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Abstract

we study the free oscillations of a non-rotating earth-like planet in the presence of a force free magnetic field. The model consists of a
solid inner core, a liquid outer core and a solid mantle which is spherically symmetric. The lagrangian displacements are decomposed
into scaloidal, poloidal and toroidal components using a gauged version of Helmholtz theorem. These components are identified,
with p-, g - and t-modes, respectively. The normal modes of the model are determined using a Rayleigh-Ritz variational
technique. The consequence of the presence of the solid parts and the magnetic field is the emergence of pure t -oscillations. The
magnetic field, in addition to exciting ¢ -modes, couples the everpresent p -and g -modes together. As an application of the model,
the real seismic data of the earth is used to calculate eigenvalues and eigenvectors for different modes.
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1. Introduction

Free oscillations of the earth received much attention by
the pioneering work of Beniove [1, 2]. He observed an
oscillation period of 57 minutes by investigating the
seismic data obtained by Kamchatka earthquake and
interpreted it as the free oscillation of the earth. Since
then many aspects of the problem have been investigated
by different authors. Alterman et al. [3] studied the same
problem and obtained the numerical values for the
periods of free oscillations by means of Runge-Kutta
procedure. They classified the normal modes into
spheroidal and toroidal components using the Bullen
model [4] as a model of the internal structure of the
earth. Dynamical equations of the earth obtained by
Phinney et al. [5] and Smith [6] were solved by Wiggins
[7] using the Rayleigh-Ritz variational procedure and
minimizing the action integral for a spherical, non
rotating and perfectly elastic model. The theory of free
oscillations of the earth is extensively studied by Gilbert
et al. [8], Teisseyre [1], Gubbins [9], Sobouti [10] and
others, and an enormous body of literature and numerical
data are produced. Here, we study the free oscillations of
the non rotating earth-like planets by assuming a three
layer model consisting of a solid inner core, a liquid
outer core and a solid mantle. The mathematical
technique, used here to study and classify the possible
motions of the model, was first proposed by Cowling

[11] for fluids. In this method, the free oscillations of
heavenly fluid bodies are classified into acoustic ( p -)

and gravity ( g-) modes. The p-modes are generated
mainly by pressure fluctuations while the g-modes are

mainly due to density fluctuations [12]. In a medium
consisting of liquid and solid, in addition to the pressure
and buoyancy forces in liquid regions, the shear forces
are also operative in solid parts. Therefore, a third
category of modes, i.e. the toroidal modes emerges.
These are pure toroidal motions without coupling with
everpresent p-and g-modes. Such a model for earth

with liquid core and solid mantle was considered by
Sobouti [10] using the same technique and the possible
motions were classified assuming a polytropic
stratification. Abedini [13] used the same method to
study the free oscillations of the above model by
employing the real seismic data of the earth given by
Gilbert et. al. and identified some of the observed
frequencies of spheroidal and toroidal oscillations with
those of the calculated values for p-, g-and ¢ -motions.

Furthermore, the oscillations of magnetized fluids
were studied, using the same technique, by Sobouti [14],
Nasiri et. al. [15], Hasan et.al. [16] and Nasiri [17]. They
showed that in the presence of a magnetic field the
toroidal modes are excited as standing hydrodynamic
waves. Also, the p- and g-modes are coupled with
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t -modes. The coupling is proportional to the strength of
the magnetic field.

Here, we investigate the possible motions occurring
in the aforementioned model immersed in a nonuniform
force free magnetic field. In section 2 the dynamical
equations for the model are given. In section 3 the
structure of lagrangian displacements occurring in the
medium are described. In section 4 the computational
procedure and results are discussed.

2. Equations

Let us consider an istropic system with a solid inner core
and liquid outer core and solid mantle in equilibrium.
Assume p (r), p(r), U(r), and u (r) be the density,
pressure, gravitational potential, and the rigidity
coefficient, respectively. The medium is pervaded by a
force free magnetic field.

Let the system undergo a small perturbation, and a
mass element at position r be displaced by a small
distance, & (r,t). Associated with this displacement are
the Eulerian changes &p,0P,8U, and 6B. It can be

shown that the linearized equation of motion is

35
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In the above equations the summation over repeated
indices is implied. In eq. (4), y is the ratio of specific

heats that can be obtained by assuming an appropriate
equation of the state for earth's interior. The equation of
the state used here is that of Murnaghan and Birch [4]. It
is obtained for an isotropic system by thermodynamical
considerations as follows

2 5

P=5K[( L3 -3, ()

Po

where Ky and p, are bulk modulus and density on the
surface of the earth, respectively. Using eq. (7) and
assuming adiabatic processes one may obtain the
following expression for y [13]

7 5
TPy 2 Lys
y = 3 Po z 3 p05 . (8)
(ﬁ)3 _(ﬁ)3
Po Po

Equation (8) shows the behavior of y as a function of
radius through the density variations. If we multiply eq.

(1) by & and integrate over the medium, we get
2 * * *
o jdeii §i= jdVéi w;iéi =
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where & is assumed to have an exponential time

dependence, et Integrating by parts and letting the

surface integrals vanish [15], we get

W-w?S=0, (10)
where
s=[dweig) o, (11)
and
W = W(l) + W(2) + W(3) + W(4) + W(5) + W(6) + W(7),
(12)
1 dP .
W) = j dV—d—5p 5p, (13)
W) = v PEE )( éf) (14)
where o =y—££,
P dp
W(3)=—ijdvd¢5p*5p lr=r | (15)
1 .
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W(7)—— jdv(aé’ i). (19)
an
It can be shown that the expressions for W(1)-W(7) are
all real and symmetric. For details of calculations see
Nasiri et al. [15].
Now, we assume an axisymmetric force free
magnetic field consisting of toroidal and poloidal

components as follows [18]

B= Bb[”("“)zm )Y,(0),
dY(Q) (9) (20)
—(—+—>Z( AR L ACH)
where
Zn(x>=(%)”zjn+1/z(x), @1)

is a spherical Bessel function and Y,(0) is a spherical
harmonic. Assuming appropriate boundary conditions on
the magnetic field gives nr as a zero of the Bessel
function [15, 19]. Hereafter, we use the first order Bessel
function, n=1, and its first zero, n r = 4.493409 .

The force free nature of the field would keep the
equilibrium configuration of the system spherically
symmetric.

3. The structure of lagrangian displacements
Using Sobouti’s modified form of Helmholtz theorem
[20] we decompose a lagrangian displacement as follows

Cjzéjp"'éjg"'éjt- (22)

Equation (22) will be useful in classifying the modes and
its various components can be expressed by

£p=-Vxp, (23)

§g=ivxvx(r ), (24)
o}

£ =LOxTxVx(rx), (25)
o}

where r is a unit vector in radial direction. Using egs.
(23) - (25) it can be shown that Cp,Cg and é:z are
orthogonal to each other [20]. Let the set {cf p,cf g,cf n

constitutes a complete set of basis vectors in the Hilbert
space of the displacements, H, in which the inner
product is

jdvpéff.cfs = finite, r,s=p,g or t (26)

Hence, any eigensolution of eq. (10) can be expanded in
terms of the basis set as

= ZQ’SZS,, r,s=p,g or t, 27)

where Z are constants of expansion and will be
considered as variational parameters. Substituting eq.

(27) in eq. (10) and using the Rayleigh—Ritz variational
technique to minimize the eigenvalues one gets the
following matrix equation [12]

WZ=SZE, (28)

where E and Z, are the matrices of eigenvalues and
expansion coefficients, respectively. The elements of S
and W are obtained by using eqs. (23)-(25) in eqgs. (11)-
(19) and are given in appendices A, B, C and D.

It is convenient to consider each term of the W
matrix, separately. As the pdisplacements are solely

responsible for changes in 8p, by eq. (13) the block
structure of W(1) is as follows

0 0 0
W) =0 W,0) 0] (29)
0 0 0

Since in eq. (14), divE, = 0, the W(2) matrix has no

contribution from t motions. Its explicit block form is

Wog(2) Wgp(2) 0

Wpe(2) Wy(2) 0| (30)
0 0 0

W(2) =

It is easily seen from eq. (15) that the block form of
W(3) is as follows

0 0 0
W3 =0 W,03) 0| (31)
0 0 0

W(4) and W(5) are the magnetic terms. Using eqs. (16)
and (17) one can obtain the following expressions for
their block structures

(Weg(d) Wyp(4) Wy (4)
W) =| Wog(d) W,p(4) Wy(4) |, (32)
W (4) W) Wy (4)
and
Wi (5) Wyp(5) Wy (5)
W(5) =| Wpe(5) Wpp(5) Wy(3) |- (33)
W (5) Wy(5) Wy (5)

W(6) and W(7) are due to rigidity. From egs. (18) and
(19) one has
Woe(6) Wy, (6) 0
W(6) = ng(6) pr 6) 0}, (34)
0 0 0

and
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Wy (7) 0 0
W(7)=|0 0 0 . (35)
0 0 Wu(7)

Combining egs. (29)- (35), one can obtain the full
structure of the W matrix obtained by

W = W(l) + W(2) + W3) + W(4) + W(5) + W(6) + W(7).

(36)
Here, we can draw some conclusions without delving
into detailed numerical calculations.

i) For the fluid core in a non- magnetized model , the p-
and g-modes are excited through W, (1), W,,(2),

Wee(2), W,5(3), and are coupled with each other through
We(2) = Wep(2).

ii) The presence of the magnetic field not only excites
the t-modes through W(4) and Wj(5), but also couples
the same modes with the p- and g-modes through
Wel4) = Wig(4), WelS) = Wi(5), Wp(4) = Wi(4), and
W,4(5) = W,y(5). The coupling is proportional to magnetic
energy and, therefore, will be weak due to the weakness
of the magnetic field. As a result, the g - and p-motions
will contain small toroidal components in their
displacement vectors and vice versa.

iii) The presence of solid parts excite pure toroidal
motions only through Wy(7) which is linearly
proportional to the rigidity coefficient. Note that W(6)
does not contribute to pure toroidal motions.

The orthogonality of {4, &, and {; makes the S matrix

block diagonal
Sg‘g 0 0

S=10 S,, 0 | (37)
0 0 S

The Z matrix has no vanishing blocks, that is

Zog Zgp Zgt
Z=Zp Zpy Zp|- (38)
_Ztg Zp L
The E matrix by definition is diagonal
_ 2
Egg 0 0 Wgg 0 0
E=|0 E,, 0 |=/0 @2, 0 | (39)

pp pp
0 0 Ey 0 0 a)tzt

4. Computational procedure and results
Let us define the following dimensionless quantities to
resolve the question of units.

S=p.RS, (40)

Wio3 = W) + W) + W(3) = P,R*W, 3, (41)
Wi = W)+ W(5) = (B R’ /87) W23 (42)
Woear = W(6) + W(7) = BoP.R W e 43)

where p. p., R, B, and S are central density, central

pressure, physical radius, amplitude of the magnetic field
and the ratio of the central values of the rigidity and the
pressure, respectively . The barred expressions are
dimensionless integrals. Equation (10) now becomes

o’ =0’ /a)i = (W123 +)’Wmaq + ﬂcwshear)/ga (44)
Pc

2
0} =" (45)
Pc R?
A= Bg , (46)
8mp,

where @ ; is the Jeans frequency and is used as the unit

of ® and A is the ratio of magnetic and internal energy
densities at the center.

Equation (28) is cast in matrix form and solved by
standard algorithms of matrix digonalization for different
values of A and rigidity. The results are obtained for
real structure of the earth using the data given by Gilbert
et al [8, 21]. In Table 1 the eigenvalues of p modes,

a)fJ , for the whole earth (using the seismic data for u as
a function of radius) and also for its outer liquid core
(u=0) are given for /=2, A=0 and 0.1. It is seen

that in the presence of magnetic field the mode
characteristics as well as the corresponding eigenvalues
do not undergo a significant change. The situation is
shown schematically in figures 1 and 2. In these figures

a)fJ for first four modes are plotted versus radial mode

numbers. The eigenvalues for the fifth modes, calculated
in Tables 1-3, do not have enough accuracy in Rayleigh-
Ritz variational technique and are ignored in figures. 1-5.

The increasing nature of a)fJ with the mode number is

not considerably affected by magnetic field in both
cases.
Table 2 is the same as Table 1, for coé. In contrast to
p-modes, the g-modes behave differently in the
presence of the magnetic field. The decreasing nature of
2
Og
orders for the whole earth. See the 2nd and 3rd columns
in Table 2. This has origin in the fragile nature of the g -

is not preserved and increases for higher mode

modes compared with the robust nature of the p-modes
as it is well known. In the outer liquid core, where the

unstable convective motions take place and coé is

negative, the effect of magnetic field becomes more
apparent. This is shown in figure 3. In the presence of

magnetic field, w2 tends to increase with the mode

g
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Table 1. The p-eigenvalues, ®2 , in unit of a)? , for the whole earth (left) and the liquid outer core (right) for the first five radial

p 2
mode numbers, assuming 1=2, A =0and A =0,1. The magnetic field does not change the p-eigenvalues significantly, both for the
whole earth and the liquid core.

The whole earth The liquid core
n A =0 A=0.1 n A =0 A=0.1
1 0.44169E+2 0.44169E+2 1 0.53918E+2 0.53919E+2
2 0.77311E+2 0.77319E+2 2 0.34949E+3 0.34956E+3
3 0.17198E+3 0.17213E+3 3 0.80195E+3 0.80213E+3
4 0.29905E+3 0.29975E+3 4 0.11175E+4 0.11187E+4
5 0.93545E+4 0.93634E+4 5 0.62282E+4 0.62291E+4

Table 2. The same as Table 1 for g-eigenvalues, a)é. In contrast to p —modes, the situation is different for g —modes . The

decreasing nature of g—eigenvalues with mode orders changes for the whole earth and a part of the unstable modes become stable for
the liquid core, in the presence of a magnetic field.

| The whole earth The liquid core |
n A=0 A=0.1 n A =0 A=0.1
1 0.39961E+2 0.39992E+2 1 -0.39795E+0 -0.39166E+0
2 0.51233E+1 0.52920E+1 2 -0.12383E+0 -0.10946E+0
3 0.23145E+1 0.24552E+1 3 -0.61086E-1 -0.20764E-1
4 0.61791E+0 0.80207E+0 4 -0.27832E-1 +0.10417E-1
5 0.12136E+0 0.23144E+1 5 -0.55313E-2 +0.24243E+1

Table 3. The same as Table 1 for t-eigenvalues, 6012 . The nature of t -modes is preserved , but, a relative increase in eigenvalues is

occurred in the presence of magnetic field for the whole earth. For the liquid core, the magnetic field removes the degeneracy of t —
modes introducing hydromagnetic waves with relatively long period compared to those produced by the solid part of the earth.

The whole earth The liquid core
n A=0 A=0.1 n A=0 A=0.1
1 0.73832E+1 0.76824E+1 1 0.0 0.24771E-1
2 0.13971E+2 0.14444E+2 2 0.0 0.13133E+0
3 0.32394E+2 0.36684E+2 3 0.0 0.33012E+0
4 0.68158E+2 0.89672E+2 4 0.0 0.40395E+0
5 0.24360E+3 0.26842E+3 5 0.0 0.80041E+0
350 1200
300 A 1000 -
P 250 1 2 800 - B
E 200 —— =0 E ——)=0
.Eﬂ 150 ——)=0.1 E‘? 600 1 —a—)=0.1
100 | = 4007
50 200 -
0 0
1 2 3 4 5 1 2 3 4 5

Radial mode number Radial mode number
Figure 1. The p-eigenvalues for the whole earth versus radial
mode number, assuming 1=2, A =0 and A =0.1. It is seen that
the effects of the magnetic filed is not significant on the p-
eigenvalues.

Figure 2. The p-eigenvalues for the liquid outer core versus
radial mode number, assuming 1=2, A =0 and A =0.1. Again,
the situation is not considerably altered by the magnetic field.
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Figure 3. The g-eigenvalues for the liquid outer core versus
radial mode numbers, assuming 1=2, A =0 and A =0.1. The
unstable convective modes in the outer core become stable for
n>3 in the presence of the magnetic field.

0.5
0.4 1
TE 031 ——=0
%0‘2 ] ——)=0.1
0.1 1

(=)
[ 4
[ 3
[ 4
[ 4

Radial mode number

Figure 5. The t-eigenvalues for the liquid outer core versus
radial mode number, assuming 1=2, A =0 and A =0.1. The
magnetic field exits the degenerate t-modes and gives the long
period hydromagnetic waves.

order and becomes positive for n>3 giving rise to the
oscillatory motions. As a result of this stabilizing effect,
the convective motions would be slowed down at the
rate that depends on the strength of the magnetic field.
Therefore, the rate of the energy, transported by the
convective motions would be decreased. This, in turn,
may decrease the rate of cooling of the earth’s solid core
even though by a small rate due to the weakness of the
earth's magnetic field.

Numerical values for cot2 are given in Table 3. The
toroidal modes are excited either by shear forces or by
the magnetic ones. For the whole earth, cot2 undergoes a
considerable increase, keeping the modal structure, i.e.,
the increasing nature, invariant in the presence of the
magnetic field. As expected, the t-modes would be
degenerate for the nonmagnetized liquid core. This is
seen in the 5th column of the Table 3. The presence of
magnetic field excites these modes giving standing
hydromagnetic waves with long periods compared with
those of the seismic waves propagated by shear forces

1 2 3 4 5
Radial mode number

Figure 4. The t-eigenvalues for the whole earth versus radial
mode number, assuming 1=2, A =0 and A =0.1. The t-
eigenvalues undergors a considerable increase in value, but,
keeping the modal structure in the presence of the magnetic
field.

acting in the solid part of the earth. This is seen from 3™
and 6th columns of Table 3 and the results are plotted in
figures 4 and 5.

Appendix A
Matrix elements of S
The matrix elements of S are as follows

i I(1 ot
Sho =[S 050517

2 2
jl ! (I;D dLod + 11+ 1)pigy | rdr,
r

gi 10+

j P¢zj ¢tjr 2dr

where the superscripts i and j indicate the order of rows
and columns of the matrices.

Appendix B
Matrix elements of W3
Non — zero elements of W3 have following elements

Wi = [ p 107+ G Loy XC D gy 5+
2 ,io 1(+1
<;+%>¢pf L Doh1
dpP 2 i
(2) j( —£—)P[¢ p 7¢p"
e

W@ =W =10 [ - LI 0107 + 294

D 1 1pr,
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de Pp

W @)=+ [ -
WY (3) = ~47G j pY;Ygdr,
where

1(1;1) ¢L]r’+1dr.

R J+1 i
=—p¢)| r+rj pl—¢p -
r r

Appendix C
Matrix elements of W,,, terms
The expressions for W(4) and W(5) are more involved
than those already encountered. Angular integrals are
numerous and complicated. These are denoted by I;- I.
The terms. depending on r are denoted by a—r .

The matrix elements of W(4) and W(5) are calculated
as follow

(4)_—j[11b bi + Iy(ahbl + dicd)+

13(bpap + cpdp) +4l4c,c) +4lsapayldr,
B2

W4 = Wf’(4)——j[11b’hg{+12(a hf+t d’mf)

+ 1 ahf+ d’mf +1 d’rf+Lfff
2 6

3 B? o o o
Wg'fg(4)=—°j[11m1gmé+12(a;gdé—2a'gbé—

2b' +b'df+d bf+d bf+1’mf+m If)

—4I3a +I4(a a +a bf+b' +b'bf)+
Is(lg 1] +ngné+ngrgf +rgnf +r rf)

+1Ig(ag af 2a, df 2d’gaé+dgbg!)]dr,

WA =W =~ [{1setgd « b

B .
(4) —_j[lletet +1— (etbj +biel)

+ Is—zb;btj]dra
Wi 1= [01 4] 1,2+ iy
+ LzaZCly ldr,
W (5)=Wi(5) =

j[ I —¢"b1+12—¢ 0y +

L1(1 + 1)—¢p | IgI(] + 1)—¢p £i1dr,

. B2 . . S,
Wie(9) = =2 [ 121~ Lad - by~ hd))-Z 4

1(1+ )

(Izm +15]j) ¢gj+15(n +r

)(Z+—)

I(1+1) , ; i
( 2)¢gf—12(né+r'

Wh(5)= Wt,é’@ =B [ty 12+ Dl
14 2 ¢pat + 16(2'__)¢Hbj]dr’

Wh(5)=Wd(5) =

B} - I(1+1
——OI[Ile§+12Qt) ( )¢ Ir?
4m npr
ii I+1) ,
Wi = W 9 =~ 1)+ g LD gy
npr
L= O”Sinze P, P sin0 do,
T
I =j0 sin26 PP} sin@ do,
T
Iy = jo sin 20 P{P, sin 6 o),
T !
I = j €020 B P sin0 0.
I =joﬂ00529 PP, sin6 do,
I, = j 0” sin20P, P, sin 6 d6),
i i1+l [T 1Z,i,i
a, =-II+ )177% +E( +;)¢pa
i 2 1 Z, i
bp__r,7¢p+ﬁ(z’+;)¢pa

i_ 1 z, i i
c,=—(7Z+= +2zp.),
b= (7D )
V4

di =%<z+;)(¢;;‘ rgth,

i z i 1 , z "
ejn = —I(I+1)—2¢1’D +—(Z +—)¢ ¢ i
nr n r

i1 z i rZ i
f‘;] =E(Z,+7)|:2r¢pl +(2+7)¢pl -

1.5 220 i
r(4 nr)¢pj|a

1(1+1) i
r ¢p+

i L i i
ag =—{ ¢ +(Z'—£)¢z}
T[ r

b =10+ (2 + D),
TI r
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C = T or (?‘ﬁt)a

ag = r[pr3 (Z,+r)¢g’

b {1(L+1)(2+ by - 22"5}
TIP

i - 2I(I+l)z¢
r[pr

fy = I(IT,H)[(Z wg—%“”’zrz)%}

N EPE TN Z i
hi =T{(Z—n2r2)f—2—(z - (7 +;Z>]¢g,

I = —Mi{i(i—f)qﬁé},

nr Or| pr
i 20,z
=== gy,
nror pr
i I(I+1) 0
=D 0 2 iy,
nr ar pr
i I1+D)z ,;
ré:—( 2) by
nrp
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Appendix D

Matrix elements of W, terms

The matrix elements of W(6) and W(7) are calculated as
follows

PP +

Wi (© = [ B Py + 24 - 1D

I+ 1)

29 -1 g )0,
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1(1+1)
)

dplpid
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Wi (=2 10+D[B 54 “Lgiiey dr,

W () =1+ D] B PUA+ 19087 + 126611
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