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Abstract 
Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general 
the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a 
gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of 
imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the 
null hyper- surface is just the history of the gravitational wave. 
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1. Introduction  
Many practical problems of general relativity and 
cosmology involve idealized models constructed by 
gluing two regions with different metrics across a 
hypersurface or thin shell having a δ -function singularity 
in its Riemann tensor due to the discontinuity in the 
metric's transverse derivative across the shell. The 
description of timelike (or spacelike) thin shells is well 
known within general relativity since the outstanding 
work of Israel [1]. Later, an extension of the Israel 
formalism to the null or lightlike case was presented by 
Barrabès and Israel [2]. Recently, Poisson has introduced 
a user-friendly reformulation of the Barrabès-Israel 
original work together with an illustration of the 
formalism [3]. On the other hand, relativistic dynamics of 
cylindrical symmetric thin shells as sources of 
gravitational field have been studied during the whole 
development of general relativity. A number of papers 
have been concerned with a rotating cylindrical shell in 
general relativity. In particular, by studying the collapse of 
a cylindrical shell made of pressure-free counter-rotating 
particles in vacuum, the authors realized that the rotation 
always halts the collapse [4]. Other examples of 
cylindrical thin shells were studied by the authors in Refs 
[5,6,7] who considered a cylindrical thin shell separating 
an interior flat spacetime from an exterior radiation-filled 
curved spacetime. In addition, the various kinds of shell 
sources for static Levi-Civita and Lewis spacetime 
respectively have been discussed in Refs [8, 9]. Charged 

generalization of the Levi-Civita spacetime and their shell 
sources have been studied in [10]. 
 In this paper, we study the dynamics of a collapsing 
cylindrical null shell immersed in vacuum.  For this 
purpose we use Barrabès-Israel (BI) null shell 
formalism [2] to investigate the matching and find the 
junction conditions. Section 2 is devoted to the 
formulation of the problem and the junction conditions. 
In section 3 we investigate the case of gravitational 
wave. A conclusion follows then in section 4. 
 Natural geometrized units, in which G=c=1 are used 
throughout the paper. The null hypersurface is denoted 
by ∑ . The symbol 

∑
means “evaluated on the null 

hypersurface”. Latin indices range over the intrinsic 
coordinates of ∑ denoted by aξ and Greek indices 
over the coordinates of the 4-manifolds. 

2. Null shell formalism 
Consider the gravitational collapse of a thin cylindrical shell 
in vacuum. We imagine that the collapse proceeds at the 
speed of light such that the  history of the shell coincides 
with a null hypersurface ∑ . Taking spacetime to be flat 
inside the shell ( M− ) we write the metric there as 

2 2 2 2 2 2 ,ds dt dr dz r dφ− = − + + +  (1) 
in terms of the Einstein-Rosen canonical cylindrical 
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coordinates (t,r,z,φ ). For the exterior vacuum spacetime 
of the shell ( M+ ) we take the cylindrical symmetric 
metric in the general form [4] 
 

2 2( ) 2 2 2 2 2 2 2( )ds e dT dR e dz R e dγ ψ ψ ψ φ− −
+ = − − + +  (2) 

expressed in the same coordinates z and φ but in terms of 
distinct coordinates Τ and R in general. Here γ and ψ are 
functions of Τ and R , and for the Einstein field equation 

0Rµν = one gets the gravitational wave field [4] 

,
, , 0,R
TT RR R

ψ
ψ ψ− − = (3) 

Together with 
2 2

, , , , ,2 , ( ),, T R R T RR RT ψ ψ ψ ψγ γ= = +  (4) 

Taking ( , , )a zξ λ φ= with a=1,2,3 as the intrinsic 
coordinates on ,∑ and λ a parameter on the null 
generators of the hypersurface we note that the null 
hypersurface ∑ as seen from −M is described by the 
parametric equations 

,
,

,
.

t r const
r
z z

υ
λ

θ θ

−+ = =
= −
=
=

(5) 

since λ always increases along the generators for a 
collapsing hypersurface r decreases along the generators. 
It is then seen that the induced metric on ∑ is given by 

2 2 2 2.ds dz dλ φ∑ = +  
As seen from M+ , one can obtain the description of the 
hypersurface by solving the Euler-Lagrange equations. 
Defining 

2( ) 2 2( ) 22 0,K e T e R− −= − + =
i iγ ψ γ ψ  (6) 

where q
i

denotes dq
dλ

, the Euler-Lagrange equations are 

written as 
K d K
q d

q

∂ ∂
−

∂
∂
iλ

=0  . (7) 

Solving this equation for q=T one gets 
2 2 2( )

,2( ) ( ) (2 ) 0T
dT R e T

d
−− − − =

i i iγ ψγ ψ
λ

(8) 

By virtue of eq. (6) the first term in eq. (8) is zero, so 
that we arrive at 

2( ) ,T Ce− −=
i γ ψ  (9) 

where C > 0 is an integration constant. In the case that 
the exterior spacetime M+ approaches to the flat 
Minkowski metric as r →∞ , we choose C=1.
Substituting the solution (9) into eq. (6) leads to 

2( )R Ce− −= −
i γ ψ (10) 

where the minus sign indicates that the shell is 
collapsing. From Eqs. (9) and (10) we end up with the 
following parametric equation of the hypersurface ∑ as 
seen from M+

.T R constυ++ ≡ = (11) 
Now the requirement of the continuity of the induced 

metric on ∑ yields the following matching conditions: 

2 1, Ree rψ ψ∑ ∑
−= = (12) 

For further applications, we note that the differentiation 
of ( , ) 0T Rψ = on ∑ leads to 

, ,T Rψ ψ
∑
= . (13) 

We must calculate the tangent basis vectors 
a

ae ξ∂∂= on both sides of ∑ . Having written µ
+x in 

terms of µ
−x by eq. (12), we get 

(1, 1,0,0)eµλ ∑−
= − , z zeµ µδ

−
= , e

−
=µ µ

φ φδ (14) 

2 (1, 1,0,0)e Ceµ γ
λ

−
Σ+

= − , z zeµ µδ
+
= , e

+
=µ µ

φ φδ (15) 

Recalling that λ is a parameter on the null geodesic 
generators of ∑ we choose the tangent-normal vector 
nµ to coincide with the tangent basis vector associated 
with the parameterλ , so that .n eµµ

λ= We may then 

complete the basis by a transverse null vector N µ

uniquely defined by the four conditions 
1, 0( , ), and 0.An N N e A N Nµ µµ

µ µ µθ φ= − = = = We find 

1 ( 1, 1,0,0)
2

Nµ ∑−
= − + , (16) 

2
( 1, 1,0,0)

2
eN

C

γ

µ ∑+
= − + . (17) 

Furthermore, the induced metric on ∑ given by 

ab a bg g e eµ ν
µν ±

= is computed to be 

2(0,1, ),abg diag r= which is the same on both sides of 
the hypersurface. Defining a pseudo-inverse of the 
induced metric abg on ∑ as * ,ac a a

bc b bg g n N eµµδ= +  

with a an λδ= [2], one gets * 2
1(0,1, ).abg diag
r

=

The final junction condition is formulated in terms of the 
jump in the extrinsic curvature. Using the definition 

,ab a b vK e e Nµ ν
µ π= ∇ we may therefore compute the 

transverse extrinsic curvature tensor [2] on both sides of ∑ .
Its non-vanishing components on the minus side are found as 

,
2
rKφφ − ∑

= (18) 
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0zzK − = , (19) 

0Kλλ − = , (20) 
 The corresponding non-vanishing components on the 
plus side are 

,(1 2 ) ,
2 T
RK R
Cφφ ψ

+ ∑
= − (21) 

, ,T
zzK

C
ψ

+
∑

= (22) 

0 .Kλλ + = (23) 
The jump in the transverse extrinsic curvature across the 
null hypersurface given by 2[ ]ab abKγ = has the 
following components: 

0λλγ = , (24) 

,(1 2 )T
R R C
Cφφγ ψ

∑
= − − , (25) 

where we have used eq. (13). 
,2

.T
zz C

ψ
γ

∑

= (26) 

The surface energy-momentum tensor of the lightlike 
shell having the null hypersurface ∑ as its history is 
directly related to the jump in the transverse extrinsic 
curvature. In the tangent basis ae , it can be written in the 
form [3] 

*
ab a b ab a b b aS fn n pg j n j n= + + + , (27) 

where 

*
1

16
ab

abf g γ
π

= − , (28) 

represents the surface energy density,
1

16
a b

abp n nγ
π

= − , (29) 

displays the isotropic surface pressure, and 

*
1

16
a ac d

cdj g nγ
π

= − (30) 

represents the surface current of the lightlike shell. All 
these surface quantities are measured by a family of 
freely-moving observers crossing the null hypersurface. 
Using the jumps in the extrinsic curvature obtained 
above, we notice first that the surface current term 
vanishes identically. The energy density and pressure are 
then calculated as 

2
1 ( ),

16

1 ,
16

zzf
r

C
C r

φφγ γ
π

π ∑

= − +

−
=

(31) 

16 0p λλπ γ= − = . (32) 
Assuming the positivity of the surface energy density of 
the shell given by eq. (31) we see that the matching 
condition requires that 1C ≥ . Therefore we see that in 

general the energy density f is the only non-vanishing 
surface quantity due to the presence of a lightlike shell of 
matter with the history ∑ collapsing with the speed of 
light to zero radius. In the special case of imposing the 
cylindrical flatness (as , and 0r ψ γ→∞ → ) the 
surface energy-momentum tensor of the matter shell on 
∑ vanishes so that the null hypersurface ∑ would be 
just a smooth boundary. In addition, the presence of a 
pressure-free null shell indicates that the null generators 
are affinely parameterized on both sides of the 
hypersurface ∑ [3]. 
 
3. Null shell and gravitational wave 
The presence of gravitational waves having the null 
hypersurface ∑ as history is seen in the following way. 
Let us first construct a null tetrad frame on. Consider 
now a congruence of timelike geodesics with continuous 
4-velocity u across ∑ so that [ . ] [ ] 0au u u eαα= = . On 

the null hypersurface ∑ we have the normal ,nµ− which 

is tangential to ∑ , and the timelike vector field ,µu
crossing the null hypersurface such that 0u n sα

α = − < .
It is then advantageous to introduce on ∑ a transverse 

null vector field µl defined by 2
1 1

2
l n u

ss
µ µ µ= − + ,

satisfying the normalization condition 1 [11]l nα α = − .

Let next mµ and mµ
be a complex covariant vector 

field and its complex conjugate (indicated by a bar) 
being chosen so that they are null 
( 0)m m m mα α

αα = = , tangent to ∑ , orthogonal to 
µn and µl and satisfy 1m m α

α = . Now nµ− , lµ , mµ ,

and mµ
constitute the desired null tetrad frame on ∑

which will be used in the following. We get 
1 1(0,0, , )
2

m i
r

µ

∑
= − , (33) 

1 1(0,0, , )
2

m i
r

µ

∑
= . (34) 

Using this null tetrad, the Newman-Penrose component 
of the singular part of the Weyl tensor of Petrov type N 
characterizing an impulsive gravitational wave with 
history ∑ is calculated as [11] 

4
1
2

a b
ab m mψ γ=� ,

2
2

1 ( )
4

zzr
r

φφγ γ= − , (35) 

,
1 (1 4 )

4 TC R
CR

ψ
∑

= − − ,

where we have used eqs. (25), (26) and (34). This shows 
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explicitly that in general a null shell and an impulsive 
wave co-exist, each with history ∑ as the worldsheet. In 
this case induced geometry on ∑ , inherited from the 
embedding spacetimes, is of type III according to a 
classification introduced by Penrose [12]. However in 
the special case that the cylindrical flatness is assumed 
(C=1), the null hypersurface ∑ is just the history of an 
impulsive gravitational wave. 
 The expansion θ and complex shear σ of the geodesic 
generators of the null hypersurface ∑ can now be defined 
by the following relations using the null tetrad [11]: 

21
2

vm m n Ce
R

µ γ
ν µθ −

∑
= ∇ = − (36) 

21
2

vm m n Ce
R

µ γ
ν µσ −

∑
= ∇ = − (37) 

This shows that ∑ is a future null cone generated by the 
null geodesics with the expansion and shear as given by 

eqs  . (36) and (37). 
 
4. Conclusion 
We have studied the relativistic dynamics of a collapsing 
cylindrical null shell in vacuum. In general the lightlike 
matter shell which its history coincides with a null 
hypersurface admits a surface energy density with no 
surface stress and collapses to zero radius. In addition, a 
gravitational impulsive wave is present on this null 
hypersurface whose generators have the shear and 
expansion. The shell and the wave propagate 
independently and have the same null hypersurface ∑
as the worldsheet. We have also shown that if the 
cylindrical flatness is imposed then there would be no 
shell and the null hypersurface ∑ is just the history of 
an impulsive gravitational wave.
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