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Abstract 
This review article is about the role of electron-electron interactions in low dimensional systems and its transport properties in nano-
structures. It begins with a review of the pair-distribution function theory of electron liquid systems taking into account the electron-
electron interactions. We extend the theory for highly correlated system such two- and one-dimensional electron liquids. We then 
review the microscopic theory of the local-field factors and calculate the quasiparticle properties in two-dimension electron liquid 
and compare our results with those measured by recent experiments. The physics of two-dimension bilayer structures are revised and 
are immediately applied to the study of charged Coulomb drag effects in a bilayer electron-electron system and results are compared 
with experimental data. As a final application, the Luttinger theory is discussed and we compare our recent calculations with those 
obtained from quantum Monte Carlo simulation for one dimensional electron liquid.  
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1. Introduction  
An interacting electron liquid (EL) on a uniform 
background with constant dielectric constant ε is used 
as the reference system in most realistic calculations of 
electronic structure in condensed matter physics [1]. 
Understanding the many body properties of this model 
has attracted continued interest for many decades. EL is 
usually defined by the only relevant parameter in the 
absence of magnetic field and spin-orbit interaction at 
zero temperature which is the Wigner-Seitz density 
parameter sr defined by

 1 / 1= ,
*

DDrs n D aB

 
 Ω 

 (1) 

Were D is dimensionality, 3 = 4πΩ , 2 = 2πΩ and 
considering 1 = 2Ω , n is the electron density and 

* 2 2= /Ba meεh is the effective Bohr radius. The 
behaviors of EL systems are not like classical systems. 
In the high density limit ( 0)sr → associated with a 
large value of the kinetic energy, the EL behaves like a 
gas and electrons are highly itinerant. It means the 
typical time spent near a specific point is very short. In 
this case, the electron characteristic are well described 
by using a wave-like picture and physics of system is 
well explained by one-particle approximation. In the 
opposite limit, when sr becomes large, electrons tend to 

see each other better and the effects of statistical 
correlations between the motions of individual electrons 
become important. In this case, electrons spend a large 
time around a lattice site (Wigner crystal [1]) and 
electrons behaves like a solid. Interestingly, a one-
particle picture description would not be appropriate, 
specially at short or intermediate time scales. A particle 
like picture might in fact be more appropriate in large 

sr than a wave like picture. In the intermediate density 
regime which is relevent in three dimensions for simple 
metals and in two dimensions for systems like the 
electrons in an inversion layer of a Si metal-oxide-
semiconductor field-effect transistor (MOSFET) or in a 
GaAs quantum well in most density regimes, the EL is 
in a liquid state with intermediate-to-strong electron-
electron coupling and moreover there is a competition 
between the wave like picture of electron and particle 
like one and validity of all theory based on either one 
particle pictures or perturbation approximations are 
questionable. 

In the summer school, I gave two separate topics on 
strongly correlated Fermion systems. Firstly was about 
the correlations in low dimensional electron liquids and 
then two lectures about the ultracold Fermion gases, 
Feshbach resonance and BEC-BCC cross-over. Since the 
first part of my lecture notes regarding to the electron 
liquids is already long enough, I do not present any 
explanation about the ultarcold Fermi gases here and 
wish to write a brief review about this fascinating novel 
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subject in coming future. I would like to refer the reader 
to recent wonderful review by Giorgini, et al.[2] in the 
context of ultacold Fermi gases. 

The rest of this lecture notes is organized as follows. 
In Sec. II, we introduce the theoretical approach for 
electron liquid system incorporating the many-body 
effects. We then extend the approach to two-dimensional 
system and try to revise the quasi properties of the 
system and compare our results with those measured 
recently with different experimental groups in section 
III. Section IV contains our numerical calculations of 
drag resistivity and comparison of models with 
experimental data. Section V we review the physics of 
non-Fermi liquid dealing with one-dimensional electron 
liquids and compare our results with those calculated 
within the sate-of-the-art Quantum Monte Carlo 
simulations. We conclude in Sec. VI with a brief 
summary. 

 
2. Theoretical approach 
In this section, we briefly describe the main theoretical 
generalities on homogenous quantum electron liquids. 
To this purpose, we start with noninteracting Fermi 
liquids and give some basic definitions and properties. 
After that by taking the Pauli exclusion principle into 
account, we describe the system with more physical 
important properties and then explain briefly all 
theoretical weakness in the strongly correlated regions. 
Finally we introduce our recent approach to explore 
correlated systems by incorporating better effective 
electron-electron interactions. 

 
2.1. Ideal fermi gas and normal Fermi liquids 
Let us start with a brief review of the microscopic states 
of an ideal Fermi gas. We consider a non-relativistic gas 
of N noninteracting fermions inside a dimensional (D) 
volume V , in the thermodynamic limit V → ∞ and 
N →∞ , at given particle-number density, = /n N V
finite. The eigenstates of the system are antisymmetric 
under the exchange of particles and are written as Slater 
determinants built from single-particle states ( )ku rσ .
These are the product of (a) a plane wave 

1/ 2 exp( )V ik r− ⋅ with wave vector k , momentum kh

and energy 2 2= / (2 )ke k mh , and (b) a spin function. In 
particular the ground state is built from the plane waves 
of lowest energy, corresponding to values of | |k

r
up to 

the Fermi wave number Fk . For spin-1 / 2 fermions in 
the paramagnetic state (equal numbers of up and down 
spins), Fk is determined by  

( ), ( )
= 1 = 2 = 2 ,

(2 ) (2 )
dd d

Fd d k kFk k kF

V VN d k k
dσ π π≤

≤

Ω∑ ∫
(2) 

 i.e. 2 1/ 3= (3 )Fk nπ for 3D. The plane waves entering 
the ground-state determinant fill a sphere of radius Fk

in k space (the Fermi sphere). The momentum 
distribution ( )n k is the average occupation number of 
each single-particle state and in the ground state of the 
ideal Fermi gas jumps discontinuously from 1 to 0 as 
k crosses the surface of the Fermi sphere. 

The excited states of the ideal Fermi gas are obtained 
by exciting particles from states inside the Fermi sphere 
to states outside it: that is, the elementary excitation 
process is the creation of a particle-hole pair. The 
particle and the hole are not correlated in the absence of 
interactions and we may also take a grand-canonical 
viewpoint: the elementary excitations of the gas are of 
two independent types, namely a particle added in a state 
outside the Fermi sphere (with Fk k≥

r
and energy ek -

µ, µ being the chemical potential) and a hole added in a 
state inside the Fermi sphere (with Fk k≤

r
and 

excitation energy µ - ek ). 
The homogeneous fluids of interacting fermions with 

physical interest in condensed matter physics are (1) 
liquid 3 He and (2) the sea of electronic carriers in a 
metal or a doped semiconductor. The ideal Fermi gas 
provides a good starting point for these systems in the 
normal state. 

However, the interactions may lead to instabilities of 
the Fermi gas against a transition to (a) a superfluid 
state, which appears through the opening of a forbidden-
energy gap between the ground state and the excited 
states; or to (b) a (partially or fully) magnetically ordered 
state, in which an energy gap is present for spin-flip 
processes at constant momentum. Moreover, for 
conduction electrons in reduced dimensionalities (D=1 
and also in some 2D tight-binding-like models) a 
Luttinger liquid state may be induced by the electron-
electron interactions. A Luttinger liquid differs from a 
normal Fermi liquid in two respects, i.e. (a) the 
discontinuity in the momentum distribution across the 
Fermi surface is replaced by another type of non-analytic 
behavior, and (b) spin-charge separation occurs [3]. 
 
2.2. Hartree-Fock theory of the degenerate electron liquid 
The Hartree-Fock approximation [4] for the ground state 
of a system of interacting fermions assumes that the 
many-body wave function is a Slater determinant built 
from single-particle orbitals, to be determined self-
consistently by minimization of the expectation value of 
the Hamiltonian. Whereas for an inhomogeneous many-
electron system ( e.g. an atom or a molecule) the solution 
of the Hartree-Fock self-consistent problem may usually 
be obtained only in a numerical form involving further 
approximations, the exact Hartree-Fock solution is 
immediately found in the case of a homogeneous fluid 
( ( ) = 0extV r ): the self-consistent single-particle orbitals 
are necessarily plane waves, from the translational 
invariance of the system. Hence, the Hartree-Fock wave 
function for the ground state of a homogeneous fluid is 
the same as that of the ideal Fermi gas: that is, the 
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evaluation of the ground-state energy in Hartree-Fock is 
equivalent in this case to first-order perturbation theory. 

Including explicitly the spin indices, we get  

H 0 † †
, ' '

, , ',

1 ˆ ˆ ˆ ˆ= 0 | | 0
2

F
g k k q k q k q k k

k q k k
E e n v c c c cσ σ σ σ σ

σ σ σ
′ ′+ −

′

+ 〈 〉∑ ∑ ∑∑ (3) 

where 0
,kn σ is the ideal Fermi distribution and | 0〉 is the 

ground state of the ideal Fermi gas. The matrix element 
in Eq. (3) has non-zero value in two cases: (1) = 0q ,
and (2) ' =k k q− with =σ σ ′ (these are known as the 
Hartree term and the exchange or Fock term, 
respectively). The energy may be written in the form 
(with 0 =0= qv v )

H 0
, H

,

0
H 0 ,

1= ( )
2

1( ) = .

F
g k k F
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q
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N
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  + Σ   

Σ −


∑

∑
(4) 

We see that the energy of a fermion with momentum k
becomes H H( ) = ( )F k Fe k e k+Σ as a consequence of the 
interactions. H ( )F kΣ is the Hartree-Fock self-energy of a 
fermion. Its two terms derive from the fact that the 
fermion (a) feels the space average of the interaction 
potential, and (b) is kept apart by the Pauli symmetry of 
the many-body wave function from fermions having spin 
parallel to its own, so that their mutual interaction is 
decreased. 

We continue this calculation for a 3D electron 
plasma (with interaction potential 2 2= 4 /qv e qπ )
neutralized by a background of positive charge (the 
background must be added to ensure overall charge 
neutrality and leads to 0 = 0v ). We get  

2 2 2

2 2 2

( ) = 1 ln
2

3 3 2.21 0.916= .
25

F F F
HF

F F
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;

(5) 
Here 1/3= (9 / 4)α π − and sr is defined by 

34 ( ) / 3 = 1 /s Br a nπ , with Ba being the Bohr radius 

[ 1= ( )F B sk a rα − ]. As already remarked, the gain in 
potential energy found in Hartree-Fock derives from the 
fact that the exclusion principle keeps apart pairs of 
electrons with parallel spins, thus lowering on average 
their Coulomb repulsive interaction energy. Notice that 
the ratio between potential and kinetic energy is 
proportional to sr : this dimensionless length gives a 
measure of the coupling strength, which increases with 
decreasing density.

The expression given above for ( )HF kΣ predicts that 
the derivative of ( )HFe k has a logarithmic divergence at 

= Fk k± : within Hartree-Fock the velocity of an 
electron on the Fermi surface (defined by 

( )F HF
F

v e kk k k= ∇ =h ) diverges and hence the 

effective mass mL (defined by setting = /F Fv k mh L )
and the density of single-particle states (proportional to 
mL ) vanish on the Fermi surface. This result disagrees 
with experiment: e.g. it would give a / lnT T form for 
the dependence of the electronic heat capacity on 
temperature, instead of the linear T dependence which 
is observed in normal metals. The Landau theory of 
normal Fermi liquids restores the correct behavior. The 
main problem with the Hartree-Fock theory is that, by 
neglecting correlations due to Coulomb repulsions 
(which are most effective for electrons with antiparallel 
spins), it includes neither dielectric screening nor the 
collective plasma excitation. 

All states of a spin-independent Hamiltonian are 
classified according to the eigenvalue zS of the total 
spin along a chosen axis. The allowed values of zS can 
range from 0 in the spin-compensated Fermi fluid so far 
considered up to / 2N± in the case when all spins point 
in the same direction. A partially spin-polarized state has 
N↑ spin-up and N↓ spin-down electrons, with 

=N N N↑ ↓+ . The fractional spin polarization is 
= ( ) /N N Nζ ↑ ↓− , ranging from 0 to 1 (we are 

choosing N↑ as the number of majority spin). 
For a Fermi gas with 0ζ ≠ we need to define two 

distinct Fermi spheres with radii 1/3
( ) = (1 )FFk k ζ↑ ↓ ± ,

leading to a free-particle kinetic energy given by  
0 5/3 5/3

2 2
( , ) 3= (1 ) (1 )

10
s

s

E r Ryd
N r

ζ ζ ζ
α

 + + −   (6) 

 in 3D. It is immediately seen from Eq. (6) that spin 
polarization increases the energy of the noninteracting 
Fermi gas, so that its ground state has = 0ζ .

However, interactions may favor a ground state with 
a finite or full spin polarization for the phase diagram of 
the electron liquids. This is evident for the electron gas 
in the Hartree-Fock approximation. Each spin population 
independently contributes a term to the exchange energy, 
which is obtained using Eq. (5) as  

4/3 4/3( , ) 3= (1 ) (1 ) .
4

HF
x s

s

E r Ryd
N r

ζ ζ ζ
πα

 − + + −   (7) 

In Hartree-Fock a fully ferromagnetic state ( = 1ζ ) for the 
3D electron gas becomes lower in energy than the 
paramagnetic state ( = 0ζ ) at 

3 3= [2 ( 4 1)] / [5 ( 2 1)] 5.45crit
sr π α− − ; . 

 
2. 3. Lindhard susceptibility and RPA screening 
The Random Phase approximation (RPA) first proposed 
by Bohm and Pines for the 3D EL replaces the proper 
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polarizability °( , )qχ ω
r by the density-density response 

function 0( , )qχ ω
r of the ideal Fermi gas. Therefore, the 

plasma of interacting electrons is taken to respond as an 
ideal Fermi gas to the Hartree potential determined by the 
external charges and by the polarization charges, so that 
the electron-electron coupling is allowed only through the 
classical Coulomb interactions with the induced charges. 
The expression for the density response thus is  

0
0

( , )( , ) = ,
1 ( , )

RPA
q

qq
v q
χ ωχ ω

χ ω−

rr
r (8) 

 the numerator in this expression allows for the 
continuum of single electron-hole pair excitations, which 
is the only excitation mechanism for the ideal Fermi gas, 
whereas the denominator provides screening and is 
responsible for the resonance at the collective plasma 
mode. The plasmon sum rule and the perfect screening 
behavior are exactly satisfied, whereas the 
compressibility sum rule involves the ideal-gas 
compressibility. 

The calculation of 0 ( , )qχ ω
r in 3D was first tackled 

by Lindhard, in dealing with the scattering of a beam of 
fast electrons by excitation of density oscillations in the 
electronic structure of atoms in a gas. We proceed to 
calculate the inelastic scattering cross-section of an ideal 
Fermi gas, with the aim of using the Kramers-Kronig 
relations. The dynamic structure factor 0 ( , )S q ω (at 
energy transfer 0ω ≥ ) is determined by the electron-
hole pair excitations, i.e. 

0 0
0

,
( , ) = (1 ) ( )k q kk k q

k
S q n n e e

σ
ω δ ω ++− − +∑ (9) 

where 2= / (2 )ke k m and 2= ( / 2) /k q ke e k q q m+ − ⋅ +
( = 1h ). 0 ( , )S q ω differs from zero only in the region of 
the ( , )q ω plane enclosed by the curves 

2
1( ) = ( / 2) /Fq qk q mω + and 2

2( ) = ( / 2) /Fq qk q mω − + ,
thus, at given q one finds a continuum of 
excitations lying within this range of ω . In fact, (a) 
when the angle between k and q varies from 0 to 
π , the frequency spans the range 

2 2( / 2) / ( / 2) /qk q m qk q mω− + ≤ ≤ + ; (b) on 
integration over k from 0 to Fk , the frequency 
spans the ranges 10 ( )qω ω≤ ≤  for 2 Fq k≤ and 

2 1( ) ( )q qω ω ω≤ ≤  for 2 Fq k≥ . A full calculation of 
0 ( , )S q ω yields  

2

2 1

1

0 ( )

2
| ( ) | ( )0

( )
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0

for q
F

F for q q
F F

for q

qv

k qS q
q qv k

ω ω

ω ω ω
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≥


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
  − −  
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



(10) 

with 2 2= / ( ) =Fmk nν π h density of states for free 

electrons at the Fermi level and = /F Fv k mh . This 
result (multiplied by / 2n− ) yields 0 ( , )m qχ ωℑ for 

> 0ω ; recalling that 0 ( , )m qχ ωℑ is an odd function of 
ω and using the Kramers-Kronig relations one finds  

{
}

2
0

2

1 1 1e ( , ) = [1 ( ) ]ln
2 8 1

1 1[1 ( ) ]ln
8 1

x yq n x y
y x y

x y x y
y x y

χ ω ν − −
ℜ − + − − +

+ −
+ +

− +
− +

(11) 
where = / ( )Fx qvω and = / (2 )Fy q k .

The properties of 3D screening in the RPA are as 
follows. 

(a) Plasma excitation. In the long-wavelength 
limit one gets 0 ( , ) = 0m qχ ωℑ and 4. The plasmon 

as obtained from the zero in the RPA dielectric 
function has frequency given by 

2 2 2( ) = 6 / (5 ) ...p Fq q mω ω ε+ + and is undamped 
with increasing q till the dispersion curve meets 
the electron-hole pair continuum (at = cq q say, 
with c Fq k≈ ). ``Landau damping" of the plasmon 
starts at cq since the momentum and energy of the 
collective excitation may then be dissipated by the excitation of 
an electron-hole pair. However, one may show that in a more 
refined theory the damping of the plasmon should start already 
at terms of order 2q , through decay into two correlated 
electron-hole pairs. 

(b) Static screening. We first present an alternative 
derivation of the static RPA dielectric function, which 
illustrates its physical content by working directly in 
space. The Hartree potential ( )HV r created at a distance 

from a static foreign point charge of magnitude e
should be evaluated self-consistently from the Poisson 
equation: 2 2( ) = 4 [ ( ) ( )]HV r e r n rπ δ δ∇ − + , where 

( )n rδ is the induced change in electronic density. The 
electron density ( )n r may be written as 

2( ) = 2 | ( ) |kkn r rψ∑ , where ( )k rψ are single-electron 

orbitals, the sum over k is restricted to occupied orbitals 
( | | Fk k≤ ) and the factor 2 comes from the sum over 
spin orientations. We must now calculate how the 
orbitals ( )k rψ in the presence of the foreign charge 
differ from plane waves exp( )ik r⋅ : we use for this 
purpose the Schrödinger equation 

2 2 2( ) [ 2 ( ) / ] ( ) = 0k H kr k mV r rψ ψ∇ + − h , having 
imposed that the orbitals reduce to plane waves with 
energy 2 2 / (2 )k mh at large distance from the foreign 
charge. This approach (which will lead to the RPA 
result) is approximate insofar as the potential entering 
the Schrödinger equation has been taken  as the  Hartree 
potential,   thus   neglecting   exchange   and   correlation  
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Figure 1. The continuum of electron-hole pair excitations in 
the 3D ideal Fermi gas. Adopted from Ref.[5] . 
 
between an incoming electron and the screening cloud of 
the foreign charge. 

With the aforementioned boundary condition the 
Schrödinger equation may be converted into an integral 
equation,  

3
2

1 2( ) = exp( ) ' ( ') ( ') ( ')k k H k
mr ik r d r G r r V r r

V
ψ ψ⋅ + −∫h

(12) 
with ( ') = exp( | ' |) / (4 | ' |)kG r r ik r r r rπ− − − − . The 
low-order perturbative solution (within linear response) is 
obtained upon replacing ( )k rψ by 1/2 exp( )V ik r− ⋅ inside the 
integral. This yields 

2 3 2 3
1

2

( ) = [ / (2 )] ' (2 | ' |)

[ ( ')/ | ' | ] ,

FF

H

n r mk d r j k r r

V r r r    

δ π− − ×

−

∫h

where 2
1( ) = [sin( ) cos( )] /j x x x x x− is a spherical 

Bessel function. Using this result in the Poisson equation 
and solving it by taking  Fourier transform, we get 

2 2( ) = 4 / [ ( )]HV q e q qπ ε  with  

2 2

2 2 2
2 2( ) = 1 1 1 ln .

24
F F F

FF

mk e k q q kq
q q kq k

ε
π

   −+ + −    +    h

(13) 
This is the static dielectric function in RPA. 

For 0q → this expression gives 
2 2( ) 1 /TFq qε κ→ + with 2 2 2= 3 /pTF Fvκ ω , i.e. the 

result of the Thomas-Fermi theory. However, ( )qε has a 
singularity at = 2 Fq k± , where its derivative diverges 
logarithmically: the discontinuity in the momentum 
distribution across the Fermi surface introduces a 
singularity in elastic scattering processes with 
momentum transfer equal to 2 Fk± . This singularity 
determines after Fourier transform the behavior of 

( )HV r at large : ( )HV r is an oscillating function 
rather than a monotonically decreasing function as in the 
Thomas-Fermi theory [6]. Indeed,  

3 2 2

3 2
4 exp( )( ) = exp( ) =

( )(2 ) ( )
H

d q e e iqrV r iq r dq
i r q qq q

π
π επ ε

+∞
−∞

⋅∫ ∫
 

(14) 
and the integrand is non-analytic at = 2 Fq k± :

21 / [ ( )] [ 2 ]ln | 2 | regular termsq k F FF
q q A q k q kε →± → − +m m

, with 2 2 2 2= / [4 ( 8 )]TF F TF FA k kκ κ + . Hence,  
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( 2 ) ln | 2 |]

H F Fr

F F

AeV r dq iqr q k q k
i r

 q k q k
π

+∞
→+∞ −∞

− − − +

+ +
∫

2

3
2= cos(2 ).F

Ae k r
r

− (15) 

 This result is based on a theorem on Fourier 
transforms, stating that the asymptotic behavior of 

( )HV r is determined by the low- q behavior as well as 
by the singularities of ( )HV q . Obviously, in the present 
case the asymptotic contribution from the singularities is 
dominant over the exponential decay of Thomas-Fermi 
type coming from low q . The result in Eq. (15) implies 
that the screened ion-ion interaction in a metal has 
oscillatory character and ranges over several shells of 
neighbors, as has been observed experimentally. 

(c) Dependence of static screening on dimensionality.
Consider now a system in which the conduction 
electrons are restricted to move along a line. The Fermi 
surface reduces to two planes located at = Fk k± and 
the elastic scattering processes (with energy transfer 

= 0ω ) can occur only with momentum transfer = 0q
or = 2 Fq k . A window of forbidden excitations opens in 
the scattering spectrum at low energies: in 1D the 
excitations having 2| ( ) |qω ω≤ in the range 0 2 Fq k≤ ≤  
are forbidden. A full calculation yields  

0 2 1
2( , ) =  | ( ) | ( )

F
S q for q q

qv
πω ω ω ω≤ ≤  (16) 

and zero otherwise. Hence,  

0 2
2 2( ) = ln .

2
F
F

m q kq
q kq

χ
π

+
−

−h
(17) 

The singularities at the edges of the continuum are 
stronger than in 3D and the singularity of the static 
response at = 2 Fq k± is a logarithmic divergence in 

0 ( )qχ rather than in its derivative. 
This behavior of static screening in 1D drives the 

Peierls distortion [7] in low-dimensional conductors: 
e.g. a monatomic 1D conductor with a half-filled 
conduction band gains electronic energy by a lattice 
distortion opening a gap at the Fermi level through the 
formation of dimers. Fig. 2 illustrates the dependence of 

0 ( )qχ on dimensionality.  
 We conclude this discussion by giving the general 
expressions for the spin-resolved response of the ideal 
Fermi gas. These are  
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Figure 2. Illustrating the dimensionality dependence of the 
static density response of the ideal Fermi gas. 
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and  
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In the paramagnetic state neither the single-particle 
energies nor the momentum distributions depend on spin 
orientation and hence 0 0

0( , ) = 2 ( , ) = ( , )zz q q qχ ω χ ω χ ω−+ ,
with 0 ( , )qχ ω being again the Lindhard free-electron 
response. In the static case one recovers at long 
wavelengths the Pauli susceptibility 

0
0( 0,0) = ( 0,0)zz q qχ χ ν→ → ∝ for free electrons, 

where ν is again the density of states at the Fermi level. 
Short-range correlations (which are neglected in the 
RPA) play a crucial role in the spin response of an 
interacting EG, since the application of a magnetic field 
does not induce charge separation in the RPA sense. 
 
2.4. Analytic theory of pair correlation function for 

3D EL 
We consider an inhomogeneous 3D fluid of electrons 
consisting of the two spin species with densities ( )n rσ

in the presence of external potentials e ( )xtV rσ and of a 
uniform neutralizing background. From the Hohenberg-
Kohn theorem[8] the ground-state energy functional of 
the fluid can be written as  

{ } { }

{ } { }H

3 e
g

x

[ ( ) ] = [ ( ) ] ( ) ( )

[ ( ) ] [ ( ) ],

xt
s s

c

E n r T n r d rV r n r

E n r E n r

σ σ σ σ
σ

σ σ

+ ∆

+ +

∑∫
(20) 

where ( ) = ( )n r n r nσ σ σ∆ − are the deviations of the spin 
densities from their average values, sT and xcE are the 
ideal kinetic energy and exchange-correlation energy 
functionals, and HE is the Hartree term given by  

{ } 3 3

,

1[ ( ) ] = ' (| ' |) ( ) ( ')
2HE n r d r d r v r r n r n rσ σ σ
σ σ

′
′

− ∆ ∆∑ ∫ ∫
 (21) 
with 2(| ' |) = / | ' |v r r e r r− − . Similar idea has been 
used before by our group [9]. The Euler-Lagrange 
equations for the spin-resolved pair functions can now be 
obtained from the variational principle of Hohenberg and 
Kohn[8] using the von Weizsäcker-Herring ideal kinetic 
energy functional. With the zero of energy taken at the 
chemical potential, the formally exact differential 
equation for ( )g rσσ ′ reads  

2
2 ( ) ( ) ( ) ( ) = 0.P exr v r v r V r g r

m
σσ σσ

σσ
′ ′

′
 
− ∇ + + + 

 

h

(22) 
The correlation functional would also become relatively 
negligible in the limit 0sr → . One way to defined 

( )Pv rσσ ′ is 
22 ( )

( ) =  
( )

HF

P
HF

r g r
v r

m g r
σσ

σσ

σσ ′

′

∇′ h , (23) 

in the weak coupling limit 0sr → . In Eq. (23) ( )HFg rσσ ′
are the spin-resolved pair functions in the Hartree-Fock 
approximation and 1/3= (1 s ( ) )F Fk k gnσ σ ζ+ and 

=| | /n n nζ ↑ ↓− the degree of spin polarization. 
The Fermi-hypernneted chain approach (FHNC) 

expresses the potential ( )exV rσσ ′ in Eq. (22), which is 
the sum of the Hartree and of the exchange-correlation 
potential, as the sum of two effective pair 
interactions:[10, 11, 12, 13]  

( ) = ( ) ( ).ex eBV r W r W rσσ σσ
σσ

σσ δ′
′

′ + (24) 
Minimization of the ground state energy against arbitrary 
variations of ( )g rσσ ′ yields the expression  

( ) = [ ( ) ] ( )q
BW q S q V q

n n
σσ

σσ σσ σσ
σ σ

ε
δ′

′ ′ ′
′

− − −  (25) 

where 2 2= / (2 )q q mε h are the single-particle kinetic 
energies and the functions ( )V qσσ ′ are given by  

{ }

[ ]

2 2 2

2

( ) = 1 [ ( ) ( )] / ( )
2

( ) = ( ) ( ) ( ) / ( )
2
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V q S q S q q
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σσ σσ σσ
σ

σσ σσ σσ σσ
σ σ

ε
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 − + + ∆

 − + ∆

(26) 
with  

2( ) = ( ) ( ) ( ),q S q S q S qσσ σσ σσ∆ −  (27) 
 where ( )S qσσ ′ is spin dependence static structure 

function defined so that 
,( ) = [ ( ) 1]S q FT g rσσ σ σ σσδ′ ′ ′+ − . The Fourier 

transformation is defined  according to  the  general  expression  
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Figure 3. The spin resolved pair distribution function ( )g r↑↑  (panel left) and ( )g r↑↓  ( panel right) in a paramagnetic 3D EG at 

= 1,5,10sr and 20 , as a function of / ( )s Br r a . The results of the present work (full lines) are compared with QMC data of Ortiz et al. 
[15] (dots). The curves at = 5,10sr and 20 have been shifted upwards for clarity by 0.4, 0.8 and 1.2, respectively. For more details 
see Davoudi et al [16] 

[ ( )] = ( ) exp( )FT F r n n drF r ik rσσ σ σ σσ′ ′ ′ ⋅∫ . Equations 
(26)-(27) show how the effective boson-like interactions 

( )BW rσσ ′ in Eq. (24) are related in Fourier transform to the 
spin-resolved pair distribution functions. 

Turning to the second term on the left-hand side of 
Eq. (25), the effective pair potential ( )eW rσσ  has a very 
complicated expression within the FHNC.[10, 11, 12] 
However, in dealing with a one-component electron fluid 
Kallio and Piilo[14] have proposed a simple and 
effective way to account for this consequence of the 
antisymmetry of the fermion wave function. Their 
argument is immediately generalized to our two-
component Fermi fluid, and leads to the requirement that 
in Fourier transform this term should cancel the effective 
boson-like interaction ( )BW qσσ  for parallel-spin 
electrons at low coupling. That is,  

2

0

( ) 1( ) = ( ) = [1 2 ( )]  lim 2 ( )

HF
HF

HF

q
e Brs

S qW q W q S q
n S q

σσσσ σσ
σσ

σ σσ

ε

→

 −
− +  

 
(28) 

Here, ( )HFS qσσ  is the Hartree-Fock structure factor. 
It is evident that the insertion of Eqs. (23)-(27) into 

Eq. (22) allows a self-consistent calculation of the spin-
resolved pair distribution functions and of the effective 
electron-electron interactions. 

In Figure 3 we show that our results for ( )g r↑↑  and 
( )g r↑↓  in the paramagnetic EG at = 1,5,10sr and 20

are in excellent agreement with the quantum Monte 
Carlo (QMC) data of Ortiz et al.[15]. In the same range 
our results for ( )g r are in excellent agreement with 
those of Kallio and Piilo.[14] To the best of our 
knowledge theoretical results of similar quality have not 

been reported in the literature from an approach which is 
free of input and/or fitting parameters. 
 
3. Extend the FHNC approach for 2D EL 
In above we have presented an analytic theory of ( )g r
and other ground-state properties of the 3D electron gas 
[16]. The theory was based on a Fermi hypernetted chain 
approximation (hereafter indicated by the FHNC/0 
acronym) and yields quantitative agreement with QMC 
data up to at least = 20sr . The object of this part is to 
extend the theory of ( )g r and the correlation energy to 
the 2D electron gas. As we shall see, much higher 
sophistication is needed to attain a quantitatively useful 
theory in lowered dimensionality. We shall have to dwell 
on terms beyond the FHNC/0, which come from low-
order elementary diagrams and from three-body Jastrow-
Feenberg correlations. 

As in Ref. [16] we split the ideal kinetic energy 
functional into the sum of the von Weizsäcker - Herring 
term ( 22 / 8 ) ( ) / ( )m dr n r n r∇∫h and a residue 

[ ( )]T n rθ , and minimize the energy by means of the 
Hohenberg-Kohn variational principle. The result is a 
differential equation for ( )g r ,

2
2[ ( ) ( ) ( )] ( ) = 0 .F Bv r W r W r g r

m
− ∇ + + +h (29) 

The FHNC/0 and its HNC/0 equivalent for a Bose fluid 
[17, 18, 19] take 

22 2 ( ) 1( ) = [2 ( ) 1]
4 ( )

HNC
B

k S kW k S k
m S k

− − +  
h , (30) 

where ( )BW k is the Fourier transform  of ( )BW r .
Using Eq.  (30)  in  Eq.  (24)  with  ( ) = 0FW r  and  self- 
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Figure 4. The pair distribution function ( )g r of the 2D electron gas at =sr 1, 5, 10, and 20 in the paramagnetic state (Left panel) and 

in the fully spin-polarized state (Middle panel), as a function of distance (in units of s Br a ). The theoretical results (full lines) are 
compared with QMC data by Gori-Giorgi et al. [21] (dots). The dashed lines show the results obtained in the FHNC/0 scheme. The 
results have been shifted upwards by 0.4, 0.8 and 1.2 for clarity. The ground-state energy of the 2D electron gas (in Rydberg units, 
referred to the Madelung energy = 2.2122 /M srε − and multiplied by 3/2

sr ) as a function of the coupling strength sr ( Right panel). 
The full lines show the theoretical results for the paramagnetic state and the fully spin-polarized state, while the dots report QMC 
data from Attaccalite et al. [22]. The other three curves are theoretical results for states of partial spin polarization, as indicated in the 
figure. For more details see Asgari et al [23]. 
 
consistently solving Eq. (29) for ( )g r , we find 
quantitative agreement with the QMC data of Ref. [20] 
at = 1sr and discrepancies already emerging at = 5sr .

Improvements on Eq. (30) can be sought in two 
directions for a Bose fluid. The HNC may be transcended 
by the inclusion of low-order elementary diagrams, and 
three-body Jastrow-Feenberg correlations may be 
included. The contribution from the first elementary 
diagrams to the effective Bose potential is  

2 2
4 42

42
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4 (2 )
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( )(2 )

E
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kW k k
mn

dq q q S q
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ε
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δε
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− +




− 


∫

h

(31) 

where 4( )kε is given by a fourfold integral (in 2D) over 
momentum space. The contribution of three-body 
correlations is given by a two-fold integral, 

[ ]
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32
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∫

(32) 
where = ( )p q k− + , 2 2( ) = / [2 ( )]k k mS kε h and, with 

the definition 1( ) = 1 ( )X k S k−− , we have 

[ ]2( , , ) = ( / ) ( ) ( ) ( ) ( )v q p k m k pX p k qX q p qX p X q⋅ + ⋅ + ⋅h
and 
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2
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k pX p X k p qX p X q k qX q X k

k p qε ε ε

− ×
⋅ + ⋅ + ⋅

+ +

h

(33) 
The papers of Smith et al. [19] and of Apaja et al. [18] 
should be consulted for detailed derivations of these 
equations, in which 3( , , )u q p k is the irreducible three-

body vertex. 
We tried to take into account the higher-order terms that 
are missed in these approaches at strong coupling by 
assuming that they lead to corrections in the scattering 
potential that have roughly the same shape as the low-
order terms reported above. In particular, we found that 
the choice  

( ) (3)( ) = ( ) ( ) ( )HNC
sB B BW r W r r W rα α+ , (34) 

leads to a satisfactory account of the QMC data on the 
2D Bose gas. Here the parameter α is determined by 
fitting the QMC data on the ground-state energy [20] 
with a relative precision of 310− . This yields 

0.7923( ) = 1 5.888exp( 0.07758 ).s sr rα + − (35) 
An important requirement is that Eq. (29) should give 

the exact fermion-fermion distribution function when 
one goes to the weak-coupling limit 0sr → , when ( )g r
becomes the Hartree-Fock pair distribution function 

( )HFg r . The Fermi term in the scattering potential is 
then determined by the Hartree-Fock structure factor 

( )HFS k according to 
2 2
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h (36) 

 Our numerical results for the pair distribution function 
of the 2D electron gas in the paramagnetic state ( = 0)ζ
and in the fully spin-polarized state ( = 1)ζ are 
compared with the QMC data of Ref. [21] in Fig. 4. We 
clearly achieved fully quantitative agreement with the 
QMC data up to large values of the coupling strength sr .
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We can then confidently calculate the ground-state 
energy ( , )srε ζ of the 2D electron gas as a function of 

sr in these two states of magnetization, using an 
integration over the coupling strength according to the 
expression 

2 1 ( )
2 20

(1 ) 1( , ) =    [ ( ) 1]
2 (2 )

s k
s

d dkr v S k
r

λ
λ

ζ λε ζ
λ π

+ + −∫ ∫
 (37) 
 (in Rydberg units). The results are compared with the 
QMC data of Attaccalite et al. [22] in Fig. 4, right panel. 
There clearly is a discrepancy with the data in the absolute 
values of the energy, but this affects in essentially the same 
manner the two phases so that we find a transition from the 
paramagnetic to the fully spin-polarized fluid at 24sr ≈ , in 
excellent agreement with the QMC data. As to the nature of 
the phase transition, within the accuracy of our calculations 
it could be either a weakly first-order one or a continuous 
transition occurring in an extremely narrow range of values 
of sr . This is shown in Fig. 4, where we also report our 
results for the ground-state energy as a function of sr at 
several values of the spin polarization ζ .

Consequently, we present a model which 
quantitatively predicts the two-body correlations in 
both the 2D charged-boson fluid and the 2D electron 
gas using as the only input the QMC data for the 
ground-state energy of the boson fluid as a function of 
the coupling strength sr . The essential physical idea 
that underlies the model is that differences arising 
from the statistics are disappearing as the fermionic or 
bosonic fluid is brought into the strong coupling 
regime, where the Coulomb repulsions suppress close 
encounters of pairs of particles. However, exchange 
between parallel-spin fermions must be properly 
accounted for in the weak-to-intermediate coupling 
regime. The model has allowed us to reproduce the 
quantum phase transition that has been found to occur 
in the QMC studies of the 2D electron gas, essentially 
starting from the basic Coulomb Hamiltonian. Within 
the accuracy of our model the transition could be 
either a weakly discontinuous transition or a 
continuous one occurring in a very narrow range of 
coupling strength. 

 
3.1. Quasiparticle properties of two-dimensional 

electron liquid 
Theoretical calculations of the effective mass and spin-
susceptibility of electron systems are performed within the 
framework of Landau's Fermi liquid theory [24] whose 
key ingredient is the quasiparticle concept and its 
interactions. Among the methods designed to deal with the 
intermediate density regime, of particular interest for its 
physical appeal and elegance is Landau’s 
phenomenological theory [24] dealing with low-lying 
excitations in a Fermi liquid. Landau called such single-
particle excitations quasiparticles and postulated a one-to-
one correspondence between them and the excited states 

of a noninteracting Fermi gas. He wrote the excitation 
energy of the Fermi-liquid in terms of the energies of the 
quasiparticles and of their effective interaction. The 
quasiparticle-quasiparticle interaction function can, in 
turn, be used to obtain various physical properties of the 
system and can be parametrized in terms of 
experimentally measurable data. 

As applied to the electron gas model this entails the 
calculation of effective electron-electron interactions 
which enter the many-body formalism allowing the 
calculation of various physical properties. A number of 
calculations considered different variants of the GW -
approximation for the self-energy[25, 26, 27, 28, 29, 30, 
31] from which density, spin-polarization, and 
temperature dependence of effective mass are obtained. 
In these calculations the on-shell approximation[27, 28] 
yields a diverging effective mass but the full solution of 
Dyson equation yields only a mild enhancement.[30, 31] 
Other approaches exploiting the similarity to neutral 
fluid 3 He in the vicinity of MIT a found diverging 
effective mass.[32, 33] 

We consider a theory in which the layer thickness 
effects enter the local-field factors. In this direction, we 
use accurate static structure factors resulting from a 
Fermi hypernetted-chain self-consistent calculation [10, 
11, 12] (FHNC) in conjunction with the fluctuation-
dissipation theorem to extract the local-field factors 
which depend on the quantum-well width. We find that 
for the specific sample parameters of Tan et al.[34] good 
agreement between the experimentally observed spin-
susceptibility and our theoretical results can be achieved 
up to the intermediate coupling strength regime. Our 
results are also in good agreement with the QMC 
simulations of De Palo et al.[35] in the same range of 
coupling strengths implying the efficacy of our 
theoretical approach. 

To calculate the quasiparticle (QP) properties, we 
start with the calculation of the retarded self-energy, 
which can be decomposed in the usual way into the 
frequency independent Hartree-Fock and frequency 
dependent correlation parts.[26, 28] The correlation part 
of the self-energy involves the effective QP interaction 
between the electrons for which we use the Kukkonen-
Overhauser form.[26, 37] The main ingredient of this 
formalism is the screening dielectric function  

[ ]2 21 = 1 1 ( ) ( , ) 3 ( ) ( , ) .
( , ) q C q Sv G q q v G q q
q

χ ω χ ω
ε ω + −+ − +

In this expression ( , )C qχ ω and ( , )S qχ ω represent the 
charge-charge and spin-spin response functions, which 
in turn define and are determined by the spin-symmetric 
and spin-antisymmetric local-field factors ( )G q+ and 

( )G q− via the relations  

0
,

, 0

( , )( , ) = ,
1 ( ) ( , )C S

C S

qq
f q q
χ ωχ ω

χ ω−
(39) 

where ( ) = [1 ( )]C qf q v G q+− , ( ) = ( )S qf q v G q−− and 

0( , )qχ ω is the response function of a noninteracting 
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system. In the paramagnetic electron liquid 
( ) = [ ( ) ( )] / 2G q G q G q± ↑↑ ↑↓± , where ( )G qσσ ′ are the 

spin-resolved local-field factors. Note that we have 
approximated the local-field factors by their static, 
frequency-independent limits. As we explained in the 
Hartree-Fock the pair distribution function gives the 
local structure as merely due to exchange between 
electrons with parallel spins, Pauli hole, the Coulomb 
repulsion induce additional local structure mainly 
through correlations between electrons with antiparallel 
spins, Coulomb hole. Therefore, because of the Pauli-
Coulomb or precisely exchange-correlation hole, the 
local density of polarizable electron liquid around an 
electron is lower that the average density n . Hence, the 
Pauli-Coulomb hole has a direct role in determining the 
local-field factors. 

Quite generally, once the QP self-energy is known, 
the QP excitation energy ( )QP kδE , which is the QP 
energy measured from the chemical potential µ of the 
interacting system, can be calculated by solving self-
consistently the Dyson equation  

= ( )/
( ) = ( , )

QP

R
QP k ret  k

k e k  
ω δ

δ ξ ω+ ℜ ∑
hE

E , (40) 

where ( , ) = ( , ) ( , 0)ret ret ret F
R k e k kω ωℜΣ ℜ Σ − Σ . For 

later purposes we introduce at this point the so-called on-
shell approximation (OSA). This amounts to 
approximating the QP excitation energy by calculating 

( , )ret
Re k ωℜ Σ  in Eq. (40) at the frequency = /kω ξ h .

Once the QP excitation energy is known, the 
effective mass *( )m k can be calculated by means of the 
relationship  

* 2
( )1 1= .

( )
QPd k
dkm k k

δ

h

E
(41) 

Evaluating the *( )m k at = Fk k , one gets the QP effective 
mass at the Fermi surface. We remark that the QP excitation 
energy may be calculated either by solving self-consistently 
the Dyson equation or using the OSA [40]. 

Starting with the quasiparticle energy and its relation 
to the Landau interaction function, one can drive the 
modified Landé *g -factor expression. [26]  

* 2 22
* 0

= 1
2 2 p pk k

g m d E E
g n n n n

π φ δ δ
π π δ δ δ δ↑ ↑ ↑ ↓

 
 + −
 
 

∫ , (42) 

where E is the total ground state energy. Here 
| |=| |= Fk P k and φ is the angle between them. Once 

the QP effective mass *m and modified Landé *g -
factor have been calculated the spin susceptibility is 
found by the following exact relationship  

* * *

0
= ,m g

m g
χ
χ

(43) 

where 0χ is the Pauli spin susceptibility. 

As is clear from Eqs. (38, 39) the local-field factors are 
the fundamental quantities for an evaluation of 
quasiparticle properties. Our strategy is to use accurate 
spin-symmetric and spin-antisymmetric static structure 
factors to build the local-field factors.[38] For this purpose 
we use the Fermi hypernetted-chain approach [10, 11, 12, 
13] to calculate the spin-symmetric and spin-
antisymmetric static structure factors incorporating the 
finite thickness effects in a quantum well. 

The fluctuation-dissipation theorem relates the 
dynamic susceptibilities defined above to the static 
structure factors  

,0
1( ) = [ ( , )] ,C SS q d m q

n
ω χ ω

π
∞

± − ℑ∫ (44) 

where [ ]( ) = ( ) ( ) / 2S q S q S q± ↑↑ ↑↓± . As ( , )C qχ ω and 
( , )S qχ ω depend on ( )G q+ and ( )G q− , respectively, 

the above integral expression allows one to determine 
the local-field factors once the static structure factors are 
calculated by the FHNC approach. 

To assess the validity of our procedure, we first show 
the calculated pair-distribution function ( )g r at two 
representative values of = 3sr and = 6sr in Fig. 5, left 
panel. For the strictly 2D system we compare our ( )g r
with that obtained by Gori-Giorgi et al.[21] from QMC 
simulations. For these intermediate densities we find 
very good agreement and the omission of bridge 
diagrams within the FHNC is justified a posteriori.
Figure 5 also shows our results for a Q2D EG. The effect 
of finite thickness on ( )g r is more appreciable for small 
values of sr .

We note that there are qualitative differences at small 
distances and in particular the on-top value (0)g . It is 
not clear at this point whether these differences are 
because of the neglect of bridge functions in our 
implementation of the FHNC calculation or not. QMC 
simulations for Q2D EG would help establish the correct 
behavior of ( )g r for finite thickness samples. 

We next display the local-field factors ( )G q+ and 
( )G q− calculated within the present approach in 

comparison to those constructed by Davoudi et al.[36] 
using the QMC data and known sum-rules. Our local-
field factors typically start at zero in the long-wavelength 
limit and go to a constant for large values of q as shown 
in Fig. 5. The main qualitative difference between our 

( )G q+ and ( )G q− and the Davoudi et al.[36] 
construction is in the large q behavior. In particular, a 
peak structure both in ( )G q+ and ( )G q− occurring 
around 3 Fq k≈ and 2 Fq k≈ , respectively, is quite well 
reproduced. Our local-field factors satisfy the 
fluctuation-dissipation theorem but not the 
compressibility sum-rule, whereas those of Davoudi et 
al.[36] satisfy the compressibility sum-rule but not the 
fluctuation dissipation theorem. In fact, it is known that 
frequency  dependent  (dynamical)  local-field factors are  
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Figure 5. (Left panel) Pair-correlation function ( )g r for = 3sr (lower curves) and = 6sr (upper curves has been shifted upwards by 
0.4). Symbols are QMC results of Gori-Giorgi et al. Ref. [21] for a strictly 2D electron gas, dashed and solid lines are those 
calculated within the present approach for 2D and Q2D EG, respectively. ( Middle Panel) The local-field factors ( )G q+ as a function 
of / Fq k for = 3sr and = 6sr . Note that ( )G q+ → ∞ tends to a larger constant value with increasing sr . (Right Panel) The local-field 
factors ( )G q− as a function of / Fq k for = 3sr and = 6sr . In both figures, dashed lines are analytical expression of QMC results of 
Davoudi et al. Ref. [36] for a strictly 2D electron gas, dotted and solid lines are those calculated within the present approach for 2D 
and Q2D EG, respectively. Note that ( )G q− → ∞ tends to a smaller constant value with increasing sr . For more details see Asgari and 
Tanatar [40]  
 

Figure 6. (Left panel) Many-body effective mass as a function of sr for 0 8sr≤ ≤ for a Q2D electron gas confined in a 
GaAs/AlGaAs triangular quantum well of the type used in Ref.[34]. (Middle panel) * /g g as a function of sr for 0 6sr≤ ≤ . The 
experimental data * *

0/m mχ χ  is from the *
0/χ χ of empirical formula given by Ref.[tan] divided by the * /m m of Ref.[39]. (Right 

panel) spin susceptibility as a function of sr for 0 10sr≤ ≤ for a Q2D electron gas confined in a GaAs/AlGaAs triangular quantum 
well of the type used in Ref.[39] compared with quantum Monte Carlo results of Ref. [35]. For more details see Asgari et al [40] 
 
needed to fulfill both requirements. 
 In Fig. 6, left panel we show our numerical results of 
the QP effective mass both in OSA and Dyson 
approximations. The QP effective mass enhancement is 
substantially smaller in the Dyson equation calculation 
than in the OSA. Comparing the results of Fig. 6 with 
the experimental measurements of Tan et al.[34] we can 
draw the following conclusions: (i) The RPA and present 
results are rather similar in the weak coupling limit 
( << 1sr ), (ii) theoretical calculations in the strong 
coupling region are not so close to experimental data. 
There is an essential point which we should stress here 
that experimental data were collected at weak magnetic 
fields and mostly in high Landau levels, however our 
numerical calculations have been performed in the 
absence of a magnetic field. Figure 6, middle panel 
depicts our results for the ratio * /g g as a function of 

sr for 0 6sr≤ ≤ . * /g g is calculated from Eq. (16) 

and embodies the charge and spin fluctuation effects 
through G+ and G− . We included the value of 

experimental * *
0/m mχ χ  which is extracted from the 

*
0/χ χ empirical formula given by Tan et al. [39] 

divided by the experimental data of * /m m of Tan et al.
[34]. We observe that there is an enhancement in g∗

beyond 5sr : within the present method using either 
OSA or the Dyson approaches compared to the 
experimental data and the RPA calculation. In particular, 
it is surprising that RPA yields a reasonable agreement 
with experiment in a region of sr values where it is not 
expected to be very reliable. In Fig. 6, right panel we 
show the spin susceptibility as a function of sr
compared to RPA, recent experimental data of Zhu et 
al.[39] and quantum Monte Carlo calculation [35]. As it 
is  clear  from  this  figure * /χ χ starts at unity when sr
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Figure 7. The pair distribution functions ( )g rαβ
 in a symmetric e - h ( Left panel) bilayer at 2( ) /s Br a dγ ≡ and = 20sr , as a function 

of / ( )s Br r a . The results of FHNC/ 3ϑ (solid lines) are compared with FHNC/0 (dashed lines) and DMC data[44](dotes). The pair 
distribution functions ( )g rαβ  in a symmetric e - e ( right panel) bilayer at ( ) /s Br a dγ ≡ and = 30sr , as a function of / ( )s Br r a . The 
results of FHNC/ 3ϑ (solid lines) are compared with FHNC/0 (dashed lines) and DMC data[44](dotes). For more details see 
Abedpour et al [45] 

tends to zero and increases with increasing sr values. 
Our numerical calculations within both OSA and Dyson 
approximations are in good agreement with the 
experimental measurements in the weak and 
intermediate coupling limits. Our numerical calculations 
are in better agreement with the QMC compared to the 
2D EG case. 

 
4. Ground-state properties of Electron-Hole 

Bilayer systems 
The Electron-Hole Bilayer Systems (EHBS) have been 
center of experimental and theoretical investigation [41] 
for many years. The advances in the nanoscale 
semiconductor fabrication technology have made 
available these Fermi liquid system in the couple 
semiconductor quantum-well structures with a good 
control on the electron and hole density and the interwell 
spacing. The Coulomb attraction existing between the two 
kinds of fermions naturally brings about pairing, hence, 
the possibility of a coherent state [42]. It was realized [43] 
soon that system of spatially separated electrons and 
holes, such as a bilayer, have a number of advantages with 
respect to the conventional bulk sample [41] in which 
electrons and holes occupy the same region. Thus, while 
in a homogeneous semiconductor the excitonic condensate 
would be an insulator [42], in a bilayer superconducting 
phase is in principle possible [43]. 

We consider a double-quantum-well system with 
electrons in the first and holes in the second well, with 
masses 1m and 2m , and densities 1n and 2n
respectively. We suppose the confining potential of each 
layer to be so high and narrow that we can neglect any 
inter-layer tunneling and consider the motion of carriers 
in the two wells as purely two-dimensional. We take the 
distance d between the layers to be small in order to 
permit inter-layer interactions. The Hamiltonian of the 
system is  

( , ) ( , )

22 ,
,

( , )

1= ( )
2 2

i j

i
ij

i
H v r

m
α β

α
α β

αα ≠

∇
− +∑ ∑h , (45) 

where 2= /v e rαα  and 2 2 2= /v e r dαα − + with 
( , )i α indicating the i -th particle in the layer α . Our 
aim is to calculate the pair correlation functions ( )g rαβ  
of the e - h and e - e bilayers  

( , ) ( , )
( , ) ( , )

1 1( ) = ( )
i j

i jg r r r r
S n n

α β
αβ α β

α β
δ

≠

− +∑ , (46) 

where the average is taken on the ground state and S is 
the area of the sample. 

Fig. 7 reports our numerical results for the pair 
correlation functions ( )g rαβ  for different values of 
layer density sr and interlayer separation ( ) /s Br a dγ ≡
obtained within FHNC/0 and FHNC/ 3ϑ approximations. 
Apart from a better agreement with QMC data in 
compare with previous local-field based results, it is also 
free of an instability which usually appears in that 
methods in the strong coupling regime ( i.e large sr
and/or small interlayer separation d ). Since the three-
body correction inters just in the intra-layer component 
of the effective potential, the agreement between QMC 
data and our results for inter-layer pair correlation 
function in strong coupling is still poor, especially the 
on-top value of interlayer pair correlation function 

, (0)gα α  is always underestimated. 
In the results, we present a self-consistent analytical 

theory of the intra-layer and inter-layer pair distribution 
functions ( )g rαβ  of electron-hole bilayer system. Our 
approach involves the solution of the zero energy 
scattering Schrödinger equation with an effective 
potential which includes a Bose-like term from Jasrow-
Feenberg correlations and a Fermi  term  from  exchange  
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and kinetic energy, tailored to include Hartree-Fock limit 
in high density. Our theory is also shown to satisfy 
plasmon sum rule and the charge neutrality condition. 
We obtain very good agreement with quantum Monte-
carlo results for pair correlation functions over a wide 
range of densities and inter-layer distances. No 
instability observed in the wide range of parameters we 
have studied. For a better result in the strong coupling 
regime, and possible tracing of excitonic phase, the inter-
layer correlation potential also needs to be improved. 

 
4.1. Charge Coulomb drag effect in bilayer electron 

systems 
In contrast to the single layer resistivity which shows a 
nontrivial interplay between interaction and disorder 
effects near the metal-insulator transition[46], the inter-
layer resistivity is largely determined by the long range 
Coulomb scattering (as long as the single layer densities 
are away from metal-insulator transition region). 
Therefore Coulomb drag experiments provide valuable 
information on the intra- and inter-layer electron-
electron interactions especially when the layer densities 
are lowered. 

Over the years there has been a number of Coulomb 
drag experiments at zero magnetic field using different 
samples and probing different parameter regimes. The 
main parameters entering a drag experiment set-up are the 
layer density n which may be related to the 
dimensionless coupling strength sr , the separation 
distance between the layers d and the Fermi temperature 

FT . Hill et al.[47] measured drag resistivity Dρ in an 
electron bilayer system at densities corresponding to 
1.13 1.57srˆ ˆ  and high temperatures FT T: . The 
observed peak in Dρ around / 2FT T≈ was attributed 
to the contribution of plasmons. In fact, the experimental 
results were regarded as an indirect evidence for the 
existence of acoustic and optical plasmons in a bilayer 
system.[48] Similar experiments were also performed by 
Noh et al.[49] confirming plasmon effects on the drag 
resistivity and revealing the importance of possible 
dynamic correlations even though the layer densities were 
such that 1.48sr ≈ where the strong coupling effects are 
not expected. More recent experiments by Kellogg et 
al.[50] used samples with layer densities reaching 

4.3sr ≈ and 1Fk d : where d is the center-to-center 
well separation. In contrast to the above experiments, 
Pillarisetty et al.[51] measured frictional drag between 
two dilute 2D hole layers in which the sr values were in 
the range 19 39sr≤ ≤ .

On the theoretical side, the drag resistivity has first 
been formulated within the random-phase 
approximation (RPA) for the layer density-response 
functions and inter-layer effective interaction.[52,53] 
Here and most subsequent works treat the inter-layer 
effective interaction as given by the bare inter-layer 
Coulomb interaction screened by the bilayer system 

dielectric function. Importance of dynamical 
correlations is noticed even at the RPA level since the 
difference between the static and dynamic screening 
function brings quantitative changes to the drag 
resistivity.[52] At larger sr values when the correlation 
effects become significant one should go beyond the 
RPA. One way to do this in a physically motivated way 
is through the local-field corrections to the RPA form 
of the screening function. The simplest form of the 
local-field corrections is the Hubbard approximation 
which was used by Hill et al.[47] to analyze their data. 
A much widely used local-field corrections are 
calculated within the self-consistent field 
approximation scheme of Singwi et al.[54] (STLS). 
They have been incorporated in the evaluation of the 
drag resistivity by S ′ wierkowski et al.[55]. In 
connection with the Kellogg et al. experiments[50], 
Yurtsever et al.[56] pointed out that STLS local-field 
corrections yield a poor representation and suggested 
the use of a different effective interaction originally 
developed by Kukkonen and Overhauser[57] and 
Vignale and Singwi.[58] Recently, Badalyan et al.[59] 
employed frequency dependent local-field corrections 
in the long-wavelength limit ( 0q → ) obtained from 
dynamical exchange-correlation kernel in the context of 
density functional theory. 

We consider a double-quantum-well structure with d
as the center-to-center well separation such that there is no 
tunneling between them and L as the width of the 
quantum wells. Each layer is characterized by the 
dimensionless coupling constant * = 1 /s Br a nπ where 

n is the areal density, * 2 * 2= / ( )Ba m eεh is the effective 

Bohr radius, ε and *m being the background dielectric 
constant and electron band effective mass. Each layer has 
only one type of charge carrier, i.e. electrons, although our 
theoretical formulation could be applicable to hole-hole 
and electron-hole layers with suitable changes. In the case 
of electron-hole bilayers the prospect of formation of an 
excitonic state[60] and its detection through drag 
experiments[61] requires a new formulation of the 
effective inter-layer interaction which we do not address 
here. However, correlations in electron-hole bilayers and 
their effects on drag resistivity can be studied using the 
improved inter-layer models we shall describe below. The 
motion of the carriers is free along the xy plane and 
under the action of a double-well potential profile in the 
z -direction only the lowest subband in each quantum 
well is occupied. For this aim, temperature should be less 
than the difference between excited energy level and the 
ground state energy in quantum well. This yields 

* 2< 3( / ) / 16.s B FT r a L T Furthermore, the bilayer 

system is assumed to be embedded in a uniform 
neutralizing positive background charge. The unscreened 
Coulomb interaction potential, in Fourier space, between 
the electrons in k th and l th layers is given by 
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( ) = ( )kl q klv q v F qL . Here, 2= 2 / ( )qv e qπ ε and klF are 
infinite quantum-well form factors taking the finite width 
effects into account which are given by [52]  

2 4

2 2 2 2 2 2
3 8 / 32 [1 exp( )]( ) =

4 ( 4 )
kk

x x xF x
x x x

π π
π π

+ − −
−

+ +
4 2

2 2 2 2
64 ( / 2)sinh( ) = exp( ).

( 4 )
kl

xF x qd
x x
π

π
−

+
(47) 

We note that most theoretical calculations[52, 48, 55] 
adopt the infinite quantum-well model to account for the 
width effects, whereas a better way would be to calculate 
the Coulomb matrix elements using envelope functions 

( )n zφ determined self-consistently from the Poisson and 
Schrödinger equations.[62] 

The drag resistivity (or as it is also called 
transresistivity) Dρ of an electron system at temperature 
T has been obtained in a variety of theoretical models. 
These include diagrammatic perturbation theory [52, 63], 
the Boltzmann equation [48] and the memory function 
formalism [53, 55]. In a drag experiment one applies an 
electric field 1E to layer 1 (drive layer) creating a 
current to flow with current density 1J . This sets up an 
electric field 2E in layer 2 (drag layer) where no current 
is allowed to flow. The drag resistivity is defined as 

2 1= /D E Jρ and the microscopic calculations relate 
this quantity to the rate of change of momentum between 
the layers, as electron-electron inter-layer interactions 
transfer momentum from the drive layer with carrier 
density 1n to the drag layer with density 2n .

Theoretical considerations lead to the same 
expression for Dρ in terms of the effective inter-layer 
interaction and the density-response function of the 
single layers. When the effective inter-layer interaction 
treated perturbatively, Dρ is given as  

2

2 2
1 2

2 0 0
123 1 2

20 0

=
8

( , )  ( , , ) ( , , )
,

( / 2 )sinh

D
B

B

e n n k T

W q m q T m q T
q dq d

k T

ρ
π

ω χ ω χ ω
ω

ω
∞ ∞

− ×

ℑ ℑ
∫ ∫

h

h
(48) 

where 0 ( , )i qχ ω , ( = 1i or 2) is the non-interacting 
linear response corresponding to the drive and drag layer 
which shows the charge density fluctuations in a given 
layer at finite temperature and 12 ( , )W q ω is the effective 
inter-layer interaction. Let us examine Eq. (48) in the 
limit where 0T → . We can rewrite Eq. (48) following 
Hu[64]  

20
1= ( )

( / 2 )sinh
D d H

T
ρ ω ω

ω
∞
∫ , (49) 

 and suppose that there is a scaling behavior such that 
( )H αω ω≈ as 0ω → . Substituting this form into the 

above equation gives D Tαρ ≈ when > 1α and 

becomes ∞ for 1α ≤ . When 1α ≤ , evidently 
perturbation theory breaks down and the above 
expressions are invalid. When > 1α , perturbation 
theory is valid and scaling behavior of Dρ indicates that 
in the weak-coupling regime, as 0T → the drag 
resistivity must go to zero faster than linearly in T .

An important ingredient which is needed to calculate 
Dρ is the electron-electron inter-layer interaction, 

12 ( , )W q ω . The effective electron-electron interaction 
for a two-component system given by a 2 2× matrices 
and in random-phase approximation (RPA) it is given by  

ˆ ˆˆ ˆ ˆ( , ) = ( ) ( ) ( , ) ( )RPAW q v q v q q v qω χ ω+ , (50) 
 where ˆ ( , )qχ ω defined in terms of the non-

interacting charge-charge response function and 
Coulomb interactions. 

To take into account the effect of correlations more 
clearly, which are more important in the strongly 
correlated regime where sr becomes large, we need 
more sophisticated approaches. For this purpose, we 
introduce here other approximation scheme for 

12 ( , )W q ω proposed by S′ wierkowski et al. [55, 59] 
(SSG) where  

ˆ ˆˆ ˆ ˆ( , ) = ( ) ( ) ( , ) ( )SSG eff eff effW q v q v q q v qω χ ω+ , (51) 

where ( ) = ( )(1 ( ))ij
ij ijeffv q v q G q− are the effective 

Coulomb interactions and ( )ijG q are intra- and inter 
local-field corrections (LFC) which take into account 
multiple scattering to infinite order between all 
components of the plasma compared with the RPA 
where these effects are neglected. 

A more detailed analysis, which accounts for the 
vertex corrections associated with charge-charge 
fluctuation, was carried out for an electron gas (EG) in 
Refs. [56,58,65], where Kukkonen-Overhauser-like 
effective inter-layer interaction potential [57] were 
obtained by different approaches. In this scheme we 
have  

ˆ ˆˆˆ ˆ ˆ( , ) = ( ) ( ) ( , ) ( )  ,VS eff eff effW q v q v q q v q Uω χ ω+ − (52) 

with the elements of Û defined by ( ) ( )ij ijv q G q . The 
form of 12 ( , )W q ω within the Vignale and Singwi (VS) 
approach is similar to that in the self-consistent field 
approach of Singwi et al. [55, 54] (SSG) except for the 
last term. More clearly, the inter-layer interaction in Eq. 
(52) is given by [58, 65]  

12 12
12 12 12

( )(1 ( ))( , ) | = ( ) ( ),
( , )VS

v q G qW q v q G q
q

ω
ω

−
−

∆
(53) 
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Figure 8. The temperature dependence of the drag resistivity for the identical bilayer electron-electron systems for 10= 3.1 10n × cm 2−

( = 3.25sr ) (left panel) and 10= 3.8 10n × cm 2− ( = 2.93sr ) (right panel). The full boxes are the experimental data of Ref. [50]. FHNC 
local-field corrections are used in conjunction with different screened inter-layer interaction models. For more details see Asgari et al 
[67] 
 
Here 0( , , )k q Tχ ω  is non-interacting charge-charge 
response function at finite temperature.[48] 

Another approximation scheme for screened bilayer 
2D electron-electron interaction is proposed by Zheng 
and MacDonald [66](ZM). In this scheme the screened 
electron-electron interaction potential is given as  

10ˆ ˆ ˆ ˆ( , ) = 1 ( , , ) ( ) ( ).ZM effW q q T v q v qω χ ω
−

 −   (55) 

This is derived essentially from a two-component 
generalization of the vertex function that enters in self-
energy in the so-called GWΓ approximation. However, 
because of the matrix nature of two-component systems 
there seems to be some ambiguity in such a construction. 
Note, for instance, that ˆZMW is not a symmetric matrix 
for unmatched bilayer systems. Finally, we remark that 
VS, SSG and ZM forms of the effective electron-
electron interactions reduce to RPA if the LFCs are 
omitted. 

As it is clear from Eqs. (51), (52) and (55) the local-
field corrections are the fundamental quantities for an 
evaluation of the effective electron-electron interaction. 
Here, we intend to examine the inter-layer potential of 
the Coulomb bilayer system by including correlation 
effects. To this purpose, we made use of the STLS 
approach both at zero (STLS0) and finite temperature 
(STLS) schemes. The STLS theory embodies 
correlations beyond the RPA approach and as an 
important improvement. In this approach the static LFC 
that accounts for correlation effects among carriers in the 
layers k and l are given by:  

2 2

( )1 .( ) =   [ (| |) ]
( )(2 )

kl
kl kl kl

kl

v qdq q kG q S q q
n v qq

δ
π

′′
′− − −∫ , (56) 

where ( )klS q is a static structure factor. The equations of 

motion for the Wigner distribution functions in a bilayer 
coupled with the linear-response theory yield in the 
Singwi et al[54] approach the following expression for 
the density-density response functions:  

{ }
0

0

( , ) = ( , , )

( 1) ( )(1 ( )) ( , , )
.

( , )

kl k

kl
kl kl kl l

q q T

v q G q q T

q

δ

χ ω χ ω

δ χ ω

ω

×

+ − −

∆
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The fluctuation-dissipation theorem leads to the static 
structure factor for a bilayer at finite temperature  

( ) = ( , ) coth  .
2kl kl

Bk l

S q d m q
k Tn n
ωω χ ω

π
 

− ℑ  
 

∫
h h  (58) 

Equations (56), (57) and (58) are solved numerically in a 
self-consistent way for ( )klG q both at zero and finite 
temperature cases separately. 

Another sophisticated method is based on Fermi 
hypernetted-chain approach (FHNC). Our strategy 
follows a similar approach to our recent works, Ref. [38] 
which uses accurate intra- and inter-layer static structure 
factors to build the local-field corrections. For this 
purpose we implement the self consistent Fermi 
hypernetted-chain approach [10, 11, 12] at zero 
temperature in order to calculate the intra- and inter-
layer static structure factors incorporating the finite 
thickness effects in a quantum well. The latter effects are 
known to be important for the adequate description of 
the drag resistivity from a number of calculations.[52, 
55, 48, 59] In what follows we explain the FHNC 
approximation and then outline our method to obtain the 
static local-field corrections, ( )ijG q , at zero temperature. 

In Fig. 8 we show the calculated drag resistivity as a 
function of temperature for various theoretical models of 
effective inter-layer interaction (i.e. models denoted as 
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VS, SSG and ZM) with different LFCs (i.e. schemes 
denoted as FHNC, STLS and STLS0) at layer densities 

103.1 10× cm 2− and 103.8 10× cm 2− and compare them 
with the experimental results of Kellogg et al.[50] The 
experimental data were obtained for bilayer GaAs-
AlGaAs heterostructures for two identical infinite layers 
of electrons separated by =d 280 Å and with a double 
quantum well of widths = 180L Å. In all our results, the 
drag resistivity calculated within the VS inter-layer 
potential is larger than the one calculated within the SSG 
approximation. It means that the value of U increases 
with increasing 12( )G q , and VS potential in Eq. (52) 
becomes highly different from the SSG potential given 
by Eq. (51). The static LFCs which are constructed 
within the FHNC approach together with the electron-
electron inter-layer potential calculated within VS and 
SSG approaches give results in quite good agreement 
with experimental measurements especially in the low 
temperature regime below the plasmon-mediated drag. 
 
5. One-dimensional electron liquids 
5.1. The Luttinger liquid paradigm 
As we move to strongly correlated electron liquids in 
1D, it will be useful to briefly recall the main points of 
Landau's theory of normal Fermi liquids. The basic 
assumption of Landau's theory is that low-energy 
excitations are quasiparticles with a very long lifetime 
and can be treated by means of a simple free-energy 
functional involving deviations from the Fermi ideal-gas 
momentum distribution. The theory predicts that the 
low-temperature thermodynamic properties of an 
interacting Fermi liquid are very similar to those of the 
non-interacting system: the interactions only lead to 
quantitative renormalizations. 

A normal Fermi liquid is defined as a fluid of 
interacting fermions whose ground state may be obtained 
in a continuous manner from that of the ideal gas. In this 
case: 

(a) The Fermi surface still exists as a surface in k
space across which the ground-state momentum 
distribution ( )n k has a discontinuity. However, ( )n k
has a high-momentum tail due to the promotion of some 
particles outside the Fermi sphere: when the interactions 
are switched on, the particles correlate their motions and 
the kinetic energy necessarily increases. The magnitude 
of the discontinuity in the momentum distribution across 
the Fermi surface is now less than 1 . The increase in 
kinetic energy is accompanied by a gain in potential 
energy even in the case of repulsive interactions, with a 
net gain in the total energy. 

(b) The elementary single-particle excitations still are 
particles and holes, but are well defined only near the 
Fermi surface. 

The properties of the 1D Luttinger liquids of 
interacting fermions are fundamentally different from 
those of 2D or 3D normal Fermi liquids [3, 68]. Their 
elementary excitations are not quasiparticles, but rather 

collective oscillations of the charge and spin densities, 
which in general propagate at different speeds giving rise 
to spin-charge separation. Most correlation functions 
show non-universal power laws with interaction-
dependent parameters. Luttinger-liquid behavior is 
experimentally well established in the physics of quantum 
Hall edge states and of quantum spin chains. In contrast, it 
has been argued that presently available quantum wire 
systems are not in the regime where Luttinger-liquid 
effects are important [69]. 

In this Section our main aim is to trace the line of 
argument that leads to the exactly soluble Tomonaga-
Luttinger model [70] (LM) and then to the concept of 
Luttinger liquid after inclusion of the spin degree of 
freedom. We thus start by considering a 1D system of 
non-interacting spinless fermions, with parabolic 
dispersion 2= / (2 )ke k m ( = 1h ). In its ground state 
the single-particle states with | |< Fk k are occupied and 
those with | |> Fk k are empty, Fk being related to the 
1D particle density n by =Fk nπ (in the spinless 
case). For low-energy excitations (within a momentum 
cutoff Λ , say) only the region around the two Fermi 
``points" at Fk± is involved, and in this region (the 
``low-energy sector") the dispersion relation can be 
linearized as , 0=k Fe e v k± ± , with 0 = F F Fe v kε − . In 
the LM one lets the cutoff Λ go to infinity. There then 
are two branches of particles, the right movers R (with 
positive velocity) and the left movers L (with negative 
velocity). This modification makes the spinless model 
exactly soluble even when interactions are switched on. 

Let ˆ ( )qαρ be the Fourier components of the particle 
density operator,  

†
,,ˆ ˆ ˆ( ) = kk q

k
q c cα ααρ +∑ , (59) 

for right and left movers, with =α + or − (R or L). The 
non-interacting Hamiltonian 0H (and a more general 
model including interactions, see below) can be written 
in terms of these operators: in essence, one cannot add a 
particle (or a hole) to the 1D system without creating at 
the same time a density wave. A proof of this result is 
based on the following facts: 

(i) the density fluctuation operators obey bosonic 
commutation relations,  

ˆ ˆ[ ( ), ( )] =
2qq
qLq qα α αα

αρ ρ δ δ
π′ ′ ′′− , (60) 

where L is the system size (special care is needed in 
calculating the ``anomalous commutator" 

ˆ ˆ[ ( ), ( )]q qα αρ ρ− ); 
(ii) ˆ ( )qρ± creates eigenstates of 0H with energy 

Fqv± , so that 0H can be rewritten as  

0
>0,

ˆ ˆ= ( ) ( )F
q

H v q q qα α
α
α ρ ρ −∑ , (61) 

The linearization of the dispersion relation implies 
that all electron-hole pairs have the same energy Fqv
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independently of k , so that the states created by the 
density fluctuation operator are coherent linear 
combinations of individual electron-hole excitations; 

(iii) the spectra of the fermionic and bosonic 
representations of 0H are thus the same (one can 
demonstrate that the degeneracies of the levels are also 
the same). 

The next step in the development of the spinless LM 
involves the switching on of the interactions starting from 
the basic interaction Hamiltonian 

0
1 ˆ ˆ=

2int q q qqH v n n
L −≠∑ where qv is the Fourier 

transform of the interparticle potential and ˆqn is the particle 
density fluctuation operator. There are two basic types of 
scattering processes contributing to intH : forward 
scattering (at 0q ≈ in the low-energy sector), and 
backward scattering (at 2 Fq k≈ in the low-energy sector), 
so that in a conventional notation intH is rewritten as  

1
0,

2

1 ˆ ˆ= [ ( ) ( ) ( )
2

ˆ ˆ( ) ( ) ( )].

int
q

H V q q q
L

V q q q

α α
α

α α

ρ ρ

ρ ρ
≠

−

− +

−

∑
(62) 

The couplings are related to the interparticle potential by 
1( ) = qV q v and 2 2( ) = q kF

V q v v− .

The Hamiltonian of the spinless LM in Eqs. (61) and 
(62), being expressed solely in terms of density 
fluctuation operators, can be rewritten as  

( )

†1

0

† †2

( ) ˆ ˆ= [ | |
2

( ) ˆ ˆ ˆ ˆ| | ]
4

LM F q q
q
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π
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∑
(63) 

where  

[ ]2ˆ ˆ ˆ= ( ) ( ) ( ) ( )
| |q R Lb q q q q

L q
π

ρ ρΘ + Θ −  (64) 

The Hamiltonian (63) can be diagonalized by a 
Bogoliubov transformation, with the result  

†

0

ˆ ˆ=LM q q q
q

H ω β β
≠
∑ , (65) 

where = | |q qc qω with  
2 2

1 2( ) ( )=
2 2q F

V q V qc v
π π

   + −      
. (66) 

 The boson operators are linear combinations of the 
original density fluctuation operators, so that the 
elementary excitations of the Hamiltonian (65) are 
coherent superpositions of collective density oscillations. 
Evidently, the stability condition  

1 2| 2 ( ) |>| ( ) |Fv V q V qπ + , (67) 
must be satisfied for the dispersion relation to be real. In 
addition, the ground-state wave function is normalizable 
if the stability condition  

1/2
2

1

( ) = 0lim 2 ( )q F

q V q
v V qπ→∞ +

, (68) 

is satisfied. Notice that in the non-interacting gas limit 
one recovers zero sound in the Fermi gas ( = | |q Fv qω ): 
the electron-hole pairs have been replaced by this 
collective excitation. 

In the case of short-range interactions the dispersion 
relation (66) describes sound waves at long wavelengths, 
when the coupling parameters tend to constant values 
( 1 4( ) 2V q g→ and 2 2( )V q g→ , say). One can prove 
that in this limit the Hamiltonian (65) can be transformed 
into a continuum-model Hamiltonian describing an 
elastic string:  

2 21= ( ) [ ( )]
2LM x

uH dx uK x x
K

π φ
π

 Π + ∂  ∫ . (69) 

Here the fields ( )xφ and ( )xΠ , obeying canonical 
commutation relations [ ( ), ( )] = ( )x x i x xφ δ′ ′Π − , are 
related to the particle density ( )xρ and to the current 
density ( )J x by 0( ) = [ ( ) ]x x xφ π ρ ρ∂ − −  and 

( ) = ( )J x uK xΠ , 0ρ being the average particle density 
in the ground state. The parameters in Eq. (69) are  

2 2
4 2

4 2
4 2

= ,
2

2 2= .
2 2

F

F
F

g gu v

v g gK
v g g

π π

π
π

    + −        
+ −

 + +

(70) 

The form of the transformed Hamiltonian in Eq. (69) 
emphasizes the collective nature of the particle motions 
on a chain: a particle setting out with a given momentum 
will collide with a first neighbor and exchange 
momentum with it to start a density wave along the 
chain. 

We merely quote without proof at this point two 
remarkable properties of the quantum fluid described by 
the LM: 

(a) Momentum distribution. The momentum 
occupation number ,kn α has the same form for right and 
left movers and obeys the relation  

, ,= 1 .k k k kF F
n nδ α δ α+ −− (71) 

Thus , = 1 / 2kF
n α (as in the Fermi gas), but the 

function ,kn α is continuous through Fk . However, for 
any non-vanishing interaction the momentum 
distribution and the density of states have power-law 
singularities at the Fermi level, with a vanishing single-
particle density of states at FE . The absence of a step 
discontinuity at Fk implies the absence of a 
quasiparticle pole in the one-particle Green's function. 

(b) Electrical conductance. The current I flowing 
through a homogeneous 1D fluid subject to a potential 
drop V∆ applied between a source (at the left) and a 
drain (at the right) is the difference between the current 
carried by right movers driven by the source potential 
towards the drain and the current of left movers driven 
by the drain potential towards the source. The value of 
I is determined by the proper current-density − charge-
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density response function, and in the spinless LM this 
function coincides with that of the non-interacting fluid. 
The result is =I G V∆ where the conductance G has 
the fundamental value  

2= /G e h (72) 
(or twice this value if spin is included). 

 
5.2. Model with spin-1/2 and spin-charge separation 
Up to this point we have ignored the spin of the electron. 
Upon inclusion of the spin-1/ 2 degree of freedom, all 
operators in Eqs. (61) and (62) acquire a spin index σ
and summations over σ need adding. However, 2 Fk -
scattering of pairs of electrons with antiparallel spins can 
now also be accompanied by spin flips, and inclusion of 
this effect makes the model no longer exactly soluble in 
general. If this term is neglected, one gets the Luttinger-
liquid Hamiltonian in the form  

, ,
>0, ,

ˆ ˆ= ( ) ( )LL F
q

H v q q qα σ α σ
α σ

α ρ ρ −∑

[ ][ ]1
0

1 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2 R L R L

q
V q q q q q

L
ρ ρ ρ ρ

≠
+ + − + −∑

[ ]

[ ]

2 1
0,

, , , ,

1 ( ) ( )
2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ,
q

R L L R

V q V q
L

q q q q
σ

σ σ σ σρ ρ ρ ρ
≠

+ − ×

− + −

∑
(73) 

where ,ˆ ˆ=α α σσρ ρ∑ . One can now carry out a 
transformation to boson operators, using Eq. (64) with 
spin-indexed operators, and eliminate the cross terms 
between charge and spin density by introducing spin-
symmetric and spin-antisymmetric combinations,  

( )
( )

1ˆ ˆ ˆ= ,
2

1ˆ ˆ ˆ= ,
2

C
q q q

S
q q q

b b b

b b b

↑ ↓

↑ ↓

 +

 −

(74) 

with the result =LL C SH H H+ where  

( )

†1

0

† †1 2

( ) ˆ ˆ= { | |

( ) ( ) ˆ ˆ ˆ ˆ| | },
4

C C
C F q q

q

C C C C
q q q q

V qH v q b b

V q V q q b b b b

π

π

≠

− −

 + +  

+ +

∑
(75) 

( )

†

0

† †2 1

ˆ ˆ= [ | |

( ) ( ) ˆ ˆ ˆ ˆ| | ].
4

S S
S F q q

q

S S S S
q q q q

H v q b b

V q V q q b b b b
π

≠

− −

+

− +

∑
(76) 

Each of these two independent terms can be diagonalized 
by a Bogoliubov transformation, finding two branches of 
excitations: charge density waves propagating with velocity  

2 2
1 1 2( ) ( ) ( )=

2
C
q F

V q V q V qc v
π π

+   + −      
, (77) 

and spin density waves propagating with velocity  
2

2 12 ( ) ( )=
2

S
q F

V q V qc v
π
− −   

, (78) 

 Spin-charge separation is implicit in the fact that these 
two velocities are in general different. Thus, if we write 
the spin-indexed boson operator as the sum of a charge 
component and a spin component by inversion of Eq. 
(74), these two components will evolve in time 
according to two different and independent 
Hamiltonians, and will propagate at different velocities. 

The last term in the Hamiltonian (73) includes only 
2 Fk -scattering between parallel-spin electrons. Adding 
a spin-flip back-scattering term in the form  

† †1
,, ,

, , ,

,

ˆ ˆ ˆ= ( ) ( ) ( 2 )

ˆ ( 2 ),

sf R FR L
k p q

L F

gH c k c p c p k q
L

c k k q

σσ σ
σ σ

σ

′′
′

+ + ×

− −

∑ ∑

then the Hamiltonian can be written as  
1

2
2= cos( 8 ( ))

(2 )
C S S

gH H H dx x
A

φ
π

+ + ∫ , (80) 

where for = C,Si we have  

2 21= ( ) [ ( )]
2

i
i i i i x i

i

uH dx u K x x
K

π φ
π

 Π + ∂  ∫ (81) 

 with  
2 2

4,

4,

4,

= ,
2

2 2
= .

2 2

i i
i F

F i i
i

F i i

g gu v

v g g
K

v g g

π π

π
π

     + −      


+ −
 + +

(82) 

(see Eqs. (69) and (70)), having defined 1 2= 2Cg g g− ,

1=Sg g , 4, 4=Cg g , and 4, = 0Sg . For 1 = 0g Eqs. 
(79)-(81) describe independent long-wavelength 
oscillations of the charge and spin density with linear 
dispersion relations = | |i iu qω . For 1 0g ≠ the last 
term on the RHS of Eq. (80) must be treated 
perturbatively by means of a renormalization-group 
approach, and the results are as follows. 

(i) Repulsive interactions. For 1 > 0g the cosine term 
in Eq. (80) is renormalized to zero at long wavelengths, 
so that spin-flip processes become irrelevant in the 
renormalization-group sense. A similar fate is met by 
corrections to the Hamiltonian (80) such as those 
associated with band curvature and with the absence of 
high-energy single-particle states. Lattice effects 
intervene at low energy only to give rise to higher 
harmonics at wave numbers of the form = (2 1) Fq n k+
where n is an integer. 

(ii) Attractive interactions. In the case 1 < 0g ,
however, the renormalization group scales to strong 
coupling. In this case the elementary excitations of the 
spin-fluctuation field Sφ may, for instance, correspond 
to small oscillations around one of the minima of the 
cosine term, or possibly to soliton-like terms where Sφ
goes from one minimum to the other. Both types of spin 
excitation have a finite activation energy: thus for 

1 < 0g the  spin  excitation spectrum has a gap, whereas  
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Figure 9. Phase diagram of the 1D system of spin-1/ 2
fermions. The spin sector is massless in the upper part 
( > 1SK ), while in the lower part ( < 1SK ) the spin excitations 
are massive ( i.e. with gap). 
 
the charge excitation spectrum remains ``massless" ( i.e. 
gapless). 

Figure 9 reports the phase diagram for the 1D system 
of spin-1/ 2 fermions for isotropic spin couplings as 
assumed so far, in the ( , )C SK K plane. The plane is 
divided into four sectors depending on the value of the 
parameter CK and of the back-scattering 1g (or 
equivalently of the parameter SK , with the two upper 
sectors corresponding to 1 > 0g and the two lower sectors 
to 1 < 0g ). The indicated phases correspond to the most 
divergent susceptibility, while the subdominant 
divergences are indicated in parentheses. The symbols 
CDW and SDW indicate charge-density-wave and spin-
density-wave phases (see Fig. 9). Also present are singlet 
superconductivity (SS) and triplet superconductivity (TS).  
 
5.3. Impurity in Luttinger liquids 
Let us now consider the effect of a single impurity on the 
density of the Luttinger liquid. For simplicity we assume 
that the electron-impurity potential is a δ -function of 
dimensionless strength u located at = 0x , i.e. 

( ) = ( )e i FV x v u xδ− h . The electron density operator in 
real space is given by  

0ˆ ˆ ˆ( ) ( ) ( ),2kF
n x n x n x≈ + (83) 

where  
† †

0 ˆ ˆ ˆ ˆˆ ( ) = ( ) ( ) ( ) ( )R LR Ln x x x x xψ ψ ψ ψ+ (84) 
is the part associated with zero-momentum transfer (i.e. 
forward scattering) and  

† †ˆ ˆ ˆ ˆˆ ( ) = ( ) ( ) ( ) ( )2k L RR LF
n x x x x xψ ψ ψ ψ+ (85) 

is the part associated with momentum transfer 2 Fk±
(i.e. back-scattering). The electron impurity interaction 
term operator is thus  

0ˆ ˆ ˆ= (0) (0)e i F 2kF
V v u n n−  + h (86) 

It is intuitively clear that the forward scattering term 
simply multiplies the one-electron wave functions by a 
position-dependent phase factor, with no observable 
consequences. On the other hand,  the  back - scattering  
 

Figure 10. Schematic drawing of a spin-density wave (SDW) and a 
charge-density wave (CDW) with wavelength 2 / (2 )Fkπ . In a SDW 
one has two waves of spin density for up and down spins, with 
wavelength 2 / (2 )Fkπ : the two waves are shifted relative to each 
other by half a wavelength and form antiferromagnetic ordering. In a 
CDW the two waves are in phase giving a charge-density modulation 
and no spin-density modulation. 
 
term has important and unexpected consequences: 

(a) Friedel oscillations and charge density waves. The 
Friedel oscillations of the displaced electron density around 
a charged impurity in a normal 1D electron fluid have the 
form cos(2 )/ | |Fk x x , where the wavelength 2 / (2 )Fkπ
is equal to the mean first-neighbor distance /L N in the 
spinless case. The role of repulsive interactions in the LM is 
to multiply the above factor by a function expressing an 
extremely slow spatial decay. Of course, any form of long-
range order such as Wigner crystallization is prevented by 
fluctuations in 1D according to the Wagner-Mermin 
theorem. One may rather view the spinless LM fluid as 
being prone to formation of a charge-density modulation 
having wave number 2 Fk and slowly decaying amplitude, 
with the role of the impurity being that of pinning the phase 
of such a modulation. Inclusion of the spin-1/ 2 degree of 
freedom adds to the above result for the screening charge a 
term having the form cos(4 )Fk x multiplied again by an 
extremely slow decay factor. Predisposition to charge 
density waves with wavelength 2 / (4 ) = /Fk L Nπ (with 

Fk being now equal to / 2nπ ) is indicated in the repulsive 
Luttinger liquid. 

(b) Back-scattering current. Inclusion of a point-like 
impurity in the fluid causes a back-scattering current, 
which is due to the transfer of right movers across the 
wire to the left-moving branch minus the transfer of left 
movers to the right-moving branch. The result is a 
reduction of the net current flowing through the wire at a 
given value of V∆ . The conductance of the channel is 
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reduced accordingly to  
2

=
( )

Be d IG
h d V

−
∆

, (87) 

The back-scattering current BI is proportional to 
2 1( ) gV −∆ , where (i) = 1g in the absence of 

interactions, so that ohmic behavior is preserved though 
with a reduced conductance; but (ii) < 1g for repulsive 
interactions, implying a vanishing conductance for 

0V∆ → . Pinning of the electron density by the impurity 
is again indicated. 

 
5.4. Long-range interactions and Wigner crystallization 
Up to here we have assumed that the electron-electron 
interaction is of finite range, i.e. the 0q → limit of 

1( )V q and 2( )V q is finite. This is not unreasonable in 
many situations, since the one-dimensional system is 
usually embedded within a larger three-dimensional 
structure which eventually screens the coulomb 
interaction at sufficiently large distance. It is of interest, 
however, to see what happens in the ideal case of the 
bare coulomb interaction. The long wavelength limit of 
bare 1 D coulomb interaction has the form 22 | ln( ) |e qb ,
b being the wire radius, hence we recover from Eq. (66) 
a plasma-like dispersion relation,  

1/2= | || ln( ) |q C q qbω , (88) 
where the constant 

2
2= 2 / (1 / 2 )F k FF

C v e v vπ π+h h , reduces to the 

RPA [75] value: 22 /ne m , if 2 = 0kF
v . Allowing for 

a finite value of 2kF
v may be said to introduce an 

effective mass correction. 
The most interesting point here is the extremely slow 

decay (much slower than any power low) of the 4 Fk
component, showing an incipient CDWs at wavevector 
4 Fk . This oscillation period is exactly the average 
interparticle spacing, i.e. the structure is that expected for a 
one dimensional Wigner crystal. Again, because of the one 
dimensional nature of the model, there is no true long range 
order, however, the extremely slow decay of the 4 Fk
oscillation would produce strong quasi Bragg peaks in a 
scattering experiment. It is worthwhile to point out that this 
4 Fk contribution arises even if the coulomb interaction is 
extremely weak and depends only on the long range 
character of the interaction. On the other hand, correlation 
functions that involve operators changing the total number of 
particles ( e.g. the single particle Green's function and pairing 
correlation functions) decay faster than any power low: 

3/2exp[ ( )]lnc x−− , c being a constant. This in particular 
means that the momentum distribution function kn and all 
its derivatives are continuous at Fk , and there is only an 
essential singularity at this point. 

Many of the electron-electron interaction effects 

become increasingly important as carrier density and 
dimensionality are reduced and the homogenous electron 
liquid provides a primitive model for their study. The 
crucial role in the theory is played by the particle pair 
distribution function ( )g z . In our previous works we 
presented a theory of the pair distribution function and other 
ground-state properties of the 3D and 2D electron liquid [16 
, 30]. The theory was based on a Fermi hypernetted-chain 
approximation (FHNC) which represents a direct 
generalization to the Fermi systems of the well known 
hypernetted-chain Euler-Lagrange (HNC/EL) 
approximation. One of the important feature of theory based 
on HNC/EL or FHNC is that the theory sums not only all 
ring and ladder diagrams exactly, but also mixed diagrams 
in a local approximation [72]. It means the FHNC theory is 
not a Fermi liquid theory and therefore we able to apply it 
for studying many-body effects on 1D EL. As we shall see, 
much higher sophistication is needed to attain a 
quantitatively useful theory in 1D EL. We shall have to 
dwell on terms beyond the FHNC/0, which includes 
elementary diagrams and the three-body Jastrow-Feenberg 
correlations. These effects have been studied theoretically 
in boson fluids for the 1D system using the HNC/EL 
formalism by Krotscheck et al [17].  

We consider a 1D EL as a model for a system of 
electronic carriers with band mass m in a semiconductor 
heterostructure with dielectric 
constant ε . The resulting effective 1D potential is readily 
shown [74] to be 

2 2 2( ) = ( / )( 2 / 2 ) [ / 4 ] [ / 2 ]v z e b exp z b erfc z bε with 

Fourier transform 2 2 2 2 2
1( ) = ( / )  [ ] [ ]v k e n exp b k E b kε

where the exponential integral function, 1( )E x is defined 

as /u
x

e du u
∞ −∫ . The Fourier transform is defined 

according to the general expression 
[ ( )] = ( ) exp( )FT F r n drF r ik r⋅∫ . Here n is the total 

average density. The above form of the bare potential 
exhibits the typical 1D behavior, ( ) ( )v k ln kb≈ as 0k → ,

and the 3D behavior, 2( ) 1 / ( )v k kb≈ as k → ∞ .
We assume that only one subband is occupied and 

neglect any contribution from higher subbands. This 
approximation leads to > / 4sr bπ .

With the zero of energy taken at the chemical potential, 
the formally exact Euler-Lagrange equation for the spin 
summed pair distribution function ( )g z reads [10, 14]  

2 2

2 ( ) ( ) ( ) ( ) = 0.B F
d v z v z v z g z

m dz
 
− + + + 

 

h (89) 

Here, ( )v z is the 1D EL potential and the Bose-like 
potential ( )Bv z contains the effects of correlations and 
by itself would determine ( )g z in a Bose fluid. The 
details of the Bose-like potential have been discussed by 
many authors, for instance see Ref. [12]. We can write it 
as  
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( ) = ( ) ( )B ind elev z w z v z+ ∆ , (90) 

from the theoretical point of view it is important to 
remark that in FHNC-type calculations at strong 
coupling the Bose-like ( )Bv q interactions should be 
corrected by the addition of three-body correlations and 
elementary-diagrams (or "bridge functions") 
contributions [10, 11, 18, 12]. The ( )elev z∆ is a term 
arising from elementary diagrams and triplet 
correlations. We only consider the fourth-order 
elementary diagrams and triplet correlations, 

(3)4( ) = ( ) ( )E
ele B Bv k w k w k∆ + , which hereafter, we call it 

as FHNC /4 + triplet acronym. Note that the approach is 
reduced to the Fermi hypernetted-chain approximation, 
FHNC /0 when the corrections of the Bose-like 
interaction are omitted, ( ) = 0elev k∆ . The contribution 
from the low-order elementary diagrams to the effective 
Bose potential is  

2 2
4 4

42

( ) = { ( )
4 2

( )[ ( ) 1] },
(2 ) ( )

E
B

kw k k
mn

dq qq S q
S k

ε
π
δε

π δ

− +

−∫

h

(91) 

 where 4( )qε is given by a twofold integral (in 1D) over 
momentum space.  

'

4 4 2

' '

'

1( ) = [ ( ) 1]
2 (2 )

[ ( ) 1][ ( ) 1]
[ ( ) 1] [ ( ) 1] ,

dpdqq S p
n

S q S p q
S p q S p q q

ε
π

− ×

− + − ×
+ − + + −

∫
(92)

 

and the contribution of three-body correlations is given 
by the integral,  

[ ]{ }

(3)
3

3

1( ) = ( ) ( ) ( , , )
8

( , , ) ( ) ( ) ( , , )

Bw k dqS p S q u q p k
n

v q p k p q u q p k
π
ε ε

×

+ +

∫ (93) 

where = ( )p q k− + , 2 2( ) = / [2 ( )]k k mS kε h and, with 

the definition 1( ) = 1 ( )X k S k−− , we have 

[ ]2( , , ) = ( / ) ( ) ( ) ( ) ( )v q p k m kpX p kqX q pqX p X q+ +h
and  

[ ]

2
3( , , ) = ( / 2 )

( ) ( ) ( ) ( ) ( ) ( )
.

( ) ( ) ( )

u q p k m
kpX p X k pqX p X q kqX q X k

k p qε ε ε

− ×
+ +

+ +

h
(94) 

With regard to the Fermi term ( )Fv z in Eq. (88), we 
adopt the same criteria in determining its form as in Ref. 
[14]. An important requirement is that Eq. (88) should 
give the exact fermion distribution function when one 
goes to the weak-coupling limit 0sr → , where in this 
limit ( )g z becomes the Hartree-Fock pair distribution 

function, ( )HFg z . The Fermi term in the scattering 

potential is then determined by the Hartree-Fock 
structure factor ( )HFS k ,

2 2 2

22 2

( )= ( )

( ) /( ) =
( )

( ) 1 [2 ( ) 1] ( ) | .
4 ( )

HF

HF

HF
HF

HFHF

F

ele S k S k

d g z dzv k FT
m g z

k S k S k v k
m S k

 
+ 

  

 − + − ∆ 
 

h

h

(95) 
The Hartree-Fock static structure function is given by 

( ) = ( / ) (2 ) ( 2 )HF
F F FS k k k k k k kθ θ− + − where θ is 

the Heaviside step function, *= / 4F s Bk r aπ is the Fermi 

wave vector and ( )HFg z is given by  
2

2
( )( ) = 1 .

2( )
HF F

F

sin k zg z
k z

− (96) 

The rational behind Eq. (95), is as in Ref. [kallio], (i) the 
first term on the RHS ensures that the Hartree-Fock limit 
is correctly embodied into the theory, (ii) the second and 
third terms ensure that the Bose-like scattering potential 
is suppressed for electrons at weak coupling [16]. We 
introduce at this point the relation between ( )g z and 

( )S k :
2( ) = 1 ( )[ ( ) 1] .g z cos k z S k dk
n

+ −∫ (97) 

Our numerical results of the pair distribution function 
of the 1D EL is compared with the DMC data of Ref. 
[71] in Figure 11. The quantum wire width is *= 0.1 Bb a
and the system is highly correlated. We have clearly 
achieved good qualitatively agreement with the DMC 
data. It is obvious from the Fig. 11, FHNC /4 + triplet 
results are in excellent agreement with DMC data up to 

< 1.3Fzk  and less agreement in larger z -values to 
produce the oscillation behavior. The strong oscillation 
behavior in DMC data corresponds to the periodicity of 
the quasi-Wigner crystal. It is apparent from the figure 
that FHNC /4 + triplet approach which includes further 
corrections than FHNC/0, modifies the results and show 
the first peak and its oscillatory behavior, however the 
magnitude of peak is less than the one predicted by 
DMC simulation. Our ( )g z has more structure within 
FHNC /4 + triplet than the ( )g z obtained within 
FHNC/0. Moreover, in both approaches the short-range 
behavior of ( )g z give correct shape in base on Kimball's 
cusp condition and they have different values at contact. 

In Figure 12, we show our results for ( )S k in the 
paramagnetic 1D EL at = 1sr and 2 within both 
FHNC /0 and FHNC /4 + triplet approximations. It is 
obvious to see the improvements brought above by the 
use of FHNC /4 + triplet over FHNC/0. Apart from the 
strong peak structure at = 4 Fq k which appears in DMC 
simulation,   the   FHNC /4 + triplet results  are  in  good  
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Figure 11. The pair distribution function ( )g z as a function of 
Fzk for various = 1sr , ( left panel) and = 2sr (right panel) at *= 0.1 Bb a

comparing the FHNC/0 and FHNC /4 + triplet approximations with DMC data of Casula et al [71]. For more details see Asgari [73] 
 

Table 1. Correlation energy of the 1D EL in Ryd/electron. DMC from Casula, [71] STLS from Calmels and Gold [75].  

sr Various calculations *= Bb a *= 2 Bb a

0.1 
DMC 
Ref.[73] 
STLS 

-0.000463 
-0.000459 
-0.000457 

-0.000110 
-0.000107 
-0.000117 

0.2 
DMC 
Ref.[73] 
STLS 

-0.0016996 
-0.001665 
-0.001645 

-0.000418 
-0.000411 
-0.000431 

0.4 
DMC 
Ref.[73] 
STLS 

-0.00579 
-0.00564 
-0.005449 

-0.001514 
-0.001502 
-0.001492 

0.6 
DMC 
Ref.[73] 
STLS 

-0.01122 
-0.01099 
-0.01044 

-0.003089 
-0.002983 
-0.002955 

0.8 
DMC 
Ref.[73] 
STLS 

-0.01738 
-0.01678 
-0.01608 

-0.00498 
-0.00476 
-0.00469 

1.0 
DMC 
Ref.[73] 
STLS 

-0.02394 
-0.02296 
-0.02202 

-0.00709 
-0.00687 
-0.00662 

2.0 
DMC 
Ref.[73] 
STLS 

-0.05840 
-0.05311 
-0.04968 

-0.01912 
-0.01806 
-0.01735 

3.0 
DMC 
Ref.[73] 
STLS 

-0.0856 
-0.07330 
-0.06862 

-0.0322 
-0.02952 
-0.02744 

4.0 
DMC 
Ref.[73] 
STLS 

-0.09986 
-0.08518 
-0.07978 

-0.04372 
-0.03814 
-0.03556 
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Figure 12. (Color online) The static structure function ( )S k as a function of / Fk k for = 1sr ( top panel), = 2sr (bottom panel) and 
*= 0.1 Bb a comparing both FHNC/0 and FHNC /4 + triplet approximations with DMC data of Casula et al [71]. For more details see 

Asgari [73] 
 
agreement with the DMC data of Casula et al [71]. The 
strong peak has been related to a quasi-order of the 
electrons [71]. Note that there is no true long-range order 
in 1D system. We find that as the density is reduced the 
correlation effects become stronger and ( )S k starts to 
develop a broad peak around = 4.5 Fq k . The FHNC /0
does not show any peak as the density decreases. Theory 
gives the correct behavior of the long-wavelength limit 
of ( )S k and the results coincide with the DMC data. 
There are several noteworthy points based on the results 
shown in Figs. 1 and 2. (i) Despite that FHNC gives very 
good results for the pair distribution function and static 
structure factor in high dimensional electron liquids [16, 
30, 10, 11], it can give qualitative results for 1D EL 
where the system is highly correlated. (ii) The approach 
could not produce a strong peak for static structure factor 
at = 4 Fq k which is related to the slow decay of the 
4 Fk components of the charge density-density 
correlation function. 

we present a theoretical study of the pair distribution 
function, the effective electron-electron interaction and 
the correlation energy of the 1D electron liquid where 
the system is strongly correlated. Our approach yields 
numerical results of good agreement in comparison with 
recent diffusion Monte Carlo studies[71]. We showed 
that the long-wavelength behavior of the static structure 
factor is in agreement with the bosonization findings for 
the Coulomb Luttinger liquid. The charge excitation 
spectrum is calculated and it is expected to give better 
results when compared to experimental measurements in 
intermediate sr values and even large momentum limit 
where the Random Phase approximation calculation is 
no longer accurate. Moreover, the small k behavior of 
the charge excitation spectrum is shown be equivalent 
with the bosonization findings. Improvements of the 

theory will be necessary for a quantitative study of the 
physical quantities and the correlation energy. As we 
have mentioned in the main text, we only considered the 
low-order elementary diagrams and the three-body 
corrections in the theory is based on Fermi hypernetted-
chain approximation. We believe inclusion of the 
contributions of the fifth-order and higher elementary 
diagrams will improve our results. Moreover as we 
mentioned in the main text, we used a practical recipe of 
FHNC approach [10] by replacing Jastrow product factor 
to the square of the Slater determinant describing the 
non-interacting fermions gas wave-functions. This recipe 
of FHNC reduces correlation respect to the full FHNC-
EL theory. Although it is little affect in high dimensions 
but it may be important in the specific case of a 1D EL.  

 
6. Conculsion 
In this review article, I started an introductory 
information of the theory of many-body systems and 
then discussed a number of recent developments in the 
understanding of electron liquids. After an introductory 
section aiming to convey the spirit of many-body physics 
by reference to long-standing problems and ideas. To 
this purpose I give our recent theory dealing with 
microscopic properties of many-body physics and show 
the results in based on the extended version of FHNC. 
Our theory is free from any fitting parameters. To justify 
how the theory is, we compare some physical quantities 
with those calculated within available the state-of-the-art 
Quantum Monte Carlo in different distensibilities in the 
highly strongly correlated regions. Furthermore, we 
calculate the quasiparticle properties for strictly or quasi 
2D EL and compare our microscopic calculations with 
those measured by recent experimental groups. 
Moreover, we carry out numerical results for a bilayer 
electron system and for an application, we comparative 
study the charge Coulomb drag effect in bilayer electron 
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system incorporating the electron-electron interactions 
and the characteristic of samples. We compare our 
transresistivity calculated with those measured by 
experiments. In all cases our results were in very good 
agreement with relate quantity calculated within 

Quantum Monte Carlo or available experimental data in 
correlated systems. I would like to thanks Dr 
Akbarzadeh, Dr Shahbazi and Dr Jafari for organizing 
the summer school on Strongly correlated systems, took 
place in Isfehan, on June 2007.  
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