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Abstract 
we study the free oscillations of a non-rotating earth-like planet in the presence of a force free magnetic field. The model consists of a 
solid inner core, a liquid outer core and a solid mantle which is spherically symmetric. The lagrangian displacements are decomposed 
into scaloidal, poloidal and toroidal components using a gauged version of Helmholtz theorem. These components are identified, 
with p -, g - and t -modes, respectively. The normal modes of the model are determined using a Rayleigh-Ritz variational 
technique. The consequence of the presence of the solid parts and the magnetic field is the emergence of pure t -oscillations. The 
magnetic field, in addition to exciting t -modes, couples the everpresent p -and g -modes together. As an application of the model, 
the real seismic data of the earth is used to calculate eigenvalues and eigenvectors for different modes. 
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1. Introduction 
Free oscillations of the earth received much attention by 
the pioneering work of Beniove [1, 2]. He observed an 
oscillation period of 57 minutes by investigating the 
seismic data obtained by Kamchatka earthquake and 
interpreted it as the free oscillation of the earth. Since 
then many aspects of the problem have been investigated 
by different authors. Alterman et al. [3] studied the same 
problem and obtained the numerical values for the 
periods of free oscillations by means of Runge-Kutta 
procedure. They classified the normal modes into 
spheroidal and toroidal components using the Bullen 
model [4] as a model of the internal structure of the 
earth. Dynamical equations of the earth obtained by 
Phinney et al. [5] and Smith [6] were solved by Wiggins 
[7] using the Rayleigh-Ritz variational procedure and 
minimizing the action integral for a spherical, non 
rotating and perfectly elastic model. The theory of free 
oscillations of the earth is extensively studied by Gilbert 
et al. [8], Teisseyre [1], Gubbins [9], Sobouti [10] and 
others, and an enormous body of literature and numerical 
data are produced. Here, we study the free oscillations of 
the non rotating earth-like planets by assuming a three 
layer model consisting of a solid inner core, a liquid 
outer core and a solid mantle. The mathematical 
technique, used here to study and classify the possible 
motions of the model, was first proposed by Cowling 

[11] for fluids. In this method, the free oscillations of 
heavenly fluid bodies are classified into acoustic ( p -) 
and gravity ( g -) modes. The p -modes are generated 
mainly by pressure fluctuations while the g -modes are 
mainly due to density fluctuations [12]. In a medium 
consisting of liquid and solid, in addition to the pressure 
and buoyancy forces in liquid regions, the shear forces 
are also operative in solid parts. Therefore, a third 
category of modes, i.e. the toroidal modes emerges. 
These are pure toroidal motions without coupling with 
everpresent p -and g -modes. Such a model for earth 
with liquid core and solid mantle was considered by 
Sobouti [10] using the same technique and the possible 
motions were classified assuming a polytropic 
stratification. Abedini [13] used the same method to 
study the free oscillations of the above model by 
employing the real seismic data of the earth given by 
Gilbert et. al. and identified some of the observed 
frequencies of spheroidal and toroidal oscillations with 
those of the calculated values for p -, g -and t -motions. 
  Furthermore, the oscillations of magnetized fluids 
were studied, using the same technique, by Sobouti [14], 
Nasiri et. al. [15], Hasan et.al. [16] and Nasiri [17]. They 
showed that in the presence of a magnetic field the 
toroidal modes are excited as standing hydrodynamic 
waves. Also, the p - and g -modes are coupled with  
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t -modes. The coupling is proportional to the strength of 
the magnetic field. 
  Here, we investigate the possible motions occurring 
in the aforementioned model immersed in a nonuniform 
force free magnetic field. In section 2 the dynamical 
equations for the model are given. In section 3 the 
structure of lagrangian displacements occurring in the 
medium are described. In section 4 the computational 
procedure and results are discussed. 
 
2. Equations 
Let us consider an istropic system with a solid inner core 
and liquid outer core and solid mantle in equilibrium. 
Assume ρ (r), p (r), U(r), and µ (r) be the density, 
pressure, gravitational potential, and the rigidity 
coefficient, respectively. The medium is pervaded by a 
force free magnetic field.  
  Let the system undergo a small perturbation, and a 
mass element at position r be displaced by a small 
distance, ξ (r,t). Associated with this displacement are 
the Eulerian changes UP δδδρ ,, , and .Bδ  It can be 
shown that the linearized equation of motion is 
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In the above equations the summation over repeated 
indices is implied. In eq. (4), γ is the ratio of specific 
heats that can be obtained by assuming an appropriate 
equation of the state for earth's interior. The equation of 
the state used here is that of Murnaghan and Birch [4]. It 
is obtained for an isotropic system by thermodynamical 
considerations as follows 
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where K0 and 0ρ  are bulk modulus and density on the 
surface of the earth, respectively. Using eq. (7) and 
assuming adiabatic processes one may obtain the 
following expression for γ [13]   
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Equation (8) shows the behavior of γ as a function of 
radius through the density variations. If we multiply eq. 
(1) by ∗ξ  and integrate over the medium, we get 
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where ξ  is assumed to have an exponential time 

dependence, tie ω . Integrating by parts and letting the 
surface integrals vanish [15], we get 
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It can be shown that the expressions for W(1)-W(7) are 
all real and symmetric. For details of calculations see 
Nasiri et al. [15]. 
  Now, we assume an axisymmetric force free 
magnetic field consisting of toroidal and poloidal 
components as follows [18] 
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is a spherical Bessel function and )(θnY  is a spherical 
harmonic. Assuming appropriate boundary conditions on 
the magnetic field gives rη  as a zero of the Bessel 
function [15, 19]. Hereafter, we use the first order Bessel 
function, 1=n , and its first zero, 493409.4=rη . 
The force free nature of the field would keep the 
equilibrium configuration of the system spherically 
symmetric. 
 
3. The structure of lagrangian displacements 
Using Sobouti’s modified form of Helmholtz theorem 
[20] we decompose a lagrangian displacement as follows 
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Equation (22) will be useful in classifying the modes and 
its various components can be expressed by 

,pp x∇−=
rr

ζ                  (23) 

),(1
gg xr×∇×∇=

rrr

ρ
ζ              (24) 

),(1
tt xr×∇×∇×∇=

rrrr

ρ
ζ             (25) 

where r  is a unit vector in radial direction. Using eqs. 

(23) - (25) it can be shown that gP ζζ
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r
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orthogonal to each other [20]. Let the set { tgP ζζζ
rrr

,, } 
constitutes a complete set of basis vectors in the Hilbert 
space of the displacements, H, in which the inner 
product is 
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Hence, any eigensolution of eq. (10) can be expanded in 
terms of the basis set as 

∑ ==
s
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where Zrs are constants of expansion and will be 
considered as variational parameters. Substituting eq. 

(27) in eq. (10) and using the Rayleigh–Ritz variational 
technique to minimize the eigenvalues one gets the 
following matrix equation [12] 

WZ=SZE,                 (28) 

where E and Z, are the matrices of eigenvalues and 
expansion coefficients, respectively. The elements of S 
and W are obtained by using eqs. (23)-(25) in eqs. (11)-
(19) and are given in appendices A, B, C and D. 
  It is convenient to consider each term of the W 
matrix, separately. As the p displacements are solely 
responsible for changes in δρ , by eq. (13) the block 
structure of W(1) is as follows 
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Since in eq. (14), div tξ = 0, the W(2) matrix has no 
contribution from t  motions. Its explicit block form is 
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It is easily seen from eq. (15) that the block form of 
W(3) is as follows 
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W(4) and W(5) are the magnetic terms. Using eqs. (16) 
and (17) one can obtain the following expressions for 
their block structures 
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W(6) and W(7) are due to rigidity. From  eqs. (18) and 
(19) one has  
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Combining eqs. (29)- (35), one can obtain the full 
structure of the W matrix obtained by  

.)7(W)6(W)5(W)4(W)3(W)2(W)1(WW ++++++=
                   (36) 
Here, we can draw some conclusions without delving 
into detailed numerical calculations. 

i) For the fluid core in a non- magnetized model , the p - 
and g -modes are excited through Wpp(1), Wpp(2), 
Wgg(2), Wpp(3), and are coupled with each other through 
Wpg(2) = Wgp(2). 

ii) The presence of the magnetic field not only excites 
the t -modes through Wtt(4) and Wtt(5), but also couples 
the same modes with the p - and g -modes through 
Wgt(4) = Wtg(4), Wgt(5) = Wtg(5), Wpt(4) = Wtp(4), and 
Wpt(5) = Wtp(5). The coupling is proportional to magnetic 
energy and, therefore, will be weak due to the weakness 
of the magnetic field. As a result, the g - and p -motions 
will contain small toroidal components in their 
displacement vectors and vice versa. 

iii) The presence of solid parts excite pure toroidal 
motions only through Wtt(7) which is linearly 
proportional to the rigidity coefficient. Note that W(6) 
does not contribute to pure toroidal motions. 
The orthogonality of pg ζζ ,  and tζ  makes the S matrix 
block diagonal 
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The Z matrix has no vanishing blocks, that is  
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The E matrix by definition is diagonal 
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4. Computational procedure and results 
Let us define the following dimensionless quantities to 
resolve the question of units. 
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where cρ , pc, R, Bo and cβ  are central density, central 
pressure, physical radius, amplitude of the magnetic field 
and the ratio of the central values of the rigidity and the 
pressure, respectively . The barred expressions are 
dimensionless integrals. Equation (10) now becomes 
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where jω  is the Jeans frequency and is used as the unit 
of ω  and λ  is the ratio of magnetic and internal energy 
densities at the center. 
  Equation (28) is cast in matrix form and solved by 
standard algorithms of matrix digonalization for different 
values of λ  and rigidity. The results are obtained for 
real structure of the earth using the data given by Gilbert 
et al [8, 21]. In Table 1 the eigenvalues of p  modes, 

2
pω , for the whole earth (using the seismic data for µ  as 

a function of radius) and also for its outer liquid core 
( 0=µ ) are given for 2=l , 0=λ  and 1.0 . It is seen 
that in the presence of magnetic field the mode 
characteristics as well as the corresponding eigenvalues 
do not undergo a significant change. The situation is 
shown schematically in figures 1 and 2. In these figures 

2
pω  for first four modes are plotted versus radial mode 

numbers. The eigenvalues for the fifth modes, calculated 
in Tables 1-3, do not have enough accuracy in Rayleigh-
Ritz variational technique and are ignored in figures. 1-5. 
The increasing nature of 2

pω  with the mode number is 
not considerably affected by magnetic field in both 
cases. 
  Table 2 is the same as Table 1, for 2

gω . In contrast to 
p -modes, the g -modes behave differently in the 

presence of the magnetic field. The decreasing nature of 
2
gω  is not preserved and increases for higher mode 

orders for the whole earth. See the 2nd and 3rd columns 
in Table 2. This has origin in the fragile nature of the g -
modes compared with the robust nature of the p -modes 
as it is well known. In the outer liquid core, where the  
unstable convective motions take place and 2

gω  is 
negative, the effect of magnetic field becomes more 
apparent. This is shown in figure 3. In the presence of 
magnetic field, 2

gω  tends to increase with the mode 
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Table 1. The p-eigenvalues, 2
pω , in unit of 2

jω , for the whole earth (left) and the liquid outer core (right) for  the first five radial 

mode numbers, assuming  l=2, λ = 0 and λ  = 0,1. The magnetic field does not change the p-eigenvalues significantly, both for the 
whole earth and the liquid core.  

                         The whole earth                                                            The liquid core 
=0.1λ=0                            λ               n                                  = 0.1λ=0                                   λ     n                               

   0.53919E+2 0.53918E+2 1 0.44169E+2 0.44169E+2 1 
0.34956E+3 0.34949E+3 2 0.77319E+2 0.77311E+2 2 
0.80213E+3 0.80195E+3 3 0.17213E+3 0.17198E+3 3 
0.11187E+4 0.11175E+4 4 0.29975E+3 0.29905E+3 4 
0.62291E+4 0.62282E+4 5 0.93634E+4 0.93545E+4 5 

 
Table 2. The same as Table 1 for g-eigenvalues, 2

gω . In contrast to p –modes, the situation is different for g –modes . The 

decreasing nature of g–eigenvalues with mode orders changes for the whole earth and a part of the unstable modes become stable for 
the liquid core, in the presence of a magnetic field.  

                            The whole earth                                                           The liquid core 
     n                             λ = 0                                 λ = 0.1                    n                                 λ = 0                     λ = 0.1 

-0.39166E+0 -0.39795E+0 1 0.39992E+2 0.39961E+2 1 
-0.10946E+0 -0.12383E+0 2 0.52920E+1 0.51233E+1 2 
-0.20764E-1 -0.61086E-1 3 0.24552E+1 0.23145E+1 3 
+0.10417E-1 -0.27832E-1 4 0.80207E+0 0.61791E+0 4 
+0.24243E+1 -0.55313E-2 5 0.23144E+1 0.12136E+0 5 

 
Table 3. The same as Table 1 for t-eigenvalues, 2

tω . The nature of t –modes is preserved , but, a relative increase in eigenvalues is 
occurred in the presence of magnetic field for the whole earth. For the liquid core, the magnetic field removes the degeneracy of t –
modes introducing hydromagnetic waves with relatively long period compared to those produced by the solid part of the earth. 

                   The whole earth                                                               The liquid core 
     n                              λ = 0                                  λ = 0.1                n                               λ = 0                  λ = 0.1     

0.24771E-1 0.0 1 0.76824E+1 0.73832E+1 1 
0.13133E+0 0.0 2 0.14444E+2 0.13971E+2 2 
0.33012E+0 0.0 3 0.36684E+2 0.32394E+2 3 
0.40395E+0 0.0 4 0.89672E+2 0.68158E+2 4 
0.80041E+0 0.0 5 0.26842E+3 0.24360E+3 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The p-eigenvalues for the whole earth versus radial 
mode number, assuming 1=2, λ =0 and λ =0.1. It is seen that 
the effects of the magnetic filed is not significant on the p-
eigenvalues. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The p-eigenvalues for the liquid outer core versus 
radial mode number, assuming 1=2, λ =0 and λ =0.1. Again, 
the situation is not considerably altered by the magnetic field. 
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Figure 3. The g-eigenvalues for the liquid outer core versus 
radial mode numbers, assuming 1=2, λ =0 and λ =0.1. The 
unstable convective modes in the outer core become stable for 
n>3 in the presence of the magnetic field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The t-eigenvalues for the liquid outer core versus 
radial mode number, assuming 1=2, λ =0 and λ =0.1. The 
magnetic field exits the degenerate t-modes and gives the long 
period hydromagnetic waves. 
 
order and becomes positive for 3>n  giving rise to the 
oscillatory motions. As a result of this stabilizing effect, 
the convective motions would be slowed down at the 
rate that depends on the strength of the magnetic field. 
Therefore, the rate of the energy, transported by the 
convective motions would be decreased. This, in turn, 
may decrease the rate of cooling of the earth’s solid core 
even though by a small rate due to the weakness of the 
earth's magnetic field.  
  Numerical values for 2

tω  are given in Table 3. The 
toroidal modes are excited either by shear forces or by 
the magnetic ones. For the whole earth, 2

tω  undergoes a 
considerable increase, keeping the modal structure, i.e., 
the increasing nature, invariant in the presence of the 
magnetic field. As expected, the t -modes would be 
degenerate for the nonmagnetized liquid core. This is 
seen in the 5th column of the Table 3. The presence of 
magnetic field excites these modes giving standing 
hydromagnetic waves with long periods compared with 
those of the seismic waves propagated by shear forces  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The t-eigenvalues for the whole earth versus radial 
mode number, assuming 1=2, λ =0 and λ =0.1. The t-
eigenvalues undergors a considerable increase in value, but, 
keeping the modal structure in the presence of the magnetic 
field. 
 
acting in the solid part of the earth. This is seen from 3rd 
and 6th columns of Table 3 and the results are plotted in 
figures 4 and 5. 
 
Appendix A 
Matrix elements of S  
The matrix elements of S are as follows 
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where the superscripts i and j indicate the order of rows 
and columns of the matrices. 
 
Appendix B 
Matrix elements of W123 
Non – zero elements of W123 have following elements 
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Appendix C 
Matrix elements of Wmag terms  
The expressions for W(4) and W(5) are more involved 
than those already encountered. Angular integrals are 
numerous and complicated. These are denoted by I1- I6. 
The terms. depending on r are denoted by ra − . 
  The matrix elements of W(4) and W(5) are calculated 
as follow 
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Appendix D 
Matrix elements of Wshear terms 
The matrix elements of W(6) and W(7) are calculated as 
follows 
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