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Abstract 
We study the transport of electrons in a graphene NSN structure in which two normal regions are connected by a superconducting strip 
of thickness d. Within Dirac-Bogoliubov-de Gennes equations we describe the transmission through the contact in terms of different 
scattering processes consisting of quasiparticle cotunneling, local and crossed Andreev reflections.  Compared to a fully normal structure 
we show that the angular dependence of the transmission probability is significantly modified by the presence of superconducting 
correlations. This modifation can be explained in terms of the interplay between Andreev reflection and Klein tunneling of chiral 
quasiparticles. We further analyze the energy dependence of the resulting differential conductance of the structure. The subgap 
differential conductance shows features of Andreev reflection and cotunelling processes, which tends to the values of an NS structure for 
large ds. Above the gap, the differential conductance shows an oscillatory behavior with energy even at very large ds. 
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1. Introduction  
Recently graphene a new material composed of carbon 
atoms arranged in two-dimensional honeycomb lattice 
which is a single atomic layer pulled out of bulk 
graphite, was synthesized by Geim's group in 
Manchester University [1]. Compared to the metallic and 
semiconducting materials, graphene has shown many 
intriguing electronic properties which have led to an 
explosion of studies in recent years [2, 3, 4, 5].  
 Due to its peculiar electronic band structure electrons 
in graphene behave like two dimensional mass less Dirac 
fermions [6]. In the hexagonal reciprocal space of 
graphene there are two non equivalent points ,K K+ − ,
the so called Dirac points, at the corners of the first 
Brillouin zone [7]. Around each of Dirac points, low 
energy electrons and holes have linear dispersion 

( ) Fk v kε = ±
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� , versus two-dimensional wave vector 

k
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with Fermi velocity 610 /Fv m s≈ [7]. Thus the 
conduction (electrons) and valence (holes) conical bands 
touch at the points ,K K+ − ( ( ) 0kε =

�
) producing two 

nonequivalent valleys. This makes graphene a gapless 
semiconductor with relativistic-like dispersion of the 
excitations [8].  
 An electron in graphene structure is described by 4-

component spinor ( , , ,A BBAψ ψ ψ ψ+ + − − ) in which, ( )A Bψ + is 

referred to the amplitude of the electron wave function on 
sublattice A(B) of the honeycomb structure with wave 
vector centered around the valley K + ; ( )A Bψ − are the 

corresponding wave functions for the valley K − [6,8]. 
This spinor satisfies Dirac equation of the form [6,8]: 
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where ,x yσ σ are Pauli matrices describing pseudo spin 
space of two sublattices A and B.  
 Already anomalies of several quantum transport 
effects have been found in graphene. The integer QHE in 
graphene occurs with Hall conductivity plateaus 
appearing at half integer multiples of four (two spin and 
two valley degeneracy) times the quantum conductance 

2e h [2,3]. This quantization rule is caused by the 
quantum anomaly of the lowest Landau level in 
graphene which has a twice smaller degeneracy than the 
higher levels and its energy does not depend on the 
magnetic field [9].  
 Most of the studies are focused on the anomalies at 
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the limit of zero doping (zero charge carrier density) 
where the Fermi level is located close to the Dirac 
points. A finite conductance of order 2e h is measured 
in graphene samples at Dirac point [10, 11, 12, 13]. This 
is surprising since one expects zero conductivity at this 
point where the electronic density of states vanishes.  
 The relativistic-like dynamics of electrons in 
graphene also affects the current fluctuations. Very 
recently the prediction of a finite shot noise in an 
undoped ballistic graphene was confirmed in the 
experiment [14]. For a wide ballistic graphene strip the 
Fano factor (the ratio of the noise power and the mean 
current) has the value 1 / 3F = which corresponds to the 
shot noise power in a diffusive metallic contact [15, 16].  
 While graphene itself is not superconducting, but due 
to its atomic size thickness it can be superconducting by 
depositing a superconducting electrode on top of it [17]. 
Proximity induced Josephson effect between two 
superconducting graphene regions was predicted 
theoretically [18, 19, 20, 21] and observed in the 
experiment [22, 23]. Superconductivity in graphene can 
be described by Dirac-Bogoliubov-de Gennes (DBdG) 
equation [19] which takes into account electron-hole 
correlations, induced by the superconducting pair 
potential ∆ . Within this equation it was found that a 
nonzero supercurrent can flow through a mesoscopic 
graphene sample even at the Dirac point with zero 
carrier concentration. Interestingly the Josephson current 
possesses a bipolar characteristic close to Dirac point 
where depending on the gate voltage the supercurrent 
carriers could be either the conduction band electrons or 
the valence band holes [18].   
 In Ref. [19] the superconducting proximity effect 
was studied in graphene NS contacts. As it is well 
known a special process called Andreev reflection (AR) 
[24] is responsible for the proximity effect in NS 
interfaces. AR is the conversion of an electron excitation 
into its time reversed hole when it hits the NS interface 
from N side with an energy lower than the 
superconducting energy gap ∆ . AR in ordinary 
conductors is a retro reflection in which the electron and 
the reflected hole have opposite velocities [24]. In 
contrast it was found that in undoped graphene AR 
occurs in a specular manner where only the component 
perpendicular to the interface changes sign. This has a 
pronounced effect in the current-voltage characteristics 
of a graphene NS contact as explained in [19].  
 In addition to several quantum transport phenomena 
studied so far, there has been important studies of 
relativistic quantum electrodynamics phenomena in the 
context of graphene. The most famous effect is the 
reflection less tunneling of an electron from a potential 
barrier [25]. This is a condensed matter analog of the so 
called Klein paradox of relativistic quasi particles, that 
arises from the spinor nature of the wave functions in 
graphene and the relativistic linear spectrum [4]. This 
unique property of absence of back scattering could be 
regarded as responsible for extremely high mobility in 

graphene layers even at room temperature [2, 3]. The 
angular-dependence of the transmission probability 
through a potential barrier with perfect transmission at 
normal incidence has been explained theoretically [4]. 
 In this paper we study a graphene NSN structure to 
see the interplay between AR taking place at the NS 
interfaces by the superconducting pair potential ∆ and 
the Klein tunneling from the potential difference 
between S and N regions. Within scattering formalism 
and using DBdG equation in normal and 
superconducting regions we calculate the transmission 
amplitudes of electrons through the structure. The 
transmission processes contain different mechanisms 
which are electron cotunneling (CT), AR and crossed 
AR (CAR) [26, 27]. While AR occurs at an individual 
NS-interface, in CAR, incident electron and reflected 
hole emerge from different NS-interfaces.  
 Employing these transmission amplitudes in the 
Blonder-Tinkham-Klapwijk (BTK) formula [28], we 
have calculated the differential conductance of the 
structure. We analyze the energy-dependence of the 
differential conductance in different regimes 
corresponding to different values of the chemical 
potential in N and S regions compared to ∆ and thickness 
of the S region  d. We consider the limit of large 
mismatch between chemical potentials of S and N 
regions. We explain difference of angular-dependence of 
the transmission probabilities for low and high chemical 
potentials of the N regions where, respectively, specular 
and retro AR dominates the electron-hole conversion. 
Compared to the fully normal structure [4] we show that 
the angular-dependence of transmission is modified by 
the presence of the superconductivity. 
 The resulting differential conductance shows an 
oscillatory behavior at energies above ∆ which persists 
even at thicknesses larger than the superconducting 
coherence length. At subgap energies, the behavior of the 
differential conductance is dominated by CAR and CT for 
thinner S region and by AR for thicker S region. We give 
a full analysis of differential conductance for different 
thicknesses of the S region and chemical potentials of the 
N regions.  
 
2. Model and basic equations 
We consider a graphene NSN structure occupying xy 
plane, as shown in Fig. 1. A wide superconducting strip 
(S) of thickness d connects two normal leads (N1 and 
N2). The normal leads are held at a voltage difference V
and the voltage at S is zero. Using several electrostatic 
local gates, the chemical potential in different regions 
can be modulated. We consider the case where there is a 
chemical potential difference U between S and N 
regions. The potential profile then reads  

,0
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otherwise
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In the presence of superconducting correlations we use 
the DBdG equation which takes the form of two  
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Figure 1. NSN structure on graphene 
 
decoupled sets of equations as;  
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with u and v being, respectively, two-component wave 
functions of electron-like and hole-like quasiparticles 
from two different valleys. Note that superconducting 
correlations couple an electron in one valley to its time-
reversed hole in the other valley. FE is the Fermi energy 
in normal leads and 0ε > is the excitation energy 
measured from the chemical potential.  
 In N1 and N2 the pair potential ∆ = 0 and neglecting 
the suppression of superconductivity in S close to NS 
interfaces we take ∆ to be real and constant inside S. 
This assumption is most valid when the Fermi wave 
length in region S is much smaller than the Fermi wave 
length in region N, namely when FU E>> . Because of 
the valley degeneracy, we will consider only one set of 
the four-dimensional equations (3) which describes 
coupling of electrons from valley K + to holes from 
valley K − .

Due to the one dimensional nature of the applied 
potential, the wave vector in the direction parallel to the 
boundaries ( q ) is constant in the three regions. 
 Assuming an incident electron with probability 
amplitude 1 from N1, the solution of Eq. (3) inside N1, S 
and N2 are, respectively, written as the followings 
 

1N Ne Ne A Nhr rψ ψ ψ ψ+ − −= + + ,

S Se Se Sh Sha b c dψ ψ ψ ψ ψ+ − + −= + + + ,

2N e Ne h Nht tψ ψ ψ+ += + , (4) 
 
where ,Se Shψ ± are bases of DBdG in S which describe 
electron-like (e) and hole-like (h) quasiparicles which 
propagate in ± directions of x axis. Correspondingly in 
N1 and N2, ,Ne Nhψ ± are the electron and hole bases 

propagating in x± directions. The bases are given by  
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Here arcsin( / ( )) [- 2, 2]F Fv q Eα ε π π= + ∈� and 

arcsin( / ( - ))F Fv q Eα ε′ = � are, respectively, the angles 
that an electron and hole wave vectors make with x
axes. We note that beyond a critical angle of incidence 
defined by 

arcsin( ( ))c F FE Eα ε ε= − + , (8) 
 α′ becomes imaginary and so there is no AR and CAR. 
The coefficients , ,a b c and d are relative amplitudes of 
different wave functions in S. r and rA are, respectively, 
amplitudes of electron normal and Andreev reflections in 
N1. For an incident electron in N1 , et and ht are the 
amplitudes of transmission of an electron and hole into 
N2 which describe CT and CAR processes respectively. 
Note that while in N1 and N2 the wave functions are 
propagating for allε , in S they are propagating only for 
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(a) (b) 
Figure 2. ( )T α in NSN structures with 0.122, 0d ξ ε= ∆ = and (a) 243, 0FU E∆ = ∆ = (dashed curve), 0.01FE∆ = (solid curve) , 
(b) specular and retro reflection regimes by 920, 0.01, 10FE U∆ = ∆ = .

ε > ∆ . For ε < ∆ the wave functions are evanescent 
inside S where they have an exponential decay along x
direction within a scale of order Fvξ = ∆� .

In contrast to the parabolic energy spectrum in 
ordinary two dimensional electron gas (2DEG) which 
requires the continuity of the derivatives of the wave 
functions as well as their amplitudes, for chiral electrons 
in graphene the velocity is constant irrespective of the 
energy; so, one has to impose only the continuity of the 
wave functions for each sublattices which also conserves 
the chirality. Imposing the continuity condition at N1S 
and SN2 interfaces we have the relations  
 

Ne A Nh Se ShNe Se Shr r a b c dψ ψ ψ ψ ψ ψ ψ+ − − + − + −+ + = + + +  (9) 
 
at 0x = and  
 

Se Sh e hNeSe Sh Nha b c d t tψ ψ ψ ψ ψ ψ+ − + − + ++ + + = +  (10) 
 
at x d= . These relations constitute a system of 8 linear 
equations whose solutions give us r, Ar , et and ht . The 

relation 2 2 2 2 1A e hr r t t+ + + = holds for ensuring 
current conservation.  
 The differential conductance of the system, I V∂ ∂
for ε = e V× is calculated by the BTK formula as:  
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where 0g is the conductance of N transverse modes in 
a ballistic graphene strip of width W . In our model we 
consider a wide geometry of W d>> for that 1N >> .

3. Results and discussion 
First we analyze the angular dependence of the 
transmission probability 2( ) 1- ( )T rα α= for electrons. 
We note that for FEε << , in contrast to the amplitude of 
AR, amplitude of CAR is small since it requires a 
change of pseudospin.  
 In Fig. 2a we have plotted ( )T α at the Fermi level 

0ε = when 243U ∆ = for both superconducting 
( 0.01FE∆ = ) and normal strip ( 0∆ = ) cases. In the 
normal case there is always a perfect transmission at 
normal incident 0α = due to Klein tunneling [4]. 
Additional perfect transmissions can occur at larger 
angles due to the resonances which for given U and 
d are defined by the solutions of the following equation  

 

2 2
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α γ

α γ
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Introducing superconductivity leaves the transmission 
probability intact at almost normal incidence, but 
suppresses the transmission at larger angles. In the case of 
Fig. 2a the resonance at 2α π≈ disappears by 
superconductivity. We can understand this behavior by 
noting that a retro AR conserves the pseudospin and 
thereby the reflection-less tunneling through S is 
preserved at small angles. However the resonant 
transmission at larger angles is affected by evanescent 
nature of the subgap quasiparticles in S strip leading to a 
suppression of transmission probability.  
 Fig. 2b represents an example of comparison of 

( )T α in two limits of retro ( 0.01FE∆ = ) and 

specular ( 20FE∆ = ) AR regimes for 910 ,U ∆ =
0,ε ∆ = 0.122d ξ = . This shows a remarkable 

difference in the angular dependence in two cases which 
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(a) (b) (c) 
Figure 3. 1

0g I V− ∂ ∂ in different regimes for 910U ∆ = , for d ξ = (a) 0.1, (b)1, (c) 10; scales are different to reveal the d -dependent period of the 
oscillation. The values of 

FE∆ are written beside each plot. 

 

(a) (b) (c) 
Figure 4. Separate contribution of each propagation probability in 1

0g I V− ∂ ∂ , with 0.1FE∆ = for d ξ = (a) 0.1, (b) 1, (c) 10 when 910U ∆ = .

depends on d and U .
Now let us analyze the behavior of the differential 

conductance, I V∂ ∂ which is given by Eq. (11). Fig. 3 

shows 1
0g I V− ∂ ∂ versus eV ∆ when 910U ∆ = for 

thicknesses, 0.1,1, 10d ξ = and for different FE∆ to 
cover whole range from pure specular to pure retro AR.  
 For a thin strip with 0.1d ξ = (Fig. 3a) the transport 
is dominated by CT which results in a normalized 
differential conductance 1

0g I V− ∂ ∂ close to unity. The 
subgap differential conductance shows small deviations 
due to weak AR amplitude. Above the gap, by increasing 
the voltage, 1

0g I V− ∂ ∂ increases to unity in an 
oscillatory manner. The period of oscillations is 
inversely proportional to the thickness.  
 Increasing the thickness of S strip leads to an increase 
in the amplitude of AR and thus enhancing deviations 
from normal differential conductance at subgap voltages. 
This is seen in Fig. 3b where 1

0g I V− ∂ ∂ is plotted for 

1d ξ = . Above the gap 1
0g I V− ∂ ∂ shows quantum 

interference oscillations with smaller period compared to 
0.1d ξ = . Note that the period of oscillations does not 

depend on the doping of N regions given by FE∆ . In 

contrast to this, below the gap, behavior of 1
0g I V− ∂ ∂

strongly depends on FE∆ . This can be understood by 
noting that contributions of two different types of retro 
and specular ARs in electron transmission depend on 

FE∆ . The Andreev transmission ranges from purely 
retro reflection at 1FE∆ << to purely specular reflection 
at 1FE∆ >> [19].  
 By further increasing d ξ , the contribution of CT 
becomes even smaller at subgap voltages. The subgap 
differential conductance is determined only by AR. As a 
result, 1

0g I V− ∂ ∂ takes zero value at FeV E= (Fig. 3c) 
for that the AR is forbidden since the critical angle 

0cα = (Eq.(8)). Therefore the subgap conductance of 
very large d ξ is very similar to that of NS system [19]. 

Above the gap, 1
0g I V− ∂ ∂ is oscillating with energy as 

two previous cases. The oscillations persist even at very 
large thicknesses due to the ballistic feature of the 
contact. 
 To give more insight into different scattering 
processes, in Fig. 4 we have plotted contributions of CT, 
AR, CAR and R to differential conductance for different 
thicknesse and for 0.1FE∆ = . These plots confirm the 
above given explanations. Note that the contribution of 
CAR is always small because in contrast to AR, CAR 
requires a change of pseudospin which is prevented in 
the absence of psudospin flip scattering.   
 
4. Conclusions  
In this paper we have studied quantum transport of 
electrons through a graphene superconducting strip which 
connects two normal leads. Using DBdG equations we 
have calculated amplitudes of different scattering 
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processes which are normal reflection, direct and crossed 
Andreev reflections and cotunneling. First we have 
observed superconducting induced changes in the angular 
dependence of the electron transmission which can be 
explained in terms of interplay between Klein tunneling, 
Andreev reflection and resonance transmission. Within 
BTK formalism we have analyzed the resulting 
differential conductance for different thicknesses of the S 
strip and doping degrees of the N electrodes. The subgap 

1eV ∆ < differential conductance is determined by the 
competition of Andreev reflection and cotunneling. While 

in the limits of 1d ξ << and 1d ξ >> the transmission 
is respectively, dominated by purely cotunneling and 
Andreev reflection processes, at intermediate thicknesses 

1d ξ ≈ , it is determined by superposition of both 
processes. Above the gap 1eV ∆ > , the differential 
conductance shows oscillatory behavior with eV ∆ . We 
have given a full analysis of the period and the amplitude 
of this quantum interference oscillations in terms of d ξ
and doping of N regions.  
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