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Abstract
Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential 
rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole 
moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial 
differential rotation in a thin layer near the solar surface (the leptocline). Applying the theory of rotating stars, we will first compute 
values of J2 and J4 taking into account the radial gradient of rotation, then we will compare these values with the existing ones, 
giving a more complete review. We will explain some astrophysical outcomes, mainly on the relativistic Post Newtonian parameters. 
Finally we will conclude by indicating how space experiments (balloon SDS flights, Golf NG, Beppi-Colombo, Gaia...) will be 
essential to unambiguously determine these parameters.
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1. Introduction
There are several motivations for studying the solar
gravitational multipole moments. One of the first is to 
know their accurate values. Using a book on 
astrophysical quantities, such as Allen [1], one can find 
the Earth multipole gravitational moments up to the 20th 
degree in a spherical harmonic expansion. Today, 
computations have even been made up to the 360th 
degree [2]. These parameters are also known for some 
solid planets, such as Mars, up to the 75th degree [3]. In 
Allen’s book considered as a reference – nothing is 
mentioned for the Sun. The reason is partly due to the 
different physical structure of the two bodies. For rigid 
bodies such as the Earth, a uniform velocity rate ! causes 
a flatness f, and an unambiguous relation links this 
flatness with the quadrupole moment, J2, at least to the 
first order. Since the velocity rate is uniform whatever 
the latitude, it is possible to deduce the density variations 
inside the body (see for example [4] p.89). Developing 
the gravitational field into spherical harmonics, the 
theory of uniform rotating bodies allows to determine 
deviations from the best ellipsoid (called geoid in the 
Earth’s case1). The artificial satellite era has provided a 
great amount of data with considerable accuracy and 
resolution showing gravity anomalies which call for an 
interpretation in terms of density anomalies in latitude 
and depth. The result is a distorted Earth shape, in terms 

of deviations from the geoid. The situation is comparable 
for the Sun, and maybe also for gaseous planets1, but 
inverting parameters: the density can be considered as a 
monotonously decreasing function from the core to the 
surface (except within the thin tachocline and leptocline 
layers for the Sun), whereas the latitudinal rotation 
velocity rate is no more constant. Rozelot et al. showed 
for the first time [5,6], this yields departures from a 
perfect ellipsoid. By analogy with the usually adopted 
terminology for the Earth, we named the reference 
gravity equipotential of the Sun the helioid, and the 
departures were called asphericities by Armstrong and 
Kuhn [7]. We usually note asphericities by cn; these 
“shape” parameters are nothing else but the successive
Denoting by r the radius of the fractional shell building
progressively the whole Sun and by θθθθ the colatitude, we
see that in such a theoretical approach, the three 
quantities, ωωωω(r,θθθθ ) (velocity rate), ρρρρ(r, θθθθ), (density) and 
cn (r) (shape), are linked together. As helioseismic 
measurements currently lead to a very precise 
determination of the different velocity rates on the 
surface and below, including the sub-surface radial 
gradient, and as the density function is known with a 
sufficient accuracy from the core to the surface, it is 

____________________________________________
1. Such as Saturn for wich the differential equator to pole 
rotation is some 14 minutes.
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possible to determine the asphericity coefficients, and to 
compare them to the most accurate observations 
described hereafter.

2. Relevance of knowing precise solar
gravitational moments

For a sake of clarity, let us remind that gravitational 
moments are the coefficients in the spherical harmonic 
development of the total gravitational potential (for a 
complete description, see [6]). The first moments are 
called
• for n = 1, J2 the solar quadrupole moment
• for n = 2, J4 the solar octopole moment
• for n = 3, J6 the solar dodecapole moment, and so on.
Where n is called degree. These parameters are 
dimensionless quantities providing information on how 
the mass and velocity distributions act inside the Sun to 
finally render the outer visible shape non spherical. 
Higher orders, J8 or J10 for example, are still speculative 
in the Sun case and we do not deal with them here. The 
amplitude, peak to peak, of the asphericities does not 
exceed some 20 milliarcseconds (abbreviated as “mas”), 
as shown by observations ([6,8] see also section 6). At 
least three major astrophysical conclusions can be
drawn:

1. Gravitational moments are fundamental quantities, 
just like temperature, mass or luminosity. Directly 
related to the inertial moments, they should appear in 
books devoted to solar quantities. However, we have to 
unambiguously determine their values. Presently, an 
upper limit, −3.0 10−6 [9], can be assigned to J2, as any 
larger observed values would be no more compatible
with indirect effects, such as lunar physical librations.
The precise estimate is very sensitive to the velocity
rotation rate, the density gradient, and the adopted
method to solve the question. J2 is certainly bounded by
−≈ 2.2 10−7 and ≈ -6.5 10−7 taking into account 

respectively helioseismic estimates or solar surface 
tracers (such as spots). Values of higher multipole 
moments are still not known accurately.

2. One effect of a dynamic flattening of the Sun, due to 
its oblique rotation with respect to the ecliptic plane
(about 7◦), is a secular variation in the orbital elements 
of the planets which is not negligible, and is often 
approximated in the computation of ephemerides of the 
celestial bodies. Modern planetary ephemerides now 
include a non null value of J2. However, they are 
presently not able to infer simultaneously all the usual 
parameters (masses, radii,..., Post-Newtonian –PN–
parameters) and J2 from fits to observational data, due to 
strong correlations. The order of magnitude adopted for 
J2 corresponds to 10−7, but, for example, the estimation 
of the PN parameters is rather tolerant to the assumed 
precise value of J2.

3. In an attempt to elaborate alternative theories to 

General Relativity, Brans and Dicke [10] were certainly 
the first to draw attention on the necessity to determine 
accurately the solar quadrupole moment 3. Accurate 
estimations of both the perihelion advance of planets and 
Jn are essential to constrain the PN relativistic theories 
of gravitation.

3. Effects of the Radial Gradient of Rotation
Whatever the method used, the determination of the 
gravitational moments require the knowledge of an 
analytical law describing the non-uniform rotation of the 
Sun (on the surface and deeper). As soon as 1996, 
Patern`o et al. proposed a quadratic law for which 
coefficients were empirically determined. With 
hindsight, it must be noted that the authors had there a 
true intuition, as their results are close to those obtained 
by more refined functions. From the BBSO p-modes 
observations, Kosovichev [12] suggested a rotation law 
constructed by using error functions (erf), thus 
permitting to take into account changes in the velocities 
rates, at the level of the tachocline and near the surface. 
Based on this original formulation, Dikpati et al. [13]
developed an analytical law for the solar rotation as a 
function of latitude and depth. The innovative fact is the 
near surface radial gradient found to be constant from 
the equator up to about 20◦ (but negative, _ -400 nHz/R), 
then progressively inflecting up to 50◦, and finally 
reversing to be positive above this latitude. The model is 
based upon a simple equation involving a total of 
thirteen straightforward parameters. The equation 
describing the rotation law is related to the Kosovichev’s 
model by assuming “conservation of the angular 
momentum in the supergranulation layer”. The surface 
radial gradient is expressed by ββββ, a polynomial function 
of the latitude, implying three coef-ficients (ββββ0, ββββ3 and 
ββββ6). This model is attractive for our purpose, because one 
can assign different (but realistic) values to six 
parameters: two stem from the standard rotation  law 
(standard means that the law is expressed as the sum of 
two terms in cosine of the colatitude), three others 
describe the radial surface gradient, and the last one is 
involved in the equatorial velocity rate (other parameters 
are of less importance).

4. Results and discussion
To solve completely the problem, one needs a solar 
density model [12]. Thanks to years of improvements in 
solar modeling, several models are available. We used 
the Richard model [14]; a discussion of solar seismic 
models can be found in Couvidat et al. [15]. To be 
coherent with law of rotation given in Rozelot and 
Lefebvre [6], we adopted a2 = 0.442, a4 = 0.056 and ωωωωpol
= 2.399 (all units in µrad/s). We found: J2 = - 2.5 10−7
± 20 %  and  J4 = + 4.5 10−7 ± 25 %.

The range of the results comes from the different 
values assigned to the six above mentioned parameters. 
It is thus demonstrated that the two first solar 
gravitational moments, and mainly J4, are very sensitive 
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to what happens in the sub-surface. We suspect an 
important role of both the density gradient and the 
radial gradient of rotation.

4.1. Comparison with other values
4.1.1. As derived from stellar structure equations
Ulrich and Hawkins [28], taking into account a 
standard rotation law, derived an estimate of J2
bounded by 1.0 10−7 and 1.5 10−7. They also found 
that J4 must be of the order of J2/40. One year latter, 
using helioseismic rotation rates, Gough [29] obtained 
J2 = 36 10−7, a value altogether compatible with those 
deduced from astrometry by Campbell and Moffat 
[16] or Landgraf [17], i.e. (5.5 ± 1.3) 10−6 and (0.6 ± 
5.8) 10−6 respectively.

To this must be added the result obtained by 
Patern`o et al. [11] using a value of the solar 
oblateness deduced from the SDS experiment, i.e. f = 
8.63 10−6, leading to J2 = 2.22 10−7.

Godier and Rozelot [18] using the Kosovichev 
rotation law found 1.60 10−7, a possibly 
underestimated value (if we consider the different 
results known to date), certainly due to truncatures in 
the integration process. Roxburgh [19] reconsidered 
this process (but using other density models), and 
obtained J2 = 2.208 10−7 and J4 = -4.46 10−9. Along 
the same principles, Mecheri et al. [20] found J2 = 2.2
10−7 and J4 = -4.8 10−9

In order to avoid truncatures, Armstrong and Kuhn
[7] developed a “Vector Spherical Harmonic” 
expansion that leads to J2 = -0.222 10−6 and J4 = 3.84
10−9. - Finally, Pijpers [21] using GONG and 
SOI/MIDI data found respectively J2 = (2.14±0.09) 
10−7 and (2.23±0.09) 10−7, leading to a weighted 
value of (2.18±0.06) 10−7.

4.2. As derived from the theory of Figures
An interesting alternative to the theory of stellar 
structure is the theory of Figures of rotating bodies. 
The method is widely explained elsewhere [6]. Values 
obtained for the gravitational moments with this 
method are significantly higher than those derived
from the method cited in the above paragraph. A
factor three is obtained in the case of J2 and a factor 
hundred in the case of J4. It must be noted, however, 
that both theoretical values deduced from the theory 
of Figures are compatible, within a factor two, with 
values deduced from observations [22]: J2 = 1.84
10−7 and J4 = 9.83 10−7. Presently, we do not have a 
clear explanation to this. Initially, we believed that the 
discrepancy could come from using a rotation law 
which does not derive from a potential [5]. It is why 
we adopted another rotation law, but the results are 
not appreciably different. Moreover, this new rotation 
law prevents a true comparison with the ia  rotation 
coefficients used by other authors. However, the 
theory of Figures is incredibly accurate in the case of 
the Earth and solid planets. Why should it not work 
for the Sun?

4.3. Partial conclusion
To sum up the discussion, we would say:
1. The theory of rotating stars provides values of solar
gravitational moments that are very dependent upon 
the differential rotation and the density gradient 
(mainly near the surface).
2. The theory of Figures of rotating bodies provides 
values of solar gravitational moments closer to those 
observed.
3. Matching the two theories remains to be made. It is
clear that measurements of both J2 and J4 would 
provide relevant constraints on ω(r, θ), which are 
different from the ones imposed by solar oscillations. 
Such measurements have to be made from space.

5. Relativity inferences
Pireaux and Rozelot [23], then Rozelot et al. [24] 
have already pointed out how accurate observations of 
the perihelion advances of Mercury and minor planets 
(such as Icarus) together with accurate values of the 
Jn may help to constrain the Eddington-Robertson 
parameters _ and  in the PN parameterization 
formalism, which characterizes alternative theories of 
gravitation. The authors have shown that such theories 
are not excluded (see for instance Fig. 3 in [24]). 
Future space missions, or solar probes, are necessary 
to conclude.

6. Shape Coefficients
To our knowledge, measurements of the shape coeffi-
cients have only been made from space by Armstrong
and Kuhn [7] and from the ground by [8]).
Thanks to accurate measurements from the 
SOHO/MDI satellite experiment Armstrong and Kuhn 
[7] revisited the multipole shape terms of order higher 
than the oblateness. They found that the two first 
shape coeffi-cients c2 and c4 are: c2 = (-5.27 ± 0.38) 
10−6 and c4 = (+1.3 ± 0.51) 10−6. One of their main 
conclusions is that the quadrupole and octopole terms 
are inconsistent with the present solar rotation data.
As far as ground experiments are concerned, the 
scanning heliometer used at the Pic du Midi 
observatory has been described for instance in [25] or 
[8]. By means of this instrument, we observed in 1996
and 1997, which were mainly years of development
and improvements of the instrument. We measured
mostly equatorial and polar diameters of the Sun and 
made a very few other measurements at different 
heliographic latitudes. The reason is the time-
consuming way data are acquired, by passing 
successive cords on both sides of the diameter to 
make sure to measure a “true” diameter at a given 
heliographic latitude. In 1998 and 1999, no data were 
acquired as the observatory was closed for works. 
Each first week of September since 2000, a routine 
campaign is made. Exceptional weather conditions 
were encountered in 2001: moderate North-West 
wind, seeing at the diffraction limit of the refractor, 
around 20 to 25-cm 4. As a complete set of
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Figure 1. Solar Asphericities deduced from measurements made by means of the scanning heliometer at Pic du Midi Observatory in 
2001 (left) and (right). On the left plot, values of c2 and c4 derive directly from an expansion of the diameter in Legendre 
polynomials, whereas on the right plot, these cn come from a fit to the best ellipsoid passing through the measured points.

heliographic latitudes is necessary to infer shape 
coefficients, only measurements since year 2000 can 
be used (however years 1996 and 1997 were used to 
determine the oblatness). Some results are shown in 
figure 1. Preliminarly results are:
Year 2000: c2 = (-7.6 ± 0.2) 10−6 and c4 = +2.2 10−6
Year 2001: c2 = (-1.1 ± 0.5) 10−5 and c4 = +3.4 10−6
Year 2002: c2 = (-3.8 ± 0.8) 10−5 and c4 = +2.5 10−6
Differences in the estimates stem from the difficulty 
of ob- servations, mainly due to seeing conditions. 
The mean deduced value of c2, -7.5 10−6, is not too 
far from the theoretical one for a uniform rotation law, 
≅-(2/3)f≅ - 5.9 10−6 with f = 8.9 10−6. The 
coefficient c4 remains difficult to match with this 
theory, which predicts+(12/35) 2f . The only 
explanation is that the distorted shape coefficient c4 is 
very sensitive to surface phenomena, rotation and a 
likely steep density gradient. To close this section, let 
us mention that ground-based solar-astrolabe 
observations have already lead to similar conclusions. 
However the obtained shape differs slightly from our 
results. This may come from the astrolabe 
measurements themselves, noised by atmospheric 
turbulence: in the majority of cases, the Fried 
parameter is only of the order of a few cm. In contrast, 
a complete analysis of some 30 years of data obtained 
at Mount Wilson Observatory, by an other method, 
show very strong similitude with our own 
measurements [26]. It would be unlikely that results 
obtained by different techniques leading to 
comparable outcomes would not draw on a common 
solar origin.

7. Perspectives
To go further, space experiments are necessary. In the 
setting of already planned missions such as GAIA or 
Beppi Colombo, estimations of the solar gravitational 
moments are envisaged as a by-product. This can be 
achieved for example in the case of GAIA by 
measuring the precession of minor planets. Other 
missions, such as SDO, foresee an accurate 
measurement of the solar differential rotation both at 
the surface and in depth. To date, the suitability of the 
latter measurements on a platform such as Golf-NG is
discussed. Nevertheless, all these missions are still far:
2008, 2010 and even 2020. Meanwhile, it is proposed 
to reactivate SDS (Solar Disk Sextant) flights [27]
within an American-European program. One flight
each year up to 2007 should provide reliable data over 
a suitably long period of time. These flights will also 
allow to extend the database of the previous SDS 
results and enable us to accurately determine at least 
the first gravitational moments J2 and J4 (higher 
moments might be also accessible).

8. Conclusion
This study emphasizes the need to better determine 
solar gravitational moments. We have also pointed 
out: 1. large discrepancies in the values obtained for 
J4. 2. Progress in Jn estimates will depend on a better
knowledge of the subsurface adiabatic layer (that we 
called the leptocline). Space measurements are 
undeniably needed. Waiting for the advent of 
scheduled missions, but bearing in mind that the first 
one is as far as 2008, we urge the scientific community 
to support balloon flights such as SDS.
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