 0H D = . (2b) 

The remaining perturbation of order 2ε is given by 
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where
1WL is defined as:

1 1[ , ].WL B B W= (4) 

The solutions of eqs. (2a,b) can be written in terms of 
averaging [10,12-14]:
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where ν labels the different eigenvalues (0)Eν of 0H , 
and j is a degeneracy index which distinguishes 
different basis vectors , jν of the degeneracy 
eigenspace, and the units have been chosen such that 

1.=h  the operator 
0H∏ is the projector on the  kernel 

of the application 0[ , ]A H A→ . We can iterate the 

KAM procedure by the second transformation 
2

2Weε

taking 0 1H Dε+  as the new reference Hamiltonian and  
2

2Vε  as the new perturbation:
2 2
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1 0 1 2 3( )W W

Oe H D V e H D D Vε εε ε ε ε ε− + + = + + +

(6) 
where 2 0 2 1[ , ] [ , ] 0D H D D= = . Notice that the new 

perturbation is not of order as 3ε as would be the case in 
a standard perturbation theory, but is of order 4.ε
similarly after n iteration we obtain:
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where , ,n nD W  and 1nV +  are calculated in a similar way 
as eqs. (5a,b) and (3 ) by
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neff
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Since the perturbation term after n-th KAM iteration is 

order of 2n
ε  (in contrast with the order of nε  in the 

standard perturbation theory), the KAM algorithm is 
called superconvergent. In the following discussion, we 
do not write explicitly the ordering parameter .ε

A resonance is defined as a degeneracy of an 
eigenvalue (0)Eν  of 0H  and is said to be active if the 
perturbation V has nonzero matrix elements in the 
degeneracy subspace of (0) : , , 0E j V jν ν ν ′ ≠  for 
some ,j j′ . Otherwise the resonance is called passive or 
mute. In the case of quasi-resonance, the perturbative 
expansion cannot be expected to converge [9,10]. Indeed 
the perturbative formulas diverge close to resonances 
due to the appearance of small denominators. Using the 
method presented in Ref. [10], such divergences can be 
avoided.

The concept of resonance is defined intrinsically with 
respect to 0 ,H  while the distinction between active and 
passive depends on the relation between 0H and V. The 
analysis of resonances involves thus three aspects: (i) 
Decomposition of the Hamiltonian into 0 .H H V= +

Different decompositions can be considered for 
different  regimes of the parameter of H .  (ii) 
Determination of degenerate eigenvalues of the 
unperturbed Hamiltonian.  (iii) Detection of  the 
resonant terms in the perturbation V that couple these 
degenerate eigenstates.

The resonance terms of V can be detected by 
projectors of type 

0H∏  that extract a block-diagonal 

part of V relative to 0H , where the blocks are generated 
by the degeneracy subspaces. In the absence of active 
resonance, when all the eigenvalues of 0H  are non-
degenerate or when the resonances are mute, the matrix 
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representation of 
0H∏  is in fact diagonal in the 

eigenbasis of 0H  .in presence of active resonances, the 
block-diagonal  effective Hamiltonian that take into 
account the considered resonance of the original 
Hamiltonian can be written as

00 .eff
HH H V= +∏                                                   (10)

We will call the transformation that diagonalizes effH
Resonant Transformation (RT). The Hamiltonian is 
transformed under R as follows:

0
† † †( )eff

HH H H V V= = + −∏1 R R R R R R
(0)

11: ,H V= +     (11)

Where (0)
1H  is defined as the new renormalized 

reference Hamiltonian and 1V  is the new  perturbation. 
The effect of 

0H V∏  in eq. (10) is to lift the degeneracy 

of 0H  (completely or partially) . this can happen in two 
ways: either the active resonance is transformed into a 
passive one (e.g. in the case of zero-field resonances) or 
the resonance disappears completely (when a crossing is 
transformed into an avoided crossing). The new 
Hamiltonian 1H  can however have other resonance at 

different values of the coupling parameter. If (0)
11H V+

does not have any other active resonance in the 
considered range of the coupling constant, we can at a 
second stage improve the spectrum by a perturbative 
expansion which is expected to converge. If there are 
active resonances, we have to iterate the renormalization 
procedure by applying another RT.

3. Semiclassical Floquet formalism
In this section we overview the Floquet formalism 
[3,10,15] in order to provide an essential tool which will 
be used in the next sections. We consider the atom laser 
interaction in a dipole coupling approximation. When the 
time dependence of the periodic Hamiltonian is 
introduced through the time evolution of the initial 
phase, i.e. the amplitude and frequency of the laser field 
are time-independent, the Floquet formalism is just 
mathematically convenient tool that allows us to 
transform the Schrödinger equation with a time-
dependent Hamiltonian into an equivalent equation with 
a time-independent Hamiltonian. This new equation is 
defined on an enlarged Hilbert space. The time 
dependence has been substituted by the introduction of 
one auxiliary dynamical variable for each laser 
frequency. The semiclassical Hamiltonian can be written 
as 

0 0 0( ) cos( )H H t H tθ ω µε θ ω= + = − + ,                   (12)

Where µ  is the dipole moment and 0H the Hamiltonian 
of the free molecule, ε  is the amplitude of the electric 
field and ω  its frequency. The corresponding 
Schrödinger equation

0( )i H tθ ω
θ
∂

Φ = + Φ
∂

h ,   Φ∈H                           (13)

is defined on a Hilbert space H, which can be of infinite 
dimension (e.g. the space of square-integrable function 
H=L2(Rn,dnx), where n is the number of the degrees of 
freedom of the molecule) or infinite dimension (e.g. in 
N-level models H=CN). In eq. (13) the initial phase 0θ
appears as a parameter.  One can think of eq. (13) as a 
family of equation parameterized by the angle 0θ . We 
denote the corresponding family of propagators by

0 0( , ; )U t t θ , which describe the time evolution of 
arbitrary initial condition 0( )tΦ :

0 0 0( ) ( , ; ) ( )t U t t tθΦ = Φ ,                                             (14)

and satisfy

0 0 0 0 0( , ; ) ( ) ( , ; ),i U t t H t U t t
t

θ θ ω θ∂
= +

∂
h

0( , ; )U t t θ = 1111H .             (15)
The Floquet Hamiltonian K, also called quasienergy 
operator, is constructed as follows: we define an 
enlarged Hilbert space

K: =H⊗L,                                                       (16)

where L=L2(S1,dθ /2π ) denotes the space of square 
integrable function on the circle S1 of length 2π , with a 
scalar product 

11 2 1 2( ) ( )
2
df f f fθ θ θ
π

∗= ∫L s
.                                 (17)

This space is generated by the orthonormal basis 
, .ike k zθ ∈{ }

We first lift the family of operators 0 0( , ; )U t t θ

(defined on H) into an operator 0( , )U t t acting on the 
enlarged space K by considering the initial phase 0θ  as 
a multiplication operator θ . This operator is unitary in 
K. On the enlarged Hilbert space K the Floquet 
Hamiltonian K is defined as : 

.K i Hω
θ
∂

= − +
∂

h     (18)

In this expression H is just the semiclassical Hamiltonian 
(12) but with  the phase taken as a dynamical variable. 
The usefulness of Floquet Hamiltonian comes from the 
fact that is time-independent and that the dynamics it 
defines on K is essentially equivalent with the one of eq. 
(13). The Floquet Hamiltonian K defines a time 
evolution in K through the equation

i K
t
∂

Ψ = Ψ
∂

h ,      .Ψ∈ = ⊗K H L                        (19)

This time evolution can be expressed in terms of 
propagator KU  characterized by
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0 0( , ) ( , ),K Ki U t t KU t t
t
∂

=
∂

h ( , ) ,KU t t = K1            (20)

i.e. 0 0( ) ( , ) ( )Kt U t t tΨ = Ψ , (where K1  is the identity 
operator in K). Since K is time-independent, the 
propagator can be written as

0( ) /
0 0( , ) ( ) .iK t t

K KU t t U t t e− −= − = h (21)

 In order to establish a relation between U and UK we 
define the following phase translation operator tωT , 
which acts on ,f ∈L by

( ) : ( )t f f tω θ θ ω= = +T  (22)

And can be expressed as

.
t

t e
ω

θ
ω

∂
∂=T (23)

The relation between U and UK cab be expressed by
0

0
( ) /

0( ) ik t t
t t KU U t t eω ω

− −
− = − ≡ hT T (24)

It implies that if is a solution of eq. (19) then we can
obtain a solution of eq. (13) by 

0 0( ) [ ( )] ( , ),tt t t tω θ θ θ ω=Φ = Ψ = Ψ +T (25)

where fixing a constant value for the dynamical variable 
means returning into the original Hilbert space H [15].

4. Two - level atom in a one -  mode classical field
In this section, we consider the model of a two-level 
atom coupled with a single-frequency laser field. The 
Floquet Hamiltonian acting on the enlarged Hilbert 
space 2,= ⊗ =K L H H C  , is given by

0
2 ,

2 z zK i cos
ω

ω σ θ σ
θ
∂

= − ⊗ + ⊗ +Ω ⊗
∂ L1 1          (26)

where µεΩ = − is the coupling of the atomic transition 
coupled by laser field, and ,z xσ σ  are Pauli matrices:

0 1
,

1 0xσ
 

=  
 

0
,

0y
i

i
σ

− 
=  

 

1 0
,

0 1zσ
 

=  − 
     (27)

where 21  is the 2 2×  identity matrix. This Hamiltonian 
is identical with the Hamiltonian of a two-level atom in a 
one-mode quantized field,  

† †0
2 ( ) ,

2 z xH a a g a a
ω

ω σ σ= ⊗ + ⊗ + + ⊗1 1 (28)

in the limit of infinite cavity volume, large photon 
number average, and constant photon density [15]. Since 
cos ( ) / 2,i ie eθ θθ −= +  comparing eqs. (26) and (28), we 
can establish a correspondence among the operators 

†,a a  and ,i ie eθ θ− . This point will be clarified further in 
the next section. 

The parity operator of this system is 

,zP e
π

θ σ
∂

+
∂= ⊗   (29)

with the properties 

[ , ] 0P K = , †P P= , 2 .P = ≡ ⊗K L 21 1 1                 (30)

As a consequence, the eigenstsate of K can be separated 
in two symmetry classes, even or odd, under P:

, , ,k kP φ φ± = ± ± ,, , .k k kK Eφ φ±± = ±          (31)

The conceptual framework for the solution of the 
solution of this system based on the construction of 
unitary transformation can be described as follows: First, 
we decompose the Hamiltonian in two terms as 

0H H V= +  . Depending on the considered range of the 
parameters of the system, different decomposition may 
be considered. 0H is a priori an operator that is a 

regular function exclusively of the operators :N i
θ
∂

= −
∂

(photon-number operator) and zσ  . The operators N and 

zσ can be considered in the present model as quantum 
analogues of classical global actions [16], and 0H can 
be labelled  integrable. The perturbation V contains 
functions that involve also the other operators 

, , , .i i
x ye eθ θ σ σ−  The goal is to determine a unitary 

transformation U, that should be expressed in terms of 
well-behaved regular functions of 

, , , ,i i
x y ze eθ θ σ σ σ− ,such that:

†
0( ( , ) ( , , , , )) ( , ),i i

Z x y z zU H N V e e U H Nθ θσ σ σ σ σ− ′+ =

(32)
where H ′  is a regular function f exclusively of the 
action operators , : ( , ) ( , ).z Z zN H N f nσ σ σ′ =  With this 
transformation the eigenvectors of  H can be expressed 
as , ( )K U kφ ± = ⊗ ±  and the corresponding 

eigenvalues as , ( , 1)kE f k± = ±  where N k k k=  and 

zσ ± = ± ±  .
Most of the perturbative approaches can be 

interpreted as methods to find approximation of the 
transformation of U. The presence of resonance is one of 
the central difficulties in the construction of U, as will be 
made precise below. In this paper we discuss an iterative 
approach that consist of constructing first some 
approximation of U that take into account the 
dominating effects of certain number of  resonances. The 
transformations involved in this stage are far from the 
identity and have a clearly non-perturbative character. 
Once we have a transformation that takes into account 
the main effect of a set of resonances that are relevant in 
a considered interval of coupling constant Ω , a 
perturbative approach can be applied to improve the 
approximation quantitatively. The transformations 
involved in this second stage can be considered as 
deformations of the identity, since they can be written in 
the form We . This stage cannot be implemented if the 
resonances are not taken care of beforehand.
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As in classical mechanics, the construction U leading 
to Hamiltonian contains only action variables can often 
be considered in two steps: 1 2U U U= . In the first step, 
that is called reduction, the Hamiltonian is transformed 
by into a form that contains functions of , ,z x yσ σ σ  and 

N, but not of ie θ−  and ie θ . The degree of  freedom of 
the field is made trivial and the number of non-trivial 
degrees of freedom is thus reduced by one. When we 
apply this reduction to the effective Hamiltonian, we 
obtain a reduced effective Hamiltonian. We remark that 
in the literature, this reduced effective Hamiltonian is 
often called simply effective Hamiltonian.

In the second step, the reduced Hamiltonian is 
transformed under 2U  into a form that contains 
functions of only N and zσ . For the model (26), the 
reduction step corresponds to a diagonalization in the  
space L and the second step corresponds to a 
diagonalization  in the atomic Hilbert space which in this 
case trivial. The construction of the RT is based on this 
reduction procedure.

5. Effective Hamiltonians in the weak - coupling 
regime

The Floquet Hamiltonian (26) in the weak-coupling 
regime can be decomposed as follows:

0
0 ,

2 zK i
ω

ω σ
θ
∂

= − +
∂

cos xV θσ= Ω . (33)

The eigenvalues and eigenvectors of 0K  are
(0)

0, / 2,kE kω ω± = ±

(0)
, , ,k kφ ± = ± , ,

0
k

k
 

+ =  
 

0
, ,k

k
 

− =  
 

(34)

where k  is eigenvector of the relative photon number 

operator i
θ
∂

−
∂

 as i k k k
θ
∂

− =
∂

 with orthonormal 

condition
2 ( )

,0 2
i k k

k k
dk k e

π θθ σ
π

′− −
′′ = =∫ . (35)

For the case of one-photon resonance 0 ,ω ω=  the 

eigenvalues of 0K  are degenerate as (0) (0)
, 1, .k kE E+ + −=  The 

degeneracy eigenspaces are spanned by vectors (0)
,kφ +  and 

(0)
1,kφ + − . The resonant part of V is obtained by eq. (5a):

0
: ( , , 1, 1,

1, 1, , , )

0
/ 2 ,

0

res K
K

i

i

V V k k V K K

K K V k k

e

e

θ

θ

∞

=−∞

−

= ∏ = + + + − + −

+ + − + − + +

 
 = Ω
 
 

∑

(36)

where we have obtained the resonant elements of V as 
follows: 

2 ( 1)
0

1, , 1 cos

1 cos

cos
2

/ 2 ,

x

i k ik

k V k k k

k k
d e e

π θ θ

θ σ

θ

θ θ
π

− +

+ − + = Ω + − +

= Ω +

= Ω

= Ω

∫
(37)

and 

0 0
1, ,

1 0
i

k
k k e θ  
+ − + =  

 
∑ . (38)

The spectral representation of the multiplication operator 
ie θ  and the creation operator †a  can be compared as 

follows: 

†1 1 1i

k n
e k k a n n nθ

∞ ∞

=−∞ =−∞
= + ↔ = + +∑ ∑ (39)

Therefore, the effective Floquet Hamiltonian  containing 
the one-photon resonance (corresponding to the Jaynes-
Cummings Hamiltonian [1]) is

0
0

/ 2
2 0

i
eff

z i

e
K i

e

θ

θ
ωω σ

θ

− ∂  = − + +Ω
 ∂  

. (40)

Next we transform 0
effK  by a RT to a regular function of 

exclusively the action operators , ziω σ
θ
∂

−
∂

. The 

reduction step of RT denoted R is a unitary (as opposed 
to isometric in the quantized field [9]) transformation 
that can eliminate the θ - dependence in the resonant 
term,

† .
2res xR V R σΩ

= (41)

The suitable transformation satisfying this condition is

1 00:
0 1 0 1

i
k k keR

θ ∞−
=∞

   + = ≡       

∑ . (42)

Applying R on K gives:
2

†
2

0
2 2 2 0

i

x i

e
R KR i

e

θ

θ
ωω σ

θ −

 ∂ Ω Ω  = − − + +
 ∂  

       (43)

where we have used the relation 
RR R

θ θ θ
∂ ∂ ∂

= +
∂ ∂ ∂

. (44)

We remark that when there is a small detuning, 
0ω ω= + ∆ , we can decompose K as 

0 2 zK i ωω σ
θ
∂

= − +
∂

 and cos
2 Z xV σ θσ∆

= +Ω , where 

the detuning has been included in the perturbation. This 
decomposition leads to the same resonant term as eq. 
(36), and thus the eq. (43) is modified by adding the term
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2 zσ∆ . The corresponding reduced effective Hamiltonian 

in the atomic Hilbert space and in the rotating-wave 
approximation is

2 2

2 2

eff
WH

∆ Ω 
 

=  
Ω ∆ − 

 

. (45)

We note that the Rabi frequency of a system having a 
reduced effective Hamiltonian such as eq. (45) is

/ 2r = Ω . (46)

This means that if the system starts from the state + or

− , the system will populate periodically at later times 

the states +  and −  with period of 2 /π ω . On the 
other hand, we will see in section VI  that the Rabi 
frequency of this system in the strong-coupling regime is 
different from eq. (46).

The second step of the first RT consists in 
diagonalizing the xσ  term in †

0
effR K R by a / 2π

rotation around the y-axis,

4 1 11
1 12

yi
T e

π σ− − 
= =  

 
, (47)

with the properties
† ,X ZT Tσ σ= † ,Z XT Tσ σ= − (48)

as follows: 

† †
1 2 2

cos 2 sin 2
.

sin 2 cos 22

xK T R KRT i

i
i

ωω σ
θ

θ θ
θ θ

∂ Ω
= = − − + +

∂
 Ω
 − 

(49)

Now, we can decompose the Hamiltonian K1 to:

0 2 2 zK i ωω σ
θ
∂ Ω

= − − +
∂

,  1
cos 2 sin 2

sin 2 cos 22
i

V
i

θ θ
θ θ

 Ω
=  − 

,

(50)
and the resonant term of V1 is extracted by (0)

1
1K V∏ in 

terms of the degeneracies of (0)
1K . The resonances of 

1K  are nonlinear as the degeneracies of (0)
1K  are Ω -

dependent. This procedure can be iterated to obtain 
effective Hamiltonians for larger values of the coupling 
constant Ω  [9,10].

6. Effective Hamiltonians in the strong - coupling 
regime

In this section we consider the Floquet Hamiltonian (26) 
in the strong-coupling regime 0ωΩ >> and we extend 
the ideas given in Refs. [9, 10] to the case of multi-
photon resonances in Floquet formalism. The strong-
coupling regime suggests an alternative decomposition as

0 cos ,xK iω θσ
θ
∂

= − +Ω
∂

0
2 ZV

ω
σ=                  (51)

where 0K  contains again all the unbounded operators of 
the system, and the perturbation V is a bounded operator. 
We take an approach which is very similar to the one of 
Ref. [9]. In the case of one-photon resonance 0ω ω= , 
this approach allows us to obtain an effective 
Hamiltonian  which describes the essential structure of 
the system for the whole range of values of the coupling

[0, )Ω∈ ∞ . However for multi-photon resonances

0 mω ω= , 3,5,7, ,m = K this approach works only for 
large values of Ω . As in [9], we first apply the 
transformation (47) to diagonalize 0K  in the atomic 
Hilbert space

† 0cos
2z xT KT i

ω
ω θσ σ

θ
∂

= − +Ω −
∂

. (52)

Next we apply a second unitary transformation to 
eliminate the θ -dependence in †

0T K T :

sin

sin

0

0

i

i

e
U

e

θ
ω

θ
ω

Ω
−

Ω

 
 
 =
 
 
 

, (53)

which leads to
sin

† † 0
sin

0
2 0

i

i

e
U T KTU i

e

γ θ

γ θ
ω

ω
θ

+

−

 ∂  = − −
 ∂  

, (54)

where
2:γ
ω
Ω

= . (55)

Now by using the relation
sin

0
2,4, 1,3,

cos( sin ) sin( sin )
( ) 2 ( )cos 2 ( )sin

i

P q
p q

e i
J J p i J q

γ θ γ θ γ θ
γ γ θ γ θ

±

= =

= ±

= + ±∑ ∑
K K

(56)
we can write † †U T KTU  in terms of harmonics of the 
new perturbation as

† † 0
0

0 0
2,4, 1,3,

( )
2

( ) cos ( )sin .

X

P x q y
p q

U T KTU i J

J p J q

ω
ω γ σ

θ

ω γ θσ ω γ θσ
= =

∂
= − − −

∂

+∑ ∑
K K

(57)
To diagonalize the xσ  terms, we apply the 
transformation T again.

† † 0
1 0

0 0
2,4, 1,3,

( )
2

( )cos ( )sin .

Z

P Z q y
p q

K U T KTU i J

J p J q

ω
ω γ σ

θ

ω γ θσ ω γ θσ
= =

∂
= = − − −

∂

+∑ ∑
K K

(58)
At a second stage, we decompose (0)

1 1 1K K V= + as
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Figure 1. Comparison of the exact numerical eigenvalues 
(solid lines) of eq. (26) as a function of the coupling constant in 
the resonant case 0ω ω= , with the approximate eigenvalues 
(dashed and dotted lines) obtained from eq. (69).

(0) 0
1 0 ( )

2 ZK i J
ω

ω γ σ
θ
∂

= − −
∂

,

1 0 0
2,4, 1,3,

( )cos ( )sin .P Z q y
p q

V J p J qω γ θσ ω γ θσ
= =

= − +∑ ∑
K K

(59)
For

0 0 ( )J mω γ ω= , (60)

The eigenvalues of (0)
1K are with degeneracies

, ,k k mλ λ+ − −= . The eq. (60) is the nonlinear resonance 
condition as it depends on the coupling Ω . For 0Ω →
this condition is reduced to the m-photon zero-field 
resonance condition 0 mω ω= . The resonant part of V1

can be calculated as follows:

(0) 1

0

( , , , ,

, , , , )

0
( ) , 1,3,5,

2 0

K
k

im

m im

V k m k m V k k

k k V k m k m

e
J m

e

θ

θ
ω

γ

∞

=−∞

−

∏ = − − − − + +

+ + + − − − −

 
 = − =
 
 

∑

K
(61)

where we have used the relations

, 1 im

k
k m k e θ

∞
−

=−∞
− =∑ , , 1 im

k
k k m e θ

∞
+

=−∞
− =∑ .

(62)
We observe that the terms with even m are absent in the 
average of V1 with respect to (0)

1K . So the effective 
Floquet Hamiltonian of the system in strong-coupling 
regime can be written as

0
01

0

( )
2

0
( ) , 1,3,5,

2 0

eff
z

im

m im

K i J

e
J m

e

θ

θ

ω
ω γ σ

θ

ω
γ

+

−

∂
= − + −

∂
 
  =
 
 

K
(63)

Figure 2. Comparison of the exact numerical eigenvalues 
(solid lines) of eq. (26) as a function of the coupling constant in 
the resonant case 0 3ω ω= , with the approximate eigenvalues 
(dashed and dotted lines) obtained from eq. (69).

The reduction step of the m-photon RT to eliminate the
θ -dependence of the resonant term in 1

effK  can be 
performed by

1 0

0m imR
e θ−

 
=   
 

, (64)

which leads to

†
1

0 0
0

0 0
0

( ) ( ) .
2 2

eff
m m

z m x

R K R i
m

J J

ω
ωθ

ω ω
γ σ γ σ

 ∂
= − + − −∂  

−

(65)

This gives the reduced effective Hamiltonian of the 
system, in the atomic Hilbert space, for strong-coupling 
regime:

0 0
0

0 0
0

( ) ( )
2 2

( ) ( )
2 2

m
eff
S

m

J J
H

J m J

ω ω
γ γ

ω ω
γ ω γ

 − − 
 =
 − − + 
 

. (66)

Compare this Hamiltonian with eq. (45). In this case the 
Rabi frequency of the system, instead of / 2Ω , is

0 2( )
2 mr J

ω
ω
Ω

= . (67)

One can see that for 0Ω →  and m = 1, the Hamiltonian 
(45) with zero detuning can be recovered as

0 ( ) 1J γ → , ( ) ( )
2

m
mJ γγ → , for 0γ → , (68)

The eigenvalues of eq. (66) can be calculated easily as 
2 2

0 0 0
1 [ ( )] [ ( )]

2 2 m
mE m J Jω ω ω γ ω γ±

−
= ± − + , 

1,3,5,m = K (69)
Figures 1, 2 and 3 compare the exact eigenvalues of the 
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Figure 3. Comparison of the exact numerical eigenvalues 
(solid lines) of eq. (26) as a function of the coupling constant in 
the resonant case 0 5ω ω= , with the approximate eigenvalues 
(dashed and dotted lines) obtained from eq. (69).

system with the approximate eigenvalues obtained from 
eq. (69). We observe in figure 1 that for one-photon 
resonance the approximate eigenvalues are valid for the 
whole range of the coupling Ω , while for the three-
and five-photon resonances in figures 2, 3 the
eigenvalues obtained from eq. (69) are valid only for 
large values of Ω .

7. Conclusions and discussions
We have used a non-perturbative method based on the 
quantum averaging technique to determine the spectral 
properties of a semiclassical system (a two-level atom in 
a one-mode classical field) in two regimes of weak- and 
strong-coupling. It consists in

the construction of unitary transformations that leads 
to an effective reduced Hamiltonian. These 

transformations are adapted to the structure of the 
resonances. Their role is to construct a first effective 
Hamiltonian that contains the main qualitative features 
of the spectrum in a given range of the coupling 
parameter. The diagonalized form of this effective 
Hamiltonian, which depends parametrically on the 
coupling constant, is then taken as a new reference 
Hamiltonian around which one can apply perturbative 
techniques to improve the quantitative accuracy of the 
spectrum.

We have analyzed the resonances in two regimes of 
weak and strong coupling. The analysis of the strong-
coupling regime of this model leads to results that are 
valid for all values of the coupling and for all energies in 
the case of a one-photon resonance, 0ω ω=  when this 
later resonance is additionally treated. The possibility to 
obtain such a global result is due to a particular property 
of the model, and one cannot expect to obtain it for 
general models. The particular property is that the part 
we selected as  the reference Hamiltonian 0H  in the 
strong-coupling regime contains all the unbounded 
operators of the complete model and is explicitly 
solvable. The term that was   left to be treated by RT and 
perturbation theory is a bounded operator.

The extension of the strong-coupling regime for 
multi-photon resonances 0 mω ω= , 3,5,7m = K to the 
weak-coupling regime is under consideration. This can 
be related to the fact that in the weak-coupling 
decomposition of the complete Hamiltonian (26), the 
multi-photon resonances are passive. These resonances 
could be treated after applying a KAM-type 
transformation [10, 17] to transform them from passive 
to active resonances.
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