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Abstract 
We study the phase structure of two dimensional pure lattice gauge theory with a Chern term. The symmetry groups are non-Abelian, 
finite and disconnected sub-groups of SU(3). Since the action is imaginary it introduces a rich phase structure compared to the 
originally trivial two dimensional pure gauge theory. The Z3 group is the center of these groups and the result shows that if we use 
one dimensional irreducible representations (irreps) for group elements the phase diagrams  are similar to diagrams of Z3 group. 
Other irreps with different dimensionality show a little different behaviour for the phase diagram. The phase transition for the Z3
group is first order. The phase structure of the U(N) model is considered and it is proved that it has an infinite number of first order 
phase transitions. 
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1. Introduction 
We study 1+1 dimensional pure gauge theory plus a 
Chern term. In two dimensions any pure gauge theory is 
locally trivial and has no propagating modes. These 
models are analytically solvable and they exhibit no 
phase transition. However the triviality of two 
dimensional theories is not guaranteed for generalized 
actions [1-5]. 
 These models can possess a rich phase structure if 
the conventional real action is replaced by a complex 
one[5].  These kind of actions arise from effective pure 
gauge models [6]. This work is a generalization of the 
results which has already been obtained in [5] to the 
U(N) and some non-Abelian, finite and disconnected 
sub-groups of SU(3). We shall apply the group character 
expansion method to calculate the partition function for 
some non-Abelian and finite sub-groups of SU(3). In this 
part we review the formulation of lattice gauge theory on 
a two dimensional surface without boundary[7]. On the 
lattice the partition function takes the form, 
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where unitary N×N matrices Ui are attached to the links 
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of the lattice. It is a consequence of the Peter-Weyl 
theorem that the space of class function on a compact 
Lie group G, is spanned by its irreducible characters i.e. 
by the traces in the unitary irreps r∈G. Since eS(u) is a 
conjugate class function on G, it can be expanded in 
terms of irreducible characters of G. Actually the 
partition function of this theory can be calculated exactly 
by the group character expansion,  
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The sum in (eq.3) runs over all irreps r of the group. 
χr(U) is the character of r and dr=χ (I) is its dimension. 
The coefficients Λr(β) can be calculated by the following 
integral, 
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In two dimensions the basic operation in calculating the 
partition function is gluing plaquettes along a common 
link. This operation is trivial because of the triviality of 
the orthogonality condition for characters, 
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And by using the properties of characters we get to,(see 
figure 1), 
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Figure 1. Making one plaquette by gluing two 
neighbors. Two dimensional Yang-Mills theory is a one 
plquette model. 
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Integrating over all links in a region with fixed boundary 
conditions, 
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where Γ is the product of link variables around the 
boundary and N is the number of plaquettes contained in 
the domain. 
 As is known, one can build an arbitrary two-
dimensional manifold by gluing any number of handles, 
orientable sheets and Mobius sheets to the sphere with 
holes. We are able to cover the surface of any two 
dimensional manifold by plaquettes and then calculate 
the partition function using the same procedure as for 
gluing plaquettes. For example for the cylinder (sphere 
with two holes) we have, 
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where V1V2 and W1W2 are products of matrices along 
the boundaries of holes (figure 2) and we used the 
following formula, 

†( ) ( ) ( ) .r r r rd dW AWBW A Bχ χ χ=∫ (9) 

Each hole decreases the degree of dr by one. The result 
for arbitrary surface with h handles (h holes) and without 
boundary is: 
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where χ=2-2h is the Euler characteristic of the surface. 
In the thermodynamic limit (N →∞) only the term with 
larger Λ survives and the free energy is given by: 
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The string tension is defined by: 
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where 

Figure 2. Cutting of a surface into parts without holes 
and gluing them along the common links U1 and U2.
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is the Wilson loop average of the loop C in the q 
representation of the gauge group and A is the area 
enclosed by the loop. The loop average <Wq(C)> can be 
obtained in the same way as as the partition function, 
and the Wilson loop average has the following form: 
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is a factor which depends on the chosen representation of 
G on the two sides of the loop C. The dominating term 
for large loops (A →∞) will be the one with the largest 
Λ. The string tension is given by 

.]
)(
)(

log[)(
β
β

βσ
p

x
q Λ

Λ
= (16) 

If the largest Λ is not unique the system undergoes a 
phase transition caused by the swap over between the 
largest Λ’s. In the next sections we will consider the 
phase structure of some non-Abelian sub groups of 
SU(3). 
 
2. Phase structre of generalized action 
In a continuum theory of gauge fields and fermions an 
effective action can be obtained by integrating the 
fermions. In the one loop order this action contains a 
Chern term[5]. It is hoped that some qualitative idea 
about the real four dimensional gauge theory will be 
found by a study of this two dimensional theory. The 
action consists of two parts; a real one (Wilson action) 
and an imaginary one (Chern term) 
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is the usual Wilson action for pure Yang-Mills theory, 
and 
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Figure 3. The phase diagram for the Z3 group. 
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is the Chern term and εis an additional parameter. In the 
ε=0 limit the action describes a pure two dimensional 
gauge theory. The two dimensional Yang-Mills theory is 
a trivial theory and the action is real and we have 

( )

( )

( )

0

1( ) ( )

1 ( )

( ) . (20)

S U
r

r

S U

r
S U

G

dUe r U
d

dUe r U
d

dUe

β χ

χ

β

Λ =

≤

≤

= Λ

∫

∫
∫

So Λ0 is always larger than all the other Λ's and indeed 
there is no phase transition. But if we add a complex term to 
the action the theory is not trivial. It is possible that for 
some values of β and ε two different Λr are equal. This 
makes a discontinuity in the first derivative of the free 
energy and so a first order phase transition. For example if 
the gauge group is U(1) and ε=1  then the character 
expansion coefficients take the following simple form: 
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At βr=r+1 a swap over between Λr and Λr+1 takes place 
which causes a first order phase transition. In general the 
same thing happens for the U(N) group. Consider an 
element of U(N) which is represented by a N×N unitary 
matrix and the irreducible representations of U(N) are 
labeled by a set of N positive or negative integers [4]:    
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or alternatively if iNl ii −+= λ

....21 Nlll >>> (23) 
After the same calculation and integral over the compact 
group one has: 

Figure 4. The phase diagram for the 1 dimensional 
irreps of the tetrahedral group T24. 
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Again a swap over between the largest Λ's happens at the 
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 Gauge theories with a local Zn symmetry are of 
interest in the problem of quark confinement. The reason 
is that the center of the group SU(N) which is Zn may be 
of particular importance in determining whether an 
SU(N) gauge theory is confining or not. 
 
4. Numerical study 
In this section we choose some non-Abelian and discrete 
sub-groups of SU(3) and by a numerical method plot 
their phase coexistence curves for an irreducible 
representation with aspecified dimension[8]. The 
numerical calculation is based on the eq. (4). At first the 
value of ( , )BΛ ∈ is calculated for different values of β
and ε. The critical lines are identified as the points in 
which two largest Λs are equal. These points make 
critical curves on the β- ε phase diagram. The irreducible 
representations of these groups have different 
dimensionality and so we expect different behaviour for 
the phase diagrams. Actually the result of calculation for 
each group depends on the dimensionality of irreps that 
we use for the generalized action. The Z3 group is the 
center of these groups and the phase diagrams of one and 
two dimensional irreps are similar to diagrams of the Z3
group. Other irreps with higher dimensionality show 
slightly different pictures for the phase diagrams. We 
compared the phase diagrams of Z3 , Z4 , double 
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Table 1. Character table for the group T24 (ω=exp(2πi/3)). Each row corresponds to an irrep and each column to a class 
of the group elements. 
 

Table 2. Character table for the group (216)∑ . This grop has got 216 elements(ω=exp(2πi/3)). Each row corresponds 
to an irrep and each column to a class of the group elements. 
 

Figure 5. The phase diagram for the two dimensional 
irreps of the Σ(216). 
 
tetrahedral T, ∑(36), ∑(168) and ∑(216); the phase 
diagram of ∑(216) is the interesting one and has got a 
tricritical point. The phase diagrams of Z3 and T12 and 
 ∑(216) are plotted in the following diagrams. Actually 
different behaviour of phase diagram corresponds to the 
dimension of the irreducible representation and for the 8 
dimensional irreducible representation there is a 
tricritical point (figuer 3). 
 The phase diagram for a one dimensional irrep is 
plotted in the following picture. The phase diagram of 

 

Figure 6. The phase diagram for the 8 dimensional 
irreps of Σ(216 ) The vertical line represent the real part 
of the gauge coupling constant and the horizontal line 
represent the imaginary part of the coupling constant. 
 
the two dimensional irreps of ∑ (216)  (the fifth row in 
the character table of ∑ (216) ) is plotted in the following 
diagram. The phase diagram for the 8 dimensional irreps 
of the Σ(216)  has a different behaviour compare to the 
other irreps with lower dimensions. 
 The periodic behaviour of the diagram comes from 
the imaginary part of the action. For small values of 
imaginary part the behaviour of the theory with the 8 
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Figure 7. The three critical point for the Σ(216). 
 
dimensional irreducible representation is similar to the 
one dimensional irreps or the center of Σ(216) which is 
Z3.

There are three different phases around the three 
critical points. The critical lines are the places in the β- ε
diagram which the largest  Λ are equal this means that 
the string tension on these lines is zero (figure 8) The 
string tension does not vanish in a pure phase and the 
model is confining. The calculation of string tension is 
simple and is the same as finding the critical lines. After 
calculating the Λ's and sorting them numerically we have  
used (16) to get the value of string tension. The string 
tension for a fixed value of ε = 3.507  is plotted in the 
following picture β∈[1.033,1.0355] . 

In this section we have calculated the critical 
behaviour for different irreps of some discrete subgroups 
of SU(3) with a certain dimension. It should be noted 
that for understanding the full critical behaviour of these 
sub-groups one has to sum up over all dimensions, 
however we were interested only on behaviour of 
separate dimensions of irreps. The lesson one can learn 
from these is that the difference between the critical 
behaviour of the SU(3) and its center is due to 
contributions from the higher dimensional (d ≥ 2) irreps. 

Figure 8. The string tension for a fixed value of ε=3.507 
 
5. Conclusion 
The two dimensional pure gauge theory does not contain 
transverse propagating modes and is a trivial theory 
without phase transition. Generalization of the trivial 
action to a complex one leads to a theory with a rich  
phase structure. Study of this toy model is motivated by 
the results from the four dimensional effective pure 
gauge theory. In the real four dimensional theory after 
integrating out the fermionic degrees of freedom the 
effective action contains an imaginary part [6]. In 
general the same structure is expected for the SU(N) 
group. We could not solve the problem at large N limit. 
Actually there is a third order phase transition for large  
N limitof two dimensional gauge theory [9]. It is 
interesting to have a complete knowledge about the 
generalized action with SU(N) gauge group, and its large 
N limit. A good numerical algorithm for studying large 
N gauge theories can be found in [10]. 
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