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Abstract
Einstein and transport synchronizations of infinitesimally spaced and distant clocks are considered in a general Riemannian space-
time. It is shown that infinitesimally spaced clocks can always be synchronized. In general one can not find observers for whom 
distant clock are Einstein synchronized; but transport synchronized observers do always exit. Whenever both procedures are possible, 
they are equivalent.
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1. Introduction
The possibility of very accurate measurements of time 
has been of utmost importance in experimental relativity  
[1]. Many advances have been made in this direction 
during the last two decades, and measurements of 1010−

seconds accuracy have been achieved. As a consequence 
of these developments, not only the standard tests of the 
relativity theories are pushed further in precision but the 
measurement of certain other relativistic effects on the 
surface of the earth and in space are made possible [2,3]. 
These effects are due to the rotation and the gravitational 
field of the earth as well as the motion of clock 
transported in a gravitational field. Clear definitions of 
synchronization and synchronization procedure are 
required for any meaningful discussion of these effects. 
Hence the synchronization procedures and their 
ramifications, which previously were only of theoretical 
interest, have now become an important experimental 
matter. 

It is rather well known that distant identical clocks 
can be synchronized either by Einstein procedure 
(E-synchronization) or by slow transport method 
(T-synchronization). By identical clocks we mean clocks 
having the same rates when brought to the same place. 
E-synchronization is synchronization by electromagnetic 
signals. There is an excellent discussion of this method, 
for infinitesimally spaced clocks in Riemannian space, in 
Landau and Lifshits [4]. They, however, clearly state 
that E-synchronization of distant clocks in an stationary 

metric is not always possible. Synchronization by slow 
transport of a clock is seldom discussed in the standard 
texts of relativity, and certainly not in Landau and 
Lifshits. Eddington mentions it and shows the 
equivalence of two procedures of synchronization in 
special relativity, where only inertial observers and 
clocks stationary with respect to them are involved [5].

Mansouri and Sexl have shown that the equivalence 
of E- and T-synchronization of clocks in special 
relativity provides us with a means to test the 
fundamental symmetry of the underlying space time 
structure of special relativity (SR) [6]. One can devise 
rival theories leading to the same standard results as SR, 
while breaking Lorentz invariance. For these theories, E-
synchronized clocks will read differently from T-
synchronized ones. By parametrizing the family of rival 
theories, one can argue how accurately SR is 
corroborated by standard tests. Such a scheme is called a 
test theory of special relativity.

The first detailed discussion of these 
synchronization procedures in general relativity is due to 
Ashby and Allan in their pioneering work [3]. In order to 
compare remote clocks as well as to make necessary 
corrections in readings of the clocks transported across 
the Atlantic, they had to make a careful analysis of 
different relativistic effects of the gravitational field of 
the rotating earth. The inaccurate statements and 
erroneous predictions seen occasionally in the literature 
regarding the E- and T-synchronizations of clocks 
around the earth indicate that such discussions should 
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not be considered trivial at all [7].
A first step towards clarifying these points in a 

general framework is the discussion of synchronization 
on a rotating disc, as a model for the rotating earth [8]. It 
is shown that a one-parameter test theory of special 
relativity on the rotating frame can be formulated. In 
section 2.1 we discuss this special case briefly. To 
synchronize the clock, by whichever procedure, we have 
to correct the reading of the clocks at each point. It turns 
out that on the rotating disc the corrections needed are 
the same for both methods. One should note that the 
"synchronization" of distant clocks on the rotating disc is 
path-dependent for both procedures. Therefore the 
above-mentioned equivalence actually holds only for the 
same synchronization path. While we do not have path-
independence and global synchronization on the rotating 
disc we can transform to a coordinate system (Lorentz 
frame) where all clocks are synchronized by both 
procedures, independent of the path of synchronization. 
This may not be so in a general Riemanian space-time. 
The aim of the paper is to elucidate the problem of 
synchronization in a general space-time. One should note 
that the entire discussion of the present paper can be 
formalized in mathematical terms using a congruence of 
observers. But we believe that nothing is gained by such 
a formal approach and one may lose the physical 
intuition leading to the point mentioned in the 
concluding section of this paper.

Rumpf [9] studied the synchronization of clocks in 
an arbitrary stationary space-time. He showed that the 
two procedures are equivalent provided "the clocks that 
are to be synchronized follow trajectories of a time-like 
Killing vector", and "the synchronization paths [of the 
light ray and the synchronizing clock] are the same." In 
sections 2.2, 2.3, and 2.4 we consider several examples 
to clarify the observer-dependence of synchronization 
process, and its implications. These examples are 
Schwartzschild, Kerr and FRW space-times. In section 3, 
E- and T-synchronization of infinitesimally spaced as 
well as distant clocks are discussed in a general space-
time. The main results of this paper are (i) the transport 
synchronization of clocks is the more fundemental one 
of the two procedures, and (ii) in any Riemannian space-
time, whenever the T- and E-synchronizations are 
possible, these two methods lead to equivalent results. 
Therefore any test of relativity based on a comparison of 
these methods is a test of Riemannian structure of space-
time.

2. Specific examples
Before discussing specific examples, we think it 
appropriate to clarify certain elementary notions, which 
will be used afterwards. By choosing a coordinate 
system, we define a certain time and a certain sort of 
synchronization. The question here is whether the clocks 
showing this coordinate time are T-(or E-) synchronized. 
It turns out that one should know something about the 
workings of these clocks, or rather how are they related 
to natural clocks, to be able to discuss T-synchronization 

[10]. Consider a space-time which is asymptotically 
flat. Take a natural clock at infinity and one at point x. 
The clock at infinity reads the coordinate time which is 
the same as the natural time at infinity. Assume that this 
clock sends signals at unit time intervals. The "clock" at 
x is provided with a mechanism that manipulates its 
natural rate such that the signals are received at unit 
time intervals. Such a clock is a "coordinate clock". Its 
rate is given by dt. The rate of a fixed natural clock at x
is given by ds, which differs from dt by the factor 

00/1 g . Assuming that we have only natural clocks, 
we can divide the rate of natural clocks at any point and 
any moment by 00g and obtain the rate of the 
coordinate clocks without resorting to the clocks at 
infinity. Such a device reading coordinate time can be 
defined for any arbitrary space-time even if it is not 
asymptotically flat. Its reading is given by

000 /
0

gdstt s
s∫+= , (1) 

where the setting 0t  (and 0s ) is arbitrary. However if 
we have a network of coordinate clocks, we should 
synchronize the settings according to a certain 
procedure.

2.1. Rotating Disc
The metric on the rotating disc can be written as [4] 
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where t is the proper time of the clock sitting on the 
rotating disc; ω is the angular velocity of the disc and 
φ  the usual polar coordinate. First consider two clocks 
A and C [fig.1] lying on a radius )0( =φd . A light 
signal sent from A to C (and back) has the same transit 
time in both directions. Therefore they are E-
synchronised. A slowly transported clock 

)1)/(( 2 〈〈dtdr  along the same path reads always the 
time t. So clocks A and C are also transport 
synchronised.

Now consider clocks A and B on the circular path 
(figure 1). It is well known that the clocks are not 
synchronised and we have to make corrections. The 
corrections for both procedures (Einstein and transport) 
are the same and equal to [8] 
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If we know synchronised clocks A and B along path 2
(ACDB) the correction again is the same and equal to
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which is different from 1t∆  i.e the corrections are path-
dependent.
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Figure 1. Clocks A and B on the circular path.

Metric (2) can be considered as a flat spacetime 
for a non-inertial observer. It is obvious that we can 
transform back to an inertial frame where all clocks 
are always Einstein- as well as transport-
synchronized, independent of the path.

2.2. Schwartzchild space-time
The metric of the spherically symmetric spacetime in 
Schwarzschild coordinates is written as
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This metric is in Gaussian form, which means that the 
signal transit time between two infinitesimally spaced 
points is independent of direction if time is measured 
by coordinate clocks reading t. A natural clock fixed 
at a point reads the proper time interval

dtrMds /21−= (6) 
Therefore when measuring the speed of light using 
natural clocks we have to correct the rate by 

rM /21/1 − .
Two coordinate clocks, infinitesimally spaced 

from each other, are obviously E-synchronized. A 
slowly transported natural clock ( )1)/( 2 〈〈dtdl  reads 
the same time interval as eq. (6). Therefore all 
infinitesimally spaced clocks are also T-synchronized. 
This shows the equivalence of the two procedures for 
two infinitesimally spaced clocks.

Now we consider distant clocks A and B. As can 
be seen from eq. (6) for any path the transit time for a 
signal to go from A to B is the same as from B to A. 
Clocks A and B are therefore E-synchronized and this 
synchronization is path independent. Are these clocks 
also transport synchronized? The answer is in 
positive, provided the slowly transported clock is a 
coordinate clock. Therefore E- and T-synchronization 
of distant clocks are equivalent in Schwartzschild 
coordinate. 

This equivalence does not however hold if we 
choose another coordinate system. Consider for 
example the radially free falling observers. In this 
case the Schwartzschild metric can be written as [11]
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which is obtained using the transformation
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Consider two special cases:
i) Distant clocks A and B are fixed at two points of a 

radial null-geodesics 0== θφ dd . These are freely 
falling clocks. Speed of light τddr /  along this null-
geodesic depends on time τ , which means the clocks are 
not E-synchronized. On the other hand all natural clocks 
are coordinate clocks and since there is no cross term 
involving τd  in the metric, the T-synchronization is 
guaranteed for all distant clocks. Here is a case where 
clocks are T-synchronized but not E-synchronized. We 
shall show later that in a general space-time written in 
Gaussian normal coordinates the T-synchronization of 
distant clocks is always guaranteed, while no such 
statement can be made for E-synchronization.

ii) Two distant clocks A and B fixed at 
0RRR BA == with arbitrary θ and φ . The light 

velocity along any path between A and B depends on 
time τ . Therefore A and B are not E-synchronized.

From cases (i) and (ii) it results that no two clocks 
located at arbitrary points of ),,,( φθτ R frame are E-
synchronized. Usually when we talk of synchronization 
of clocks, we assume that they are fixed in the 
corresponding coordinates. Let us assume that the two 
distant clocks A and B are moving in ),( Rτ -frame in 
such a way that both have fixed position in ),( tr -frame. 
A sends a signal at )( 11 τt which is received by B at 

)( 22 τt  and is immediately sent back to A, arriving there 
at )( 33 τt (figure 2). The clocks are E-synchronized in 

),( rt coordinate, so we have 

2312 tttt −=− . (10)
Now the question is whether the clocks are 

synchronized in ),( Rτ -frame i.e.

2312 ττττ −=− . From eq. (8) we have

)]()([)()]()([)( 1312 BAAB rfrfttrfrftt −−−=−−− .
(11)

It then follows that
)()( BA rfrf = , (12)
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Figure 2. Sending and receiving signals between clocks 
A and B.

or BA rr = . That is clocks A and B are "E-
synchronized" in ),( Rτ  if and only if they are fixed at 
the same 0rrr BA == or 0rR =−τ  i.e. clocks A and B 
are moving in ),( Rτ .

2.3. Kerr space-time
The metric of Kerr space-time in Boyer-Lindquist 
coordinates has the form[12]: 
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The metric coefficients are independent of time; 

but there is a cross term φdtd . In general distant 
clocks are not T- or E-synchronized. However, clocks 
lying on =φ  surfaces are both E- and T-
synchronized. The coordinate clocks lying on the 
equatorial plane )2/( πθ =  are not synchronized. We 
can make them synchronized by correcting the time 
by an amount

φδ d
rMr

Mat
)/21(

4
−
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This correction makes the clocks T-synchronized too. 
But it should be noted that this "synchronization" is 
path-dependent.

2.4. Friedmann-Robertson-Walker space-time
FRW metric is written as
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Obviously, the distant clocks are T-synchronized. 
Slowly moving clocks read the coordinate time, which is 
usually called cosmic time. However, distant clocks are 
not E-synchronized except when 0=K , and that in the 
following sense: Consider two distant clocks A and B. A 
signal is sent from A to B and back to A. The time taken 
for the signal to go from A to B is different from the 
time of return travel even when 0=K . However, if two 
signals are sent at the same coordinate time t, one from 
A to B and the other from B to A, they would be 
received simultaneously by A and B when 0=K . It is in 
this sense that we mean the clocks are E-synchronized.

FRW space-time may also be written in the 
conformally flat form [12]

])[( 2222 σττ ddads −= , (16)

where τττ dadtRdt )()( == and 2σd  is the space part 
of the metric. Here the distant clocks are E-synchronized 
but they are only T-synchronized if they are corrected 
such that they read the coordinate time.

3. General space-time
We write the metric of a general Riemannian space-time 
as 
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In this metric, stationary clocks are not in general E- or 
T-synchronized. But for infinitesimally spaced clocks we 
introduce a correction
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so that they are E-synchronized [4]. Slowly transported 
coordinate clocks read 00/ gds , which is equal to

])/(1[ 000
00 dt

dxggdt
g
ds i
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Therefore the correction needed to make these clocks 
synchronized is the same as Etδ  above: TE tt δδ = . So, 
infinitesimally spaced clocks can be made both E- and 
T-synchronized.

Distant clocks are obviously neither T- nor E-
synchronized in general. The necessary condition for 
realization of T- or E-synchronization of clocks is to 
have a Gaussian coordinate system where no space time 
cross term exists in the metric,

ji
ij dxdxgdtgds −= 2

00
2 . (20)

Here the coordinate clocks are T-synchronized. If we 
want to have the natural clocks T-synchronized, we 
should transform to Gaussian normal coordinates,

ji
ij dxdxtxgdds ),(22 −= τ  (21)
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which correspond to observers defined by a 
hypersurface orthogonal time-like vector field with unit 
norm.

In general, due to the time and space dependence 
of ijg and ijg  in (20) and (21), the transit time of a 
signal going from A to B is different from that of a 
signal going from B to A. Therefore clocks can not be 
E-synchronized unless the space-time is static. 
However there may exist specific paths (e.g. =φ const 
paths in Kerr space-time) along which E-
synchronization is possible.

4. Conclusions
1. The infinitesimally spaced clocks can always be 
made E- and T-synchronized by the same amount of 
correction, i.e. the two types of synchronization are 
equivalent.
2. Distant clocks, in general space-time, are not E- or 
T-synchronized for any obsever. They are, however, T-
synchronized for observes defined by the Gaussian 
normal coordinates.
3. In general space-time there may exist paths or sheets 
on which the clocks are E-synchronized.

4. In any static space-time, for observers defined by 
Gaussian normal coordinates, distant clocks are E- and 
T-synchronized.
5. Whenever E- and T-synchronization of distant 
clocks are possible for an observer, they are equivalent.

Regarding the equivalence of E- and T-
synchronization of infinitesimally spaced clocks 
(conclusion 1 above) the following discussion may be 
of interest. This equivalence is essentially a 
consequence of the Riemannian structure of the space-
time. One may look the other way round, and use this 
equivalence to test the space-time structure 
experimentally. A proper approach to implement it is 
to assume a more general space-time, say a Finslerian 
space, and investigate the consequences related to 
different synchronization methods. One may be able to 
formulate a test theory of Riemannian structure of 
space-time more or less in the spirit of the test theory of 
SR, which is recently cast into the geometrical structure 
of a Finslerian space[13,14].
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