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Abstract 
Hubbard model is an important model in the theory of strongly correlated electron systems.  In this contribution we introduce this 
model and the concepts of electron correlation by building on a tight binding model. After enumerating various methods of tackling 
the Hubbard model, we introduce the numerical method of exact diagonalization in detail. The book keeping and practical 
implementation aspects are illustrated with analytically solvable example of two-site Hubbard model. 
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1. Introduction  
Hubbard model[1] and its variants constitute an important 
research topic in theoretical condensed matter physics, 
particularly in the context of strongly correlated electron 
systems. Most of the many-body techniques commonly 
used in condensed matter physics can be learnt in this 
context. Also there are some theoretical tools and concepts 
which apply to this model only. 

There are already some monographs [2, 3], which 
can be used by experts, along with in some text books [4, 
5, 6] which can be consulted for further details of the 
various methods. In this contribution our aim is to 
provide a smooth introduction to the model and the exact 
diagonalization technique used in dealing with Hubbard 
model. This work is based on the set of lectures given by 
the author in the first IUT school1 on strongly correlated 
electron systems. 

Analytical methods of solving the Hubbard model are 
all approximate, except in 1D, where the so called  
Bethe ansatz provides an exact solution [7]. On the 
other hand there are exact numerical techniques, which 
are however, either computer time expensive or memory 
expensive. Therefore one is limited to rather small 
cluster sizes. 

A popular method to solve Hubbard model and many 
other models in condensed matter physics is the exact 
diagonalization (ED) of the models for small clusters 
which we will study at length in this set of lectures. We 
encourage the reader to implement the method presented 
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here in a simple fortran program. In numerically exact 
diagonalization method one gets the 'exact' results at a 
high price, namely limitation to very small cluster sizes 
(about 18 sites for Hubbard model at half filling), which 
is essentially due to the limited amount of computer 
RAM one can typically have. If one accepts some error 
bars in numerical results (which can however be 
systematically improved), then a family of the so called  
Monte Carlo methods are methods of choice [8]. These 
methods are essentially exact. The accuracy of the 
results depends on how much computer time one would 
likes to spend. In this sense, these family of methods are 
time expensive, while ED is memory expensive. 

One of the important methods to deal with almost 
any model is Mean Field Theory (MFT). MFT ignores 
quantum fluctuations; hence becoming less accurate in 
lower spatial dimensions. Despite this, mean field 
treatment reveals the wealth of various condensed matter 
phases can emerge from a simple Hubbard model [4]. In 
MF one ignores both spatial and temporal fluctuations. It 
is possible to retain the temporal fluctuations by 
performing a full fledged quantum dynamics of the 
problem. This is the subject of the so called  'dynamical' 
mean field theory (DMFT) [9]. 

There are also a class of approximate analytic 
methods known as  auxiliary particle or  slave particle 
methods, which are invented to deal with the large U
limit of the Hubbard model [10]. These type of 
techniques are related to the so called  Gutzwiller 
projection which is devised to obtain approximate 
ground state of the Hubbard model at half filling.  
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Figure 1. A tight-binding band dispersion in 1D with electron-
like Fermi surface. 

 
Generalization of this method to deal with excited states 
is also there in the market [11]. 
In the limit of large U , the charge fluctuations in the 
Hubbard model are frozen and only the spin of electrons 
can fluctuate. Thereby reducing the physics of the 
Hubbard model to spin physics described by the so 
called t-J Model [4]. 
 
2. Hubbard model  
2.1.  Non-interacting electrons 
The Hamiltonian of a system of non-interacting fermions 
on a lattice of L sites labeled by i,j, etc can be 
represented in second quantization by  

†
0 = ij ji

ij
H t c c∑ ,

where †( )jjc c creates (annihilates) a fermion in a single-

particle orbital jφ localized at site j. In condensed matter 
applications one can assume jφ 's to be Wannier wave 
functions (Fourier transform of Bloch orbitals). 
Fermionic operators satisfy the anti-commutation 
relations,   

†{ , } = ,   = 0.j ijic c othersδ (1) 
 The coefficients tij characterize the single-particle 
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 For many practical purposes it suffices to assume 
that tij is none-zero, only when ,i j are nearest neighbors 
in which case it is usually denoted by -t, so that the 
Hamiltonian written in manifestly hermitian format 
becomes   

† †
0

,
= j ii j

i j
H t c c c c

〈 〉
− +∑ . (3) 

 Assuming the periodic boundary conditions (PBC), 
the Hamiltonian of the system will be invariant under 
translation. The irreducible representations of the 
translation group (due to abelian structure of the group), 
are one-dimensional (i.e. numbers of type ie θ ). Hence 
the one-particle (or non-interacting=free) Hamiltonian 
(3) can be diagonalized by a Fourier transformation 
( kjθ ↔ )

† †1= ,ikj
jk

j
c e c

L∑ (4) 

Then the Hamiltonian in | kφ 〉 basis becomes 
†

0 = ,   = 2 cos ,k k kk
k

H c c t kε ε −∑ (5) 

 where kε determines a cosine dispersion and represents a 
band structure with L allowed k values in the first 
Brillouin zone. Of course a simple cosine may not be a 
good approximation of the realistic band structure of 
solids (spaghetti plots). To mimic the realistic band 
structures, one can add further neighbors' hoppings which 
generate higher harmonics of the simple cosine band. 

If the number N of the electrons is equal to number L
of the sites, then each allowed k state can be occupied by 
two ↑ and ↓ spins. Hence the ground state of H0 is 
constructed by filling the lower half ( < 0kε ) of the 
band dispersion of Fig. 1 which is denoted by circles on 
the figure. Since half of the band is filled, the N = L
situation is called  half-filling2. This state is known as a 
Fermi sea state, usually denoted by | FS〉 . Second 
quantized representation of this state is: 

† †

<
| = | 0 ,k k

k kF

FS c c
↑ ↓

〉 〉∏ (6) 

where | 0〉 is vacuum state (empty lattice) and Fk is the 
largest occupied k value ( / 2π here), known as Fermi 
wave-vector. This expression, in first quantized notation 
corresponds to an slater determinant. So the ground state 
of a non-interacting Hamiltonian H0 is characterized by a 
single slater determinant. 

This state is an eigen state of the Hamiltonian:   
0 0| = | ,H FS E FS〉 〉 (7) 

where E0 is the total energy given by 
/ 2

0 / 2| |< / 2,
= = 2 ( 2 cos ),

2k k
k

dkE n t k
π

σ ππ σ
ε

π−
× −∑ ∫ (8) 

where the single-particle energy summation is carried 
out over the occupied k states of Fig. 1 shown by circles. 
Obviously the depicted state has the lowest energy, since 
the k states have been filled such that lower energy 
single-particle states are filled first. In this spirit an 
excited state is created as follows: leave one state k with 
| |< / 2k π empty, promoting its electron to another state 
k+q such that | |> / 2k q π+ . This excited with a hole 

____________________________________________ 
2. Note that if fermions to be filled in the band states where spin-less, 

the band would be completely filled. 
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left behind in state k and an electron created in state k+q
with, say ↑ spin is called a 'particle-hole' excitation:   

†
0 0 ,| = | = |ph

n nk k qk qH H c c FSψ ε ψ↑+ ↑
〉 〉 〉 (9) 

which is again an eigen state of H0 with energy 
( ) =ph

k q kk qε ε ε+ − . This excitation carries a center of 
mass momentum q. The above discussion can be 
straightforwardly generalized to higher dimensions. 

Evidently the half-filled state | FS〉 characterizes a 
metal, as the energy of the particle-hole excitation can be 
made arbitrarily small. The above band picture always 
gives a metal for an odd (in this case one) number of 
electrons per unit cell. However, as we will argue in the 
following, there might be situations in which this simple 
prediction of the band theory fails drastically. 

 
2. 2. Electron-electron interaction 
When we have only H0 (Eq. 3) in the Hamiltonian, then 
the minimization of energy is achieved by filling the k
states  independently with electrons of opposite spins. 
Such k space picture, in real space translates to equal 
probabilities p=1/4 for four possible occupation of a 
single site:  

 

(10) 
 

The most general form of interaction in second 
quantization representation which can be added to 0H is 
of the form   

† †1= ,
2

V V c c c cµνβα µ ν α β
µναβ
∑ (11) 

where = { , }iα σ is a collective name for the site index i,
and spin index σ the two-particle matrix elements is 
given by   

* *= ( ) ( )

(| |) ( ) ( ) ,

V dxdx x x

V x x x x
µνβα µ ν

β α

ψ ψ

ψ ψ

′ ′ ×

′ ′−
∫ (12) 

usually in metals with appreciable density of states 
( )FD ε at the Fermi level, the Coulomb potential 
(| |= )V x x r′− is screened and obtains the form   

( ) = ,
rkTFeV r
r

−
(13) 

where 1
TFk− is the so called screening length. For the d

electron systems where the overlap between the atomic 
wave functions is small (smaller t), one has narrower 
band which is synonymous to larger DOS at the Fermi 
level, the screening length is usually on the scale of the 
Bohr radius 0

Ba . Therefore the most important term 
among all possible µνβα matrix elements is when all 
the indices correspond to the same site j. In such case, 
the Pauli principle forces = =µ α ↑ and = =β ν ↓ .
Denoting the corresponding matrix element with -2U
one gets for the screened interaction,   

† †= = .j j j jj j
j j

V U c c c c U n n↑ ↓ ↑ ↓↑ ↓
− ∑ ∑  (14) 

If we add this term to H0 , we obtain the celebrated  
Hubbard model:

( )† †

,
= .j ii j j j

i j j
H t c c c c U n nσ σσ σ

σ
↑ ↓

〈 〉
− + +∑ ∑  (15) 

For the Hamiltonian in U →∞ limit the doubly 
occupied configuration of a single site in Eq. (10) is 
going to cost a large energy = (1)(1)j jUn n U↑ ↓  for 
each doubly occupied site. Therefore presence of such 
term violates the equi-probability of four possible states 
of a single-site, thereby inducing some kind of 
correlation by minimizing the double occupancy. 
Therefore at half-filling, and for large U the ground state 
charge distribution adjust itself to avoid doubly occupied 
sites as much as possible; i.e. each site is occupied by a 
single electron, and moreover, large value of U makes 
charge fluctuations around = 1jn σ configuration very 
expensive. Therefore charge fluctuations are frozen and 
one has an insulator known as  Mott insulator.

For finite values of U, the two terms of the 
Hamiltonian (15) compete with each other. The kinetic 
energy term (corresponding to U=0) tends to delocalize 
electrons by putting individual electrons in Bloch states. 
This limit known as band limit always describes a metal. 
The U term on the other hand increases the cost of 
charge fluctuation, leading to an insulator in the opposite 
limit U →∞ . Therefore there must be a critical value 

cU of the order of band width = 2W zt (where z is the 
coordination number), beyond which one has an 
insulator. This (first oder at zero temperature) phase 
transition is known as Mott metal-insulator transition 
(MIT). The only technique which can handle this model 
at arbitrary values of U and for arbitrary filling and any 
T is ED, which will be described in next section. 

 
3.  Exact diagonalization 
The easiest way to describe the essence of this method is 
by the example of a two-site Hubbard model. This toy 
model consists in two sites labeled 0,1 . In this case the 
Hubbard model written explicitly (in units in which t=1) 
reads:   

= t UH H H+

( )† † † †
1 0 1 00 1 0 1

= c c c c c c c c↑ ↑ ↓ ↓↑ ↑ ↓ ↓
− + + +

 
( )0 0 1 1 ,U n n n n↑ ↓ ↑ ↓+ +

 
(16) 

where sites are labeled as follows:  
��
1 0
��

where the site index increases from right to left. 
 

3.1. Organizing the Hilbert space 
To organize the Fock space for this Hamiltonian, one first 
notes that the number operator = jjN n σσ∑ commutes 

with the Hamiltonian. Therefore one can consider only 
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Hilbert space corresponding to a fixed value of N . Let us 
consider = 2N for this toy model which corresponds to 
half-filling condition. The next question arises with regard 
to the total spin of the electrons: whether they are ↑↑ ,
↓↓ or ↑↓ ? First two cases represent triplet state, while 
the last one corresponds to S=0  (more precisely 
( )↑↓ − ↓↑ is a singlet). Formally it can be checked that 

the total ( )= 1 / 2z j jjS n n↑ ↓−∑ also commutes with 

the Hamiltonian and hence is a conserved quantity. 
Therefore there would be no matrix element of the 
Hamiltonian connecting sections of the Hamiltonian with 
different values of zS . The structure of the Hamiltonian 
will be block diagonal where each block corresponds to a 
fixed value of zS .To see this block-diagonal structure, we 
confine ourselves to N=2 with both triplet and singlet 
spins. 

In sector with quantum numbers N=2 and = 0zS ,
Hilbert space is six dimensional with six possible basis 
states | Jφ 〉 with = 1 6J … .

† †
1 0
† †
0 0
† †
0 1
† †
1 0
† †
1 1
† †
0 1

1 |   | 00 | 11 0 3 3

2 | | 01 | 01 1 1 5

3 |   | 01 | 10 1 2 6

4 |   | 10 | 01 2 1 9

5 | | 10 | 10 2 2 10

6 |

beginner expert computer
J algebraic picture binary I I I

c c

c c

c c

c c

c c

c c

↓ ↑

↓ ↑↑ ↑

↓ ↑↓ ↑

↓ ↑↓ ↑

↓ ↑↓ ↑

↓ ↑↓ ↑

↓ ↓

〉 ↑ ↑ 〉 〉

〉 ↑↓ 〉 〉

〉 ↑ ↓ 〉 〉

〉 ↓ ↑ 〉 〉

〉 ↑↓ 〉 〉

〉

○

○

| 11 | 00 3 0 12↓ ↑↓ ↓ 〉 〉

 (17) 
First row indicates three major sets of columns:   
• The second column labeled 'beginner' is a way a 

beginner would define and work with a set of 6 basis 
states 1| φ 〉 to 6| φ 〉 .

• The third column labeled 'expert' is a way an expert 
works with these basis states.  

• Columns number 4 to 7 are related to the way a 
computer organizes and works with the basis states. 

Explanation of each columns is as follows:   
1. In the first column there is an integer = 1 6J …

which labels the basis states in the Hilbert space. 
2. Second column shows how to obtain the 

configuration depicted in third column by acting with 
creation operators on the vacuum |〉 . As an example 
look at the first basis 1| φ 〉 : Physically, it describes 
two ↑ electrons in sites number 0,1 . Therefore we 
have two choices:  

† † † †
1 11 0 0 1

| =  | ,      | =  | .a bc c or c cφ φ
↑ ↑ ↑ ↑

〉 〉 〉 〉

These two choices by Fermionic anti commutation 
relations are negative of each other: 1 1| = |a bφ φ〉 − 〉 .
Then the question is: which one is correct way of 
representing 1| φ 〉 ? The answer is that, both of them 
are fine, the same way one can describe ordinary 3 
dimensional vector space with basis 

1 2 3ˆ ˆ ˆ ˆ ˆ ˆ= , = , =e x e y e z , or say, 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ= , = , =e x e y e z− .
The important point is to stick to one convention 
during the entire matrix and vector manipulations. 
For example, to construct the above table we choose 
the following convention: (i)  ↑ spin operators sit to 
the right of ↓ spins. (ii)  The order of site indices 
increases from right to left.

3. Third column is a pictorial representation of the basis 
vector in real space. We will learn in the following 
how to work with this intuitive representation of the 
basis states. 

4. The fourth column represents the states as direct 
product of spin-↓ with spin-↑ states, where the 
occupations in up and down spin sectors are 
represented by sequence of 0,1 bits giving rise to a 
binary representation of the basis states. For models 
like, Hubbard model where ↑ and ↓ spins do not 
admix, this separation makes a good sense. To see 
this, consider the effect of a term like †

jic c ↑↑
on a 

typical state 
† † † †
1 1

| = [ ] [ ] |i i j jN M
c c c cφ

↓ ↓ ↑ ↑
〉 〉… …

 
† † † †

1 1
= [ ] |  [ ] |i i j jN M

c c c c↓ ↑↓ ↓ ↑ ↑
〉 〉… …

 
=:| | ,φ φ↓ ↑〉 〉

which can be written as 
†

† † † † †
1 1

| | =

[ ][ ] |

ji

ji i i j jN M

c c

c c c c c c

φ φ↑ ↓ ↑↑

↑↑ ↓ ↓ ↑ ↑

〉 〉

〉… …  

† †
1

† † †
1

= [ ] ( 1) ( 1)

[ ] |

N N
i iN

ji j jM

c c

c c c c

↓ ↓

↑↑ ↑ ↑

− − ×

〉

…

…

†=|  | .jic cφ φ↓ ↑ ↑↑
〉 〉 (18) 

Here two ( 1)N− factors arise from moving each of 

the †c
↑

operators through a length N sequence of †c
↓

operators. Therefore,  when operating in spin-↑
sector, we need not worry about spin-↓
configuration and vice versa.

5. The last three column indicate the way a computer 
understands and stores these basis states. There is 
only one integer I stored on computer which fully 
represents the occupation pattern of the ↑ and ↓
electrons when transformed to binary representation 
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of fourth column in Eq. (17). Given I, one can 
obviously find out I↑ and I↓ through the relation   

= 2LI I I↓ ↑+ , (19) 
and vice versa. First and last columns of (17) do 
actually tabulates an array = ( )I T J which for any 
given J, returns the corresponding I. The value of I
fully specifies the state. One needs only to extract the 
bits of I and find a way to work with bits of integer I.
There remains only a final note on how we have 

labeled the states. We have labeled the configuration 
represented by I=9 as fourth (J=4) basis vector, etc. We 
could have labeled them in any order, so that I=9  would 
have corresponded to, e.g. first (J=1) basis vector. The 
above convention which was suggested by Lin and 
coworkers[13], has the advantage that the table T can be 
searched given a value for I in a fast way in order to find 
out corresponding J value. The essential idea of this 
convention is the following [13]: For any sector you are 
interested in, just choose the labels J in such a way that 
when the above table T is constructed, the I values are 
ascending function of J.

3.2. Acting with operators on the basis states 
If the action of an operator on a complete basis set is 
known, then the operator is completely specified. Eq. 
(16) has two types of terms: UH and tH . When UH
acts on a basis state, it gives non zero contribution for 
each site j in which both jn ↑ and jn ↓ are 1 . Therefore 

the effect of UH on any basis state gives the same state 
multiplied by the number of doubly occupied sites U× .
Hence the effect of UH on | , = 1,3,4,6i iφ 〉 is zero and 
on 2| φ 〉 and 5| φ 〉 is just U. The UH part is diagonal in 
occupation number representation:   

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

UH U

 
 
 
 
 
 
 
 
 

� (20) 

Now let us concentrate on the effect of tH on our basis 
states. Consider, e.g. the sate 2| φ 〉 . tH in Eq. (16) has 
4 terms. But only 2 of them give non zero contribution 
when they act on 2| φ 〉 : The one which allows an ↑ spin 

to hop from site 0 to 1, i.e. †
01c c ↑↑

, and another one 

which allows the ↓ spin at site 0 to jump to site 1, i.e. 
†

01c c ↓↓
.

( )† † † †
0 0 01 1 0 0

| = |tH t c c c c c cφ ↑ ↓↑ ↓ ↓ ↑
〉 − + 〉

� �
† † † † † †

0 01 0 0 1 0 0= |t c c c c c c c c
←←→

↑ ↓↑ ↓ ↑ ↓ ↓ ↑

 
 − + 〉
 
 

( )† † † † † †
0 01 0 0 1 0 0

= | |t c c c c c c c c↑ ↓↑ ↓ ↑ ↓ ↑ ↓
− − 〉 + 〉

( )† † † †
1 0 1 0= | | ,t c c c c
↑ ↓ ↓ ↑

− − 〉 + 〉

where in the third line we have used the fermionic anti-
commutation relations with associated minus signs 
needed for each exchange of fermionic operators with 
different indices. Also in the last step we have used the 
fact that † | = (1 ) | =|j jjc c nσ σσ 〉 − 〉 〉 , as the vacuum state 

|〉 contains no particles. Rearranging the fermionic 
operators to comply with our convention we get   

( )2 3 4| = | | .tH tφ φ φ〉 − + 〉+ 〉 (21) 
This way of working with commutations and algebra is 
not convenient for putting on computers. As we already 
showed in Eq. (18), the up and down spins hop 
separately. Therefore, when an spin ↑ electron hops 
from site say j to site i, one only needs to count a (-1) 
factor for each ↑ spin electron over which it passes. 
Since when jc ↑ has to move through a chain of †

jc ′↑

operators with j j′ ≠ , until it reaches †
jc
↑

, there they 

form a (1 )jn ↑− operator which commutes with all 

other remaining †
jc ′′↑

operators to reach the vacuum |〉

where it produces |〉 itself. 
With this argument in mind, one can most 

conveniently work with the pictorial representation of 
states: The effect of tH on 2| φ 〉 is to either move an ↑
spin to site 1, or to move a ↓ spin to site 1. In the 
former case one gets 0

3( 1) |φ− 〉 where the exponent 0 is 
because the ↑ spin at site 0 passes through no other ↑
spin when it hops to site 1 . Similarly the later case gives 

4| φ 〉 . According to the Hamiltonian (16), each of these 
processes happens with an amplitude -t and thus one can 
pictorially see that  

( )2 3 4| = | | .tH tφ φ φ〉 − + 〉+ 〉
With this in mind it is almost trivial to check that 

1| = 0tH φ 〉
( )2 3 4| = | |tH tφ φ φ〉 − 〉+ 〉

( )3 2 5| = | |tH tφ φ φ〉 − 〉+ 〉

( )4 2 5| = | |tH tφ φ φ〉 − 〉+ 〉

( )5 3 4| = | |tH tφ φ φ〉 − 〉+ 〉

6| = 0tH φ 〉 6| = 0tH φ 〉 (22) 
Therefore in this basis the hopping term has the 
following matrix representation:  

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 0 0 0

tH t

 
 
 
 

−  
 
 
  
 

� (23) 
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Therefore the matrix representation of the entire 
Hamiltonian in this basis becomes   

0 0 0 0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0 0 0 0

U t t
t t

H
t t

t t U

 
 − − 
 − −
 − − 
 − −
 
 

� (24) 

Clearly the above block diagonal structure has a parallel 
with the following form for the zS matrix:   

1
0

0
0

0
1

zS

+ 
 
 
 
 
 
 
 

− 

� (25) 

 In other words state 1| φ 〉 has a quantum number 
= 1zS + , while 6| φ 〉 has = 1zS − . The set of states 

2 5| |φ φ〉 〉… belong to = 0zS sector. If we had confined 
ourselves to = 0zS sector, we would have obtained a 
four dimensional Hilbert space in which the Hamiltonian 
could be represented by the 4×4 block of Eq. (24). 

The method described after Eq. (21) has the 
advantage that for large matrices, precisely the same 
steps can be taken with a simple computer code that 
implements the logic described above. When coding the 
procedure we have the binary representation in column 4 
of Eq. (17) in mind for the occupation pattern of ↑ and 
↓ electrons. But there is only one integer I (7th column) 
stored on computer, the binary representation of which 
precisely corresponds to column 4. Extracting I↑ and 
I↓ from a given I in fortran is as simple as  

I_up=mod(I,2**L); I_dn=I/2**L. 

Most of the standard high level programming languages such 
as c++ and fortran 90 have appropriate intrinsic functions for 
bitwise operations on integers which are able to access and 
examine or change individual bits of a given integer p (can be 
I↑ or I↓ ). Therefore an integer I completely specifies the 
occupation pattern in each spin sector. For example the Intel 
Fortran compiler has following commands for bitwise 
manipulation of an integer p   

†( , )
( , )
( , )

b

b

b

IBSET p b c
IBCLR p b c
BTEST p b n

(26) 

For more details please consult the Intel Fortran 
language manual [14]. Also more implementation notes 
can be found in Lin et.al. [13]. 

 
3. 3. Diagonalization of the matrix: Space symmetries 
So far we have made use of the symmetries of the  

Hamiltonian itself to reduce the dimension of the matrix 
to be diagonalized. For example conservation of zS
(equivalent to [ , ] = 0zS H ) reduces the 6×6 matrix to 
two 1×1 (trivial) and one 4×4 matrix. The commutation 
relation between e.g. zS and H is quite general, and 
independent of the geometry of the lattice in use. 

Now we would like to make use of the spatial 
symmetries in order to diagonalize the 4×4 matrix in 

0zS = sector manually. For a two site problem 
composed of sites 0,1, there is a mirror reflection 
operator m which has the following action on real lattice:   

(0) = 1,  (1) = 0m m . (27) 
Corresponding to operation m which is a member of 
spatial symmetry group of the underlying lattice, there is 
an operator M in Hilbert space which acts on the state 
vectors. For example consider the effect of M on state 

3| φ 〉 which reads   
† † † † † †
0 1 (0) (1) 1 0| 0 = | 0 = | 0 ,m mMc c c c c c
↓ ↑ ↓ ↑ ↓ ↑

〉 〉 〉 (28) 

or 3 4| =|M φ φ〉 〉 . Similarly, 4 3| =|M φ φ〉 〉 , etc. which 
is summarized as follows   

1 1| = |M φ φ〉 − 〉 ,

2 5| =|M φ φ〉 〉 ,

3 4| =|M φ φ〉 〉 ,

4 3| =|M φ φ〉 〉 ,

5 2| =|M φ φ〉 〉 ,

6 6| = |M φ φ〉 − 〉 .
The first and last lines of the above equation indicate 

that states | jφ 〉 with j=1,6 are eigen states of M (parity 
operator) with eigen values 1± . Line numbers 3,4 
however, indicate that states 3| φ 〉 and 4| φ 〉 do not have 
definite parity. Instead a new combination 

3 4
1| = (| | )
2

φ φ φ± 〉 〉± 〉 , has a definite parity: 

| = |M φ φ± ±〉 ± 〉 . Similarly from 2|φ 〉 and 5|φ 〉 ,
symmetric and antisymmetric combinations will have 
definite parity. 

The eigenvalues ± of parity operator M partition the 
Hilbert space into two pieces which belong either to 1+
eigen value:   

( ) ( )3 4 3 4| | = | |M φ φ φ φ〉+ 〉 + 〉+ 〉 ,
( ) ( )2 5 2 5| | = | |M φ φ φ φ〉+ 〉 + 〉+ 〉 , (29) 

or to 1− eigen value: 
1 1| = |M φ φ〉 − 〉 ,

6 6| = |M φ φ〉 − 〉 ,

2 4 3 4(| | ) (| | )M φ φ φ φ〉− 〉 = − 〉− 〉 ,

2 5 2 5(| | ) (| | )M φ φ φ φ〉− 〉 = − 〉− 〉 . (30) 
If we knew this when finding out the effect of tH in Eq. 
(22), we would have acted on the following states: 

1 1| =|ψ φ〉 〉 ,

( )2 2 5| = | | / 2ψ φ φ〉 〉+ 〉 ,
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( )3 3 4| = | | / 2ψ φ φ〉 〉− 〉 ,

( )4 3 4| = | | / 2ψ φ φ〉 〉− 〉 ,

( )5 2 5| = | | / 2ψ φ φ〉 〉− 〉 ,

6 6| =|ψ φ〉 〉 . (31) 
Eq. (31) defines the so called, symmetry adopted basis in 
which the action of, say, tH is enormously simplified:   

1| = 0tH ψ 〉 ,

2 3| = 2 |tH tψ ψ〉 − 〉 ,

3 2| = 2 |tH tψ ψ〉 − 〉 ,

4| = 0tH ψ 〉 ,

5| = 0tH ψ 〉 ,

6| = 0tH ψ 〉 . (32) 
Similarly the only none zero matrix elements of UH are 
given by:   

2 2 5 5| = | ,   | = |U UH U H Uψ ψ ψ ψ〉 〉 〉 〉 . (33) 
How do we generate a symmetry adopted basis? There is 
a very powerful theorem in group representation theory 
which in case of one dimensional representations is easy 
to implement and reads [12]:   

( ) *= ( )p
p

R
R Rψ φΓ∑ . (34) 

In this equation φ is an arbitrary state to begin with. R is 
an element of the symmetry group which in this case can 
be either I or M. pΓ is the irreducible representation of 
the group which for group { , }I M are numbers 1± for 
even and odd parity. Reader can easily check that 
feeding =| iφ φ 〉 , with = 1, ,6i … is going to generate the 
symmetry adopted basis Eq. (31). Similar technique can 
be used to generate states with definite k

�
values when 

dealing with problems of translational invariance. 
In symmetry adopted basis total Hamiltonian in 
= 1zS ± sectors ( 1 6{| , | }ψ ψ〉 〉 sub-space) remains 

diagonal with eigen values equal to 0, as it was. In 
= 0zS sector it will become:   

2 0 0
2 0 0 0
0 0 0 0
0 0 0

U t
t

H
U

− 
 − 
 
 
 
 
 

� (35) 

In this sector as well, there is one eigen value equal to 0 
which corresponding to eigen state 4|ψ 〉 . Note that 

4|ψ 〉 is the = 0zS component of a triplet. Therefore 
the triplet state lies at zero energy:   

= 0,   ( = 1,0, 1)t zE for triplet state S + − (36) 
The fact that 1 5 6{| , | , | }φ φ φ〉 〉 〉 form a triplet is consistent 
with having odd spatial parity in Eq. (30). 

The eigen value corresponding to 5|ψ 〉 is U which is 
always positive and lies above the triplet = 0tE .

To find out the remaining two eigen values in the 
2 3{| , | }ψ ψ〉 〉 sector, we note that first of all, this sector 

has even spatial parity, and hence is spin singlet. 
Hamiltonian is / 2 / 2 2z xU I U tσ σ+ − , where ,x zσ σ
are Pauli matrices, and I is the unit 2×2  matrix, so that 
the eigenvalues at spin singlet sector become   

2 2= / 2 ( / 2) 4sE U U t± ± +  (37) 

Therefore the ground state is a singlet with energy sE− ,
while the first excited state is a triplet with = 0tE .
Second excited state is 5|ψ 〉 , with energy U, and final 

excited state has energy sE+ .

4.  Strong correlations and spin physics 
As we already saw in previous section, the ground state 
of the two site Hubbard model is a singlet with energy 

2 2= / 2 / 4 4sE U U t− − + , The ground state wave 
function   

( )2
2 3| = 4 | 16 |sE U Uψ ψ−〉 〉 + + + 〉 (38) 

in large U limit is dominated by 3 3 4| | |ψ φ φ〉 〉+ 〉∼ in 
which there is no doubly occupied configuration, and 
hence charge fluctuations are suppressed. 

Since the first excited state is at = 0tE . The 
splitting between these two states for large U t	 is:   

2
2 2 4= = / 2 / 4 4s t

tJ E E U U t
U

− − − + ≈ −  (39) 

Therefore the singlet state is slightly below ( 24 /t U− )
the triplet state. This indicates that in large U limit, the 
low-energy physics of Hubbard model is given by spin 
fluctuations which are anti - ferromagnetic (singlet has 
lower energy). This observation in a two site Hubbard 
model is indeed very general and it can be shown using a 
unitary transformation that the Hubbard model at large U
limit can be mapped into the so called t-J model, where 
there are AF spin fluctuations along with hoppings 
restricted to subspace with no double occupancy [4]. 
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