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Abstract
We present a mathematical method to describe motion of a system based on 3 identical body forces. The 3-body forces are more 
easily introduced and treated within the hyperspherical harmonics. We have obtained an exact solution of the radial Schrödinger 
equation for a 3- body system in three dimensions. The interact potential V is assumed to depend on the hyperradius x only where 
x is a function of the Jacobi relative coordinates ρ and λ   which are functions of the three identical particles, relative positions 

12 23,r rr r
and 31rr . This method has been extensively used in nuclear and molecular physics. This work is interesting to those who are 

studying hadronic and bosonics physics and problems consisting three - body systems. 
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1. Introduction
The three body-forces are more easily introduced and 
treated within the hyperspherical harmonics formalism 
[1,2 and 3]. Introducing the center-of-mass coordinate 
R and the Jacobi relative coordinates ρ andλ
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and the conjugate momenta ,RP Pρ and Pλ the kinetic 
energy becomes 
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The three –quark space wavefunction, in agreement 
with translational invariance, is 
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where 1 2,r r and 3r are the positions of three identical 
particles.

The Jacobi coordinates have many applications,  
one of them being bosonic quantization. The method of 
bosonic quantization consists of two vector boson 
operators (one for each relative coordinate) which are 

related to the coordinates, ρ and λ and their conjugate 
momenta, Pρ and Pλ , by
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with 1,0,1m = − these operators satisfy usual boson 
commutation relations and operators of different types 
of commutes. The nonrelativistic harmonic oscillator 
quark model  [4] is a model of this type, although it is 
written for the Hamiltonian.
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( 3)b b b bρ ρ λ λε= − ⋅ − ⋅ + +% % perturbations         (3) 

( 3)pn nλε= + − +  perturbations,
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with 3k
m

ε = .The perturbations involve both 

anharmonic terms and terms that couple different 
shells. To solve the equation analytically, let’s define 
the hypercentral coordinates. 

The two Jacobi coordinates ρ and λ  are relevant 
degrees of freedom (in addition the center-of-mass 
coordinate is not relevant). The hypercentral 
coordinates are defined in terms of the absolute values 
ρ  and λ
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where x  is the hyperradius and is  a function of 

1 2,r r and 3r  the three identical particle relative 
positions and t is the hyperangle, together with the 

angles ρΩ , λΩ . After having separated the c.m. 

motion R
r

the Laplace operator for the three particles 
system becomes ( )1== ch
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where 
2

2 )(
x

L Ω  is a generalization of the centrifugal 

barrier for the case of six dimensions and it involves 
the angular coordinates ρΩ , λΩ and the hyperangle t .

The eigenvalues of 2 ( )L Ω  are given 
2 ( ) ( 4)L γ γΩ = − + where γ is the grand angular 

quantum number, using standard notation, the principal 
quantum numbers of the ρ -oscillator is 

(2 )N n lρ ρ ρ= + , and similarly for the λ -oscillator. 
The energy of a state specified by the quantum number 
N  given by λρ lln ++2 , 
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(6) where n  is a positive integer and ρl  and λl  are the 
angular momentums corresponding to ρ and λ .
For a given value of , . .n i e the model space in which 
calculation are done, one has
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The parity of the state is ( )l lρ λπ += − . The basis 
states are then uniquely labeled by 

,( , ),( ); , ln n l n l l mρ ρ λ λ                                        (8) 

The same basis of two coupled harmonic oscillators is 
employed in the nonrelativistic and relativistic quark 
models. Early quark model calculations [4] used 

2n nρ λ+ ≤ , while more recent calculations [4] have 

used 6n nρ λ+ ≤ . The eigenfunctions of the grand-

angular operator 2 ( )L Ω  are denoted by 
),( ,][ tY λργ ΩΩ and are known as the products of 

spherical harmonics with angular momentums lρ and 

lλ  and of Jacobi polynomials in the hyperangle t [3]. 
They are called hyperspherical harmonics and form a 
complete orthogonal basis in the space of function of 

ρΩ , λΩ , t .

2. An exact solution of the three-body Schrödinger 
wave equation for a sextic potential 
In general the space part of the three particles wave 
function is expanded in the hyperspherical harmonics 
basis and the Schrödinger equation leads to a set of 
coupled differential equations [4,5]. That is, the 
assumption that for each body consists of three 
identical like baryon state, only one hyperspherical 
harmonic is sufficient. In this respect, it is interesting 
to observe that the matrix elements of the currently 
used two-body potentials in the three-body agree
almost perfectly with this hypercentral behavior [5,6].

On the other hand, if the potential ( )V x is assumed 
to depend on the hyperradius x only, the space wave 
function is factorized similarly to the central potential 
case. The potential )(xV is called hypercentral, in the 
sense that it is invariant for any rotation in the 6-
dimensional space spanned by the coordinates (O (6) 
symmetry). The dependence on x  means in general 
that the potential has a three-body character, since the 
dependence on the single pair coordinates cannot be 
disentangled from the third one. The hyperradial wave 
functions )(xvγψ is a solution of the reduced 
Schrodinger equation:
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where  m  is the particle  mass.  For a fixed γ  there are 
different solutions, which can be labeled by ;v where 

1+v is the number of nodes of the wave function. The
h.o potential has a two-body character, but it can be 
treated by means of the hypercentral eq. (9) since
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Figure 1. Diagram of three body interaction.
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exactly hypercentral.(Figure 1) eq. (9) has an analytical
solution [7] also for the sextic potential 

4 6( )hycV x bx cx= + .
Using an ansatz for the eigenfunctions, we obtain 

an exact analytical solution of the Schrodinger wave 
equation for the doubly anharmonic (sextic) three body 
potential, 2 4 6( )V x ax bx cx= + + , where  ,a b and 
c are positive and satisfy the constraint 

2
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quantum number. The problem of the anharmonic 
oscillator with quartic type anharmonicity in the two 
potential has been very widely studied in different 
contexts and also at the level of both classical and 
quantum mechanics. Only recently, it seems to be 
newly discovered [8,9] phenomena (such as structural 
phase transitions [8], polar on formation in solids [10], 
the concept of false vacua in field theory [11]) whose 
theoretical understanding might require the 
introduction of higher order anharmonicity in the 
potential, particularly that of sextic type. Unfortunately 
not much work has been carried out on the doubly 
anharmonic (sextic) potential except for some studies 
[12] at the classical level for two body problem. In this 
note, we present an exact analytic solution of the radial 
Schrodinger wave equation [13] for three body 
problem which its results can be used for two body 
problem as well. For a sextic three-body potential in 
three dimension of the type

2 4 6( ) ,V x ax bx cx= + +   (11)
where a ,b and c are positive and satisfy a 
constraining condition (cf. eq(21) below).

First of all the transformation
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where 
1 1 12 , 2 , 2 , 2 ,mE a ma b mb c mcε = = = =  (13)

Now, for the eigenfunctions ( )v xγϕ we make an 
ansatz for the wavefunction [14,15,16 and 17]
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On comparing eqs. (17) and (12) we obtain 
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These equations yield
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Here we shall use only the second value of 
5
2

δ γ= + as it provides a well-behaved solution at the 

origin. The ground state eigenvalues ε can be obtained 
from (18) as
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The energy eigenvalance is given by (cf. eq (13))
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where b is fixed from the following constraint 
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The normalized eigenfunctions are given by  
(cf.eq.(14))
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Then from the transformation 
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 Also for 0c = then from constraint (21) b=0, the 
potential in eq.(2) terns to the harmonic oscillator (h.o) 

potential 2
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its exact energy spectra from equation (20) are given
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where  2k a=  is the h.o potential strength and is a 
constant independent of N and the corresponding 
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for the excited state 0N ≠  in this method we have 
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spherical Hermite polynomial which shows our method 
is completely correct. With the normalization constant 
Nγ for eq (18) obtained from 
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Table1. The class hypercentral potentials ( )V x  where 
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obtain Schrodinger equation analytically with a suitable 
ansatz function.
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where ( )vD x  is the parabolic cylindrical function. 
Thus for the potential (11) the energy eigenvalues and 
the corresponding eigenfunctions are given by eqs.(13) 
and (20), respectively. It may be noted that from 
eq.(20) the ground state (zero-point) energy 
corresponding to 0γ = is not zero but is given by 
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 for 0c =  turns to the 

harmonic oscillator (h.o) ground state energy
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0
23 3 3a kE
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ω= = = . This shows that our results 

are correct. Furthermore the validity of the solution of 
the problem is limited by the constraint (19,21) on the 
parameter b . This parameter, in fact involves γ
dependence through δ . The ansatz (15) can also be 
applied to further anharmonicity and the eigenvalues 
can be obtained as before (table 1). As an example let 
applied to the case when the potentials ( )V x involves 
further order a harmonicity. 
However, in this case the normalization of the 
eigenfunctions becomes a difficult task. E.g. for the 
potential 

2 4 6 8 10
1 1 1 1 1( ) ,V x a x b x c x d x e x= + + + +    (30)

one can use [ ]( ) exp ( )r g rϕ = with
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The expression for eigenvalues now becomes 
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where various potentials parameters are re- defined in 
the spirit of eq (9) and now satisfy two constraints 
namely
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The eigenfunctions (not normalized) are given by  
3
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x x x x x
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3. Conclusion 
The analysis presented in this article has been carried 
assuming 3 3( )S orD symmetry (i.e three identical 
constituents with identical interactions). The 
interaction between the three objects may be such that 
the geometric arrangement is that of an equilateral 
triangle with 3D symmetry. The problem of the
anharmonic oscillator with quartic type anharmonicity 
in the two body potential has been very widely studied 
[18] but in this article we have solved the radial 
Schrodinger wave equation rather exactly for the sextic 
three-body potential in three dimension (11) with the
constraint (21) on the parameters. While eigenvalues 
and eigenfunctions for this potential are obtained in a 
closed form, the results are outlined for the potential 
(30). Furthermore the results obtained here seem to 
have some direct applications in fibre optics, where 
one solves [20] a similar problem of an inhomogeneous 
spherical -or circular wave guide with refractive index 
profile function of the type (11). Within this
framework we can also study baryons to be built of 
three constituent quark parts. By making use of these 
methods we are able to calculate in a straight forward 
way all observable quantities and thus test various 
models. The fact that the formalism has been setup in a 
model-independent way as much as possible, gives the 
possibility to search for new physics. Such studies are 
in progress.
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