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Abstract 
Using a tight-binding model and transfer-matrix technique, as well as Lanczos algorithm, we numerically investigate the 
nature of the electronic states and electron transmission in site, bond and mixing Fibonacci model chains. We rely on 
the Landauer formalism as the basis for studying the conduction properties of these systems. Calculating the Lyapunov 
exponent, we also study the localization properties of electronic eigenstates in the Fibonacci chains. The focus is on the 
significance of the relationship between the transmission spectra and the nature of the electronic states. Our results 
show that, in contrast to Anderson’s localization theorem, in the Fibonacci chains the electronic states are non-localized 
and the transparent states occurr near the Fermi level. 
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1. Introduction 
Since the discovery of the quasicrystalline phase [1], 
much attention has been given to the quasicrystal 
materials. The lack of translational symmetry in 
quasicrystals means the non-applicability of Bloch’s 
theorem. Since quasicrystals exhibit an intermediate 
character between crystals and amorphous solids, the 
electronic properties of these materials are expected to 
display new behavior. Experimentally, quasicrystalline 
phases have unique electronic properties. They are 
characterized by a low conductivity, which increases 
when temperature or disorder increases. Also the 
building of artificial multilayer structures by molecular 
beam epitaxy [2], has considerably stimulated the 
theoretical study of the physical properties of 
quasiperiodic systems [3,4]. There has been in particular, 
detailed discussion on the nature of electronic 
eigenstates on quasicrystals. It is questioned whether 
their electronic spectra are absolutely continuous, 
pointlike or singular continuous, or correspondingly the 
electronic states are extended, localized or critical. It has 
been established that in these systems the three kinds of 
wave functions, i.e., extended, localized and critical 
states coexist [5-8]. Critical states are neither localized 
nor extended; they have self-similar wave functions in 

real space [9]. The effects of quasiperiodicity in the 
electronic spectra can be studied in the most simple 
quasiperiodic structure which is a Fibonacci chain (FC). 
The investigation of the electronic transport in FCs is an 
open and interesting problem. In particular, the 
relationship between the nature of electronic states and 
transport phenomena is not fully understood. The 
conductivity in FCs has been studied by using the 
Miller-Abrahams equations [10,11] and by the Kubo-
Greenwood formula [12,13]. Also the existence of 
transparent states with the maximum value of 
transmission coefficient equal unity has been reported 
[14]. However, the question of the localization nature of 
the transparent states is still controversial. 
 In this paper we have numerically studied the 
electronic states belonging to various types of FCs, site, 
bond and mixing models. Embedding a typical Fibonacci 
lattice in an infinite periodic chain, we calculate the 
electronic transmission through these systems based on 
Landauer formalism. We find that the magnitude of the 
transmission, especially near Fermi level, is close to 
unity, i.e., close to the magnitude of transmission in a 
periodic system. Also the localization properties of the 
corresponding eigenstates in these chains is investigated. 
Our results show that the transparent states in these 
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Fibonacci model chains are close to similar states in 
periodic systems. The formalism we have applied in this 
work is based on the transfer-matrix (t-matrix) 
technique, where the solution of the Schrodinger equation 
is obtained by means of a product of 22× matrices. 
 The outline of the paper is as follows: In Sec.(2) we 
give a general introduction of a Fibonacci system and 
then describe our models for construction of several 
Fibonacci model chains. In Sec.(3) our methodology to 
calculate the t-matrices, the transmission coefficient and 
the Lyapunov exponent is described. The results and 
discussion are presented in Sec.(4) followed by a 
summary and conclusions in Sec.(5). 
 
2. Fibonacci chain 
There are several ways to generate a Fibonacci system 
[15-17]. In this study, to investigate the electronic 
properties of a FC, we have constructed; i) a bond 
Fibonacci model (BFM) in which the on-site energies are 
the same and the hopping integrals, At and Bt are 
organized following the Fibonacci sequence (FS). ii) a
site Fibonacci model (SFM) containing two sort of atoms 
with the same hopping integrals. iii) a mixing Fibonacci 
model (MFM) in which two kinds of atoms A and B
are arranged following the FS. In this model the 
arrangement of  the hopping integrals between atoms 
depends on the nature of them giving rise to the two 
different parameters AAt and BAAB tt = .

A typical FS of generation n containing nSnN =)(
sites, can be built by defining the first and second 
generations of AS =1 and BAS =2 . One may obtain 
the generation nS from the substitution rule 

21 −−= nnn SSS . For instance, the fourth generation is 
obtained as BAABAS =4 . The FCs as the simplest one-
dimensional quasicrystals are the most intensively 
studied and new concepts on the electronic properties 
such as the singular continuous energy spectrum, 
existence of self-similarity in their transmission spectra 
are now well established [14,18]. The quasiperiodicity of 
the FCs is characterized by the golden mean 

2
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=τ [19]. It is well known that the golden mean, 

0τ can be approximated by the Fibonacci numbers 
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τ . Figure 1 schematically illustrates the 

SFM, BFM and MFM chains, respectively where are 
connected to two semi-infinite periodic linear chains 
with null on-site energies and corresponding hopping 
integrals equal unity.  
 
3. Methodology 
Here we present the t-matrix formalism. We have 
applied this technique to investigate the electronic 

properties of the Fibonacci model chains. Let us start by 
considering a general FC in which both diagonal and off-
diagonal terms are present in the Hamiltonian; 
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where iε is the on-site energy of the site i and 1, ±iit
are the nearest-neighbor hopping integrals between the 
sites i and 1±i . In studying the electronic properties of 
one-dimensional quasiperiodic chains, it has been 
common to use the corresponding tight-binding equation 
Hamiltonian (1); 
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where iψ is the probability amplitude at site i . Solving 

for 1+iψ we find the t-matrix formulation; 
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where )(EM i is the local t-matrix associated with site 
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We see that t-matrices depend on energy, E . If the 
eigenenergy and 1U are known, then the whole 
eigenfunctions will easily be calculated from the t-
matrices. Also the t-matices can give the valuable 
information about the nature of the wave functions. 
Now, we proceed to calculate of the transmission 
coefficient, )(ET , whose magnitude is directly related to 
the conductance through the Landauer formula [20]; 

.)(2 2
ET

h
eG = (5) 

Connecting the Fibonacci lattice to two semi-infinite 
periodic leads, then )(ET is identical to the probability 
that an incident electron with energy E in the left-hand 
lead emerges in the right-hand one. Using eq.(4), the 
transmission coefficient (transmittance) )(ET is given 
by [14,19,21]; 
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where the dimensionless parameters q , X , Y and 
Z are given as follows; 
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where 1=t is the hopping integral of  semi-infinite 
leads in the FC and jim ( i , j =1 , 2 ) are the matrix 

elements of the global t-matrix, )(EM , of the chain. We 
have calculated the energy eigenvalues spectrum, { }iE ,
and the corresponding electronic eigenstates, { }iψ , for 
the FC using a direct diagonalization procedure based on 
the Lanczos algorithm [22,23]. This diagonalization 
method is known to be very efficient for large matrices. 
Considering { }iε and { }1, ±iit according to FS, we have 
applied this method to the Hamiltonian (1) and the 
resulting energy spectrum used to calculate )(EM and 
thereby transmittance )(ET and Lyapunov exponent 

)(EΓ via eqs.(4), (6) and (8), respectively. The 
localization properties of the electronic states in the 
Fibonacci model chains can be studied through the 
calculation of the Lyapunov exponent 

)(ln1)( EM
N

E =Γ [19], where denotes the 

modulus of the matrix )(EM . Using the matrix elements 
of )(EM via eq.(4), we can easily write )(EΓ as 
follows; 
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The Lyapunov exponent )(EΓ characterizes the 
evolution of an electronic eigenstate along the chain 
[24]. )(EΓ is zero for an extended or critical state, but is 
positive for a localized state, representing then the 
inverse of the localization length. 

 
4. Results and discussion 
We now apply the t-matrix formalism to calculate the 
transmittance )(ET and Lyapunov exponent )(EΓ . In 
our models, the on-site energies { }iε and the hopping 
integrals { }1, ±iit along the FC are chosen according to 
FS as follows;     
 
i) bond Fibonacci model (BFM):         







=
=

± BAii

i
tortt

iallfor

1,

εε

ii) site Fibonacci model (SFM):            







=
=

± iallfortt
or

ii

BAi

1,

εεε

iii) mixing Fibonacci model (MFM): 







==
=

± )(1, BAABAAii

BAi
ttortt

or εεε

Numerical calculations of products of t-matrices in 
general are unstable, and this is due to the very fast 
increase of the exponential part, which causes to 

overflow the calculations and thus the loss of all the 
information. Our calculations show that the double-
precision numerical calculations are not sufficient to 
obtain the reliably accurate results. In this case, one has 
to apply the quadruple-precision in the numerical results. 
To overcome these problems and saving the CPU time, 
we rewrite the matrix 121)( MMMMEM NN L−=
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different local t-matrices )(EM i , since the hopping 
integrals depend on three subsequent elements in the FS. 
Nevertheless, the t-matrix product can be rewritten in 
terms of two matrices as follows; 
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where 
AB

AA

t
t

=γ and ABBA tt = is set. Thus, the 

resulting t-matrix product is again arranged according to 
the FS. Therefore we only need to know the first three 
matrices aMR =1 , abMMR =2 and aba MMMR =3 .
Making use of these matrices, we can translate the 
atomic sequence LABAAB describing the topological 
order of the FC to the t-matrix sequence 

abaab MMMMML .

Setting 0== BA εε and ttt BA )
2

15( −
=−= (golden 

mean 0τ ), our numerical results for a BFM has been 
shown in figure 2. In this paper, we restrict the 
magnitude of the hopping integrals to the particular 
values of 0τ± in the numerical calculations, as it is the 
mostly used one in the literature. Figure 2(a) illustrates 
the density of states (DOS) of a BFM lattice of 
generation 15=n with 987 atoms that embedded in a 
periodic chain with 4105× of identical atoms connected 
by hopping integrals 1=t . Considering the self- 
similarity in the energy spectra of Fibonacci systems and 
using their energy eigenvalues, one may write the 
following expression for the DOS of these systems [25]; 
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Using the on-site energies { }iε and the corresponding 
hopping integrals { }1, ±iit according to the FS, we have 
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Figure 1. A schematic representation of typical Fibonacci chains. (a) the site Fibonacci, (b) the bond Fibonacci and (c) 
the mixing Fibonacci models of generation 4=n are connected to two semi-infinite periodic chains with 0=ε and 1=t .

The parameters jit , ( Aji =, or B ) and letters A and B have described in the text.  
 

Figure 3. (a) the electronic density of states (DOS), (b) 
transmittance )(ET and (c) the inverse of Lyapunov exponent 

)(EΓ for a mixing Fibonacci system of generation 15=n is 

connected to two semi-infinite periodic chains with 4105×

identical atoms. tBA 25.0=−= εε , ttt ABAA )
2

15( −
=−=

and ABBA tt = have been considered.  

 

Figure 2. (a) the electronic density of states (DOS), (b) 
transmittance )(ET and (c) the inverse of Lyapunov
exponent )(EΓ for a bond Fibonacci system of 
generation 15=n is connected to two semi-infinite 
periodic chains with 4105× identical atoms. 

0== BA εε and ttt BA )
2

15( −
=−= have been 

considered. 
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Figure 5. The magnitude of the wave functions 2
nψ in 

Fibonacci lattices with 15FN = atoms. (a) 2
15ψ for a 

bond Fibonacci model around the Fermi level, 0=fE

and at the eigenvalue number 493. (b) 2
15ψ for a 

mixing Fibonacci model around the Fermi level, 
eVE f 431.0−= and at the eigenvalue number 391 and 

(c) 2
15ψ for a site Fibonacci model around the Fermi 

level, Eq= 0.468eV and at the eigenvalue number 370. 
 

Figure 4. (a) the electronic density of states (DOS), (b) 
transmittance )(ET and (c) the inverse of Lyapunov exponent 

)(EΓ for a site Fibonacci system of generation 15=n is 
connected to two semi-infinite periodic chains with 4105×
identical atoms. tBA 5.0=−= εε , tt AA = and also 

ttt BAAB == have been considered.  
 

applied the Lanczos procedure to the Hamiltonian (1) 
with the periodic boundary conditions and the resulting 
energy spectrum was used to calculate the electronic 
DOS from eq. (10). Figures 2(b) and 2(c) show the 
transmittance )(ET and the inverse of the Lyapunov 
exponent )(EΓ (localization length), respectively for the 
BFM chain. As expected, the spectra are fully self-
similar, i.e., the peak clusters and the gaps are arranged 
in a very similar way. In fact, the self-similarity in 
transmittance spectrum and thereby in the inverse of 

)(EΓ is the reflection of the existence of self-similarity 
in the corresponding energy spectrum. Figure 2(c), with 
remarkable coincidence with figure 2(b), shows that the 
electronic eigenstates associated to the corresponding 

energy eigenvalues are non-localized and from point of 
view of electron conduction, these eigenstates are 
extended. However, in order to obtain a complete picture 
of an extended state, it is necessary to calculate the 
magnitude of the electronic wave functions at the 
position of atoms in the FC. Considering the 
corresponding system of figure 2, we have calculated the 

magnitude of wave function 2
nψ for energy eigenvalue 

E , which locates around the Fermi level. Figure. 5(a) 

shows 2
nψ at the eigenvalue number 493  (close to 

Fermi level, 0=fE ) for a BFM lattice of generation 
15=n with 987 atoms. We see from this figure that the 

calculated wave function is fully self-similar and 
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delocalized, as expected. In the literature, this 
delocalized state around the Fermi level is called the 
transparent state [14,26]. The same analysis as in figure 
2 is applied to a MFM chain of generation 15=n with 
987 atoms, in which tBA 25.0=−= εε ,

ttt ABAA )
2

15( −
=−= and ABBA tt = have been 

chosen. The results of this analysis are shown in figure 3. 
Notice that the spectra lose their symmetry around 

0=E , since the lattice is not bipartite. In this case the 
transparent state locates at eVE f 431.0−= and the 
general behavior observed in figure 2 is also present 
here. In particular, the wave function behavior at 
eigenvalue number 391 , as shown in figure 5(b), 
resembles the similar case as in figure 5(a). Finally, we 
have shown the similar results for a SFM chain in figures 

4 and 5(c), in which tBA 5.0=−= εε , tt AA = and 

ttt BAAB == have been considered.    
 
5. Summary and conclusions 
In summary, we have studied in details the electronic 
properties of three Fibonacci model chains. Based on t-
matrix technique, Landauer formalism and Lanczos 
algorithm procedure, we have investigated the 
localization properties of eigenstates in these systems. 
Calculating the Lyapunov exponent and the magnitude of 
wave functions at atomic positions, we have 
demonstrated the existence of a transparent (extended) 
state with a transmission coefficient close to unity at the 
Fermi level, 0=fE for the BFM, eVE f 431.0−= for 

the MFM and at the eVE f 468.0−= for the SFM. Our 
results also show the presence of fully self-similarity in 
the spectra of these Fibonacci chains.     
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