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Spherical null shells within the distributional formalism
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Abstract
A null thin shell immersed in a generic spherically symmetric space-time is studied within the distributional formalism. It has been 
shown that the distributional formalism leads to the same result as the conventional Barrabes-Israel formalism.
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1. Introduction
Many practical problems of general relativity and 
cosmology involve idealized models constructed by 
gluing two regions with different metrics across a 
hypersurface or thin shell having a −δ function 
singularity in its Riemann tensor due to the discontinuity 
in the metric's transverse derivative across the shell. The 
description of timelike (or spacelike) thin shells is well 
known within general relativity since the outstanding 
work of Israel [1]. Later, an extension of the Israel 
formalism to the null or lightlike case was presented by 
Barrabes and Israel [2]. Very recently, Poisson has 
introduced a user–friendly reformulation of the 
Barrabes–Israel original work together with an 
illustration of the formalism [3].

In general, one can distinguish two equivalent 
approaches to describe thin shells or singular 
hypersurfaces as the boundary of two glued manifolds. 
The well-known Israel formalism relates the jump in the 
transverse curvature to properties of the singular 
hypersurface.This formalism being purely intrinsic, 
allows an independent and arbitrary choice of  
coordinates at both sides of the shell.

There is another formalism based on the 
distributional theory requiring a preconstruction of a 
common set of coordinates covering both sides of the 
shell making the four–metric continuous across the shell 
[4]. In this approach, for the non – lightlike case, it has 
been shown that the singularity in the Ricci part of the 
Riemann tensor is directly associated with the stress 

energy tensor supported by the shell. The light-like case 
has recently been developed by Nozari and Mansouri 
[5], and applied to the spherically symmetric shell. They 
However, have missed the construction of a suitable set 
of coordinates to make the four-metric continuous across 
the spherically symmetric layer, as it is required by the 
distributional formalism. Our task is to remedy this 
deficiency and incorporate an admissible continuous 
coordinate system across the null layer leading to the 
correct junction equations obtained in Ref. [2].

The plan of the paper is as follow. In section 2 we 
review shortly the distributional formalism for null shells 
and give the necessary formulae as a ready recipe to use. 
In section 3 we consider spherical null-like shells as a 
simple example to examine the efficiency of the 
distributional method.

Conventions: we use the metric signature (- + ++), 
and define the Ricci tensor as ....,., −= ρ

νµρµν ΓR The 
Greek indices run from 0 to 3 and Latin indices a, b from 
1 to 3 but A and B take only values 2 and 3. The square 
brackets, [F], are used to indicate the jump of any 
quantity F across the layer.Terms proportional to δ -

function are denoted by
∨

F .

2. Null-shell distributional formalism 
Consider a space-time manifold MMMM  consisting of 
overlapping domains MMMM + and MMMM - with metrics 

)( µ
αβ +
+ xg  and )( µ

αβ −
− xg  in terms of independent 
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disconnected charts µ
+x  and µ

−x , respectively. The 
common boundary of the domains is denoted by Σ and 
taken to be 
light-like. In other words, the manifolds MMMM + and MMMM -
are glued together along the null hypersurface Σ . 
Introducing a single chart µx called admissible 
coordinate system that covers the overlap and reaches 
into both domain, we write down the parametric 
equation of Σ  as 0)( =µΦ x , where Φ is a smooth 
function [2]. The domains of MMMM  in which Φ  is positive 
or negative are contained in MMMM + or MMMM - respectively. By 
applying the coordinate transformations )( vxxx µµ

±± =
on the corresponding domains, a pair of metrics 

)( µ
αβ xg+ and )( µ

αβ xg−  is formed over MMMM + and MMMM -

respectively, each suitably smooth (say 3C ).
The main step in the distributional approach is the 

definition of a hybrid metric )( µ
αβ xg  over MMMM  which 

glues the metrics )( µ
αβ xg+  and )( µ

αβ xg−  together 
continuously on Σ :

(1) ,)()( ΦΦθ αβαβαβ −+= −+ ggg
where θ  is the Heaviside step function and

(2) 0)]([ =µ
αβ xg

We expect on Σ  the curvature and Ricci tensor to be 
proportional to δ  function. It follows from eqs.(1) and 
(2) that the first derivative of αβg  is proportional to the 
step function. The δ  distributional can only occur in the 
second derivative of the metric which enters linearly in 
the expression for curvature and Ricci tensor. So the
only the relevant terms in the Ricci tensor are 

(3) .,,
ρ

ρµ
ρ
µρµν ΓΓ vvR

∨∨∨

−=

Using the metric in the form (1), we finally arrive at the 
following expression for the components of the Ricci 
tensor proportional to δ distribution [4] 

 (4) [ ] [ ] ,)(
2
1

, ΦδφΓφ ρ
ρ
µµµ 








∂−∂=

∨

vvv g
g

R

where g is the determinant of the metric and the partial 
derivatives are done with respect to the admissible 
coordinates µx .
The intrinsic coordinates of Σ  adapted to its null 
generators are taken to be ),,( Aa θηξ =  with η  being 
an arbitrary parameter (not necessarily affine on either 
side of Σ ) on the null generators of the hypersurface 
and Aθ  as labels of the generators. Now we introduce 

tangent vectors ,aa
xe
ξ

µ
µ

∂

∂
= naturally segregated into a 

null normal vector Φαη µµ ∂= −1  that is also tangent to 

the generators, and two spacelike vectors µ
Ae  pointing in 

directions transverse to the generators [3] 

.,
η

µ
µµ

η
θ

µ
µ

ξη 










∂

∂
==











∂
∂

= AA
xeexn

A

(5) 

By construction, these vectors satisfy .0 µ
µµ

µ
Aennn ==

We now complete the partial basis µ
ae  by adding a 

transverse null vector N µ  with the following properties 
[3] 

.0,1,0 =−== µ
µ

µ
µµ

µ
AeNnNNN (6) 

Therefore
.Φα µ

µ∂−= N (7) 
The intrinsic metric on Σ  may then be written as

v
BAv eeg

AB
µ

µγ = , (8) 
and must be that same on the both sides of Σ .The 
Following jumps on Σ turn out to be vanishing: 

0][][][][][ ===== αγ µµµ Nen AAB
 expressed in the 

admissible coordinates µx .

The energy-momentum tensor of the shell ,µν
∨

T
considered as a distribution, is given by [2-4] 

( ),Φδα µνµν ST =
∨

 (9) 

where vSµ  is the surface tensor of energy-momentum of 

the shell expressed in the admissible coordinates µx :
,)( νµνµνµνµµν γσε BA

AB
AA

A eepneenjnnS +++=−
(10)

with .
α
α

ε =  The first term represents a flow of matter 

along the null generators of the hypersurface, and hence 
σ  represents a mass density.The second term represents 
a flow of matter in the direction transverse to the 
generators.Therefore j  represents a current density.
Finally, the surface quantity p represents an isotropic 
pressure.

Now we may write Einstein's field equation for the 
lightlike hypersurface Σ  as follows [5] 

µνµν κ
∨∨

−= TG .  (11)
Now taking into account eq. (4) we define

[ ] [ ] .
2
1

, ρ
ρ
µν

ρ
νµµν Γδ ng

g
Q 








−= (12)

Using eq.(9) for the energy momentum tensor we may 
write down eq. (11) as [5] 

,
2
1

µνµνµν εκSQgQ −=− (13)

where ,µν
µν gQQ = and µνQ  is a tensor with support 

on Σ . This so-called Sen equation obtained in the 
admissible coordinate system, describes the dynamics of 
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null surface layer Σ  within the distributional approach.

3. Spherical null shells
To see the efficacy of the method, we consider the 
situation in which the null shell is immersed in a general 
spherical symmetric spacetime expressed in terms of the 
Eddington retarded or advanced time u [2]:

222 )2( Ωζψψ drdrdufedueds ++−= ,  (14)
where ±ψ  and ±f  are two arbitrary functions of the 
coordinates ±u  and ±r . The sign factor ζ  is +1(-1) if r 
increases (decreases) along a ray u=constant, i.e, if the 
light cone u=constant is expanding (contracting). It is 
convenient to introduce the mass function ),( ±±± rum

defined as 
r
mf 21−= . Consider now a thin spherical 

shell whose history Σ  being a light cone u=constant
splits the spacetime into the past-and future – domains 
MMMM - and MMMM +. Our aim is to glue two space times MMMM -

and MMMM + along the hypersurface Σ  using our 
distributional approach.

First we look for the admissible coordinate system 
),,,( φθµ rux =  in which the parametric equation 

describing the null shell is written as 
.0)()( =−= rRuxµΦ  (15)

Now, we apply the following transformations to make 
the four – metric continuous on the shell.

( )
( ).,,

,,,
ruBrrr
ruAuuu

==
==

+−

+− (16)

Carrying out the transformations and requiring the 
continuity of the metric on Σ  according to eq. (2), we 
obtain

( )
( )















=

=++≡

=+≡

=+≡

−++

++

−++

+

+

−+

,,

,

,02

,2

,,,,,,
2

,,
2
,

2

2
,,

2
,

2

rruB

eBABAeAAefW

BAeAefX

efBAeAefU

urruru

rrr

uuu

Σ

ψΣψψ

Σψψ

ψΣψψ

ζζ

ζ

ζ

(17)

where 
∑
=  means that both sides of the equality are 

evaluated on Σ . Taking rζη =  to be the parameter on 
the null generators, from eq. (5) the tangent vectors are 
given:

φµ
µ
φθµ

µ
θµ

µ ζζ ∂=∂∂=∂∂+∂=∂ eeRn rur ,,, .

 (18)
According to eq. (8) the shell’s intrinsic two – metric is 
given by

⋅+=∑ )sin( 22222 φθθ ddrds  (19)
The continuity of the induced metric on Σ  dictates the 
following condition on R (r)

Σ

ψ
ζ

−

−
−=

f
eR r 2, (20)

Note that in the admissible coordinate µx  constructed 
by the transformation (16) the null hypersurface Σ  is 
given by .02 =+ drdufe ζψ  The components of the 
transverse null vector computed from eq. (6) are

.
2
1

Σ
ψµ

µ duefdxN −
−= (21)

Hence, using eq. (7) we get −−= ψα e . From the last 
equation of eq. (17) we obtain 

.2 ,, −
−

− =− − fef ur ΒζΒ ψ  (22)
Now, using eq. (22) the set of eqs. (17) can be solved for 
the unknown functions ,uA ,rA ,uB and :rB

( )


















=

−=

−
=

−=

−

+
∑

−+

∑

−

−

∑

−
∑

−

+

+−

.

,
2
1

2

,

,

,
,

,
,

f
f

eff

e
f

e

r

u

r

u

Β

ζΒ

ζ
Α

Α

ψ

ψ

ψψ

(23)

The nonvanishing components of vQµ  computed from 
eq. (12) are

,
22 ][][

Σ
ψψ ψζ

ζ
−−

−∂−= efe
r
fQ ruu (24)

,][4 2 Σζ
−

=
rf

fQrr (25)

Σ
ψψ ψ −− ∂−==

−
ee

rf
fQQ rruur ][][2 ,  (26)

where the derivatives in ][ ψr∂  are taken with respect to 
the relevant radial coordinates ±r . Now, we can 
immediately calculate Q  as 

[ ] Σψζ rQ ∂= 2 .  (27)
The nonzero components of the surface energy tensor 

vSµ  are then calculated to be

∑
−−= ψσ 2eSuu , (28)

.4 2
Σ

−
−−= fSrr σ (29)

,2 Σ
ψσ

ζ −

−
−= e

f
Sur (30)

θθφφΣθθ θSSprS 2
,

2 sin=−= .  (31)
Finally, we obtain the following junction equation from 
the non – angular components of eq. (13)

( ) Σ
π

ζσ 24
][

r
m

−= .  (32)

From eq. (32) we see that for a positive mass density σ
if 0>ζ , then 0][ <m  meaning the shell extracts energy 
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from the center, whereas 0][ >m for 0<ζ , means that
the shell brings energy to the center. The angular 
components of eq. (13) yield the another junction
equation as

( ) Σψ
π

ζ ][
8
1

rp ∂−= ,  (33)

which expresses the first law of thermodynamics on the 
null shell.

These junction equations are the same as those 
obtained by C. Barrabes and W. Israel (see eqs. ( 51) in 
Ref. [2]).

4. Conclusion 
Direct application of the distributional formalism to 
describe thin layers in general relativity requires a 
preconstruction of spacetime coordinates that match 
continuously on the shell to make the four-metric 
continuous. We have explicitly shown that in the case of 
a null shell embedded in a generic spherically symmetric 
geometry, it is possible to construct such an admissible 
coordinate system covering both sides of shell, leading 
to the same result as the common Barrabes–Israel 
formalism.This construction allows us to apply the 
distributional formulation to treat null surface layers in 
general relativity.
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