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Abstract 
This manuscript is the collection of lectures given in the summer school on strongly correlated electron systems held at Isfahan 
university of technology, June 2007. A short overview on quantum magnetism and spin systems is presented. The numerical exact 
diagonalization (Lanczos) alghorithm is explained in a pedagogical ground. This is a method to get some ground state properties on 
finite cluster of lattice models. Two extensions of Lanczos method to get the excited states and also finite temperature properties of 
quantum models are also explained. The basic notions of quantum phase transition is discussed in term of Ising model in transverse 
field. Its phase diagram and critical properties are explained using the quantum renormalization group approach. Most of the topics 
are in tutorial level with hints to recent research activities. 
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1. Introduction  
The field of quantum spin system or  quantum 
magnetism has been originated since some decades ago. 
The Ising [1] and Heisenberg models [2] are the original 
ones introduced in this field. For Ising model the ground 
state on a hyperqubic lattice is an ordered configuration 
of the spins. However, the ground state of Heisenberg 
model is not just a simple configuration of spins but a 
linear combination of several configurations. Although 
the ground state of Ising model on the hyperqubic lattice 
can be represented simply by a configuration of spins the 
ground state of Heisenberg model is not known exactly 
on two and three dimensional lattice. Even for one 
dimensional antiferromagnetic Heisenberg model the 
ground state of N spin 1/2 is given by a set of N-
coupled linear equations via Bethe anzats [3]. The main 
difference between the two models is related to the non-
commuting terms which exisit in Heisenberg model. In 
this sence the Ising model is a classical one and the 
Heisenberg model is a quanum one. 
 Quantum magnetism becomes more interesting since 
the discovery of high-Tc superconductors. Part of the 
phase diagram of cuprate superconductors is a quantum 
antiferromagnet. Understanding the ground state of this 
part might help to understand the mechanism of 
superconductivity at higher doping in these materials. 
This is one of the enigma of the last two decades in 
condensed matter physics. Many other novel effects have 
also been discoverd in the category which is called 

strongly correlated electron systems like colossal 
magnetoresistance [4] and heavy fermions [5, 6]. 
 Quantum phase transition [7, 8] is the other play 
ground where quantum magnetism models have an 
important role. A phase transition which takes place at 
zero temperature upon change of a parameter like 
pressure or impurity concentration is a quantum phase 
transition. It is a qualitative change in the ground state of 
the model. The Ising model in transverse field (ITF) is a 
generic model which shows the quantum phase transition 
upon change of the trnasverse field. The non-analytic 
behvaiour of some ground state expectation value at the 
quantum critical point, the universality class at this point 
and critical exponents are those information which 
classifies the quantum critical point [9]. 
 This articel is the collection of three lectures given in 
the first summer school on strongly correlated electron 
systems held at Isfahan university of technology. The 
summer school was initiated for graduate students and 
young researchers. Thus, I have tried to present the 
lectures in a pedagogical ground. I have presented a 
short overview on strongly correlated systems and its 
definition. Then, the model Hamiltonians in this 
category have been introduced with more emphasis on 
some novel effects in quantum magnetism. The 
exchange interaction in terms of Heisenberg model 
which is the most known model in quantum magnetism 
is also driven to represent the combination of coulumb 
interaction plus the Pauli exclusion principle. The next 
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part is devoted to the introductin of Lanczos exact 
diagonalization and some of its extensions to calculate 
the ground state, excited states and finite temperature 
properties of lattice models. Finally, the quantum phase 
transition is discussed for ITF model by introducing and 
implementing the quantum renormalization group. We 
have introduced the block renormalization group which 
is suitable for lattice models. The quantum 
renormalization group can be used to find the phase 
diagram at zero temperature. Moreover, it can also be 
extended to get the quantum information properties of 
quantum lattice models. 
 
2. Strongly correlated electron systems 
A system of elctrons and nuclei can be described by the 
following Hamiltonian 
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 where , , ,i ip r m e are electron momentum, position, 
mass and elecctric charge respectively and the 
corresponding ones for the nuclei are , , ,i iP R M Ze . In 
the adiabatic approximation we assume the nuclei to be 
fixed at their equillibrium positions and the dynamic is 
considered for the electrons in the presence of nuclei 
lattice. In this case, the Hamiltonian is the sum of 
electronic and electron-nuclei parts 

.e e nH H H −+� (2) 
 This is a many body Hamiltonian composed of coupled 
differential equations for N electrons. Several approaches 
and approximations have been introduced to find some 
information on this system. In weakly correlated electron 
systems the many body Hamiltonian can be approximated 
with a sum on the single particle Hamiltonians where the 
many body effects (i.e. correlation effects) has been 
represented by an effective potential, 
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 The effective potential ( ( )eff iV r ) can be found in 
different approximations [10], for instance by density 
functional theroy. This is the case when the kinetic energy 
of electrons is stronger than their potential energy. 
 However, most of d and f electrons which contribute 
to the electronic and magnetic property of some materials 
have the converse situation. Among them are the 
transition metals, mixed valence rare earth compounds, 

Lactanides and Actanids in the periodic table. For this 
electrons the kinetic energy of electrons is less than their 
interacting potential energy. In such cases, the 
approximation of many body Hamiltonian to single 
particle ones plus an effective potential fails. This 
approximation may even lead to wrong results. Such cases 
are called strongly correlated electron systems [11, 12]. 
 
2.1. Model Hamiltonians 
As discussed in the previous section some of d and f
electrons are strongly correlated which should be studied 
by a many body Hamiltonian. A simple model which 
mimics several features of metalic, magnetic and 
insulating phases of such materials is the Hubbard model 
[13]. A detailed introduction to this model is given by S. 
A. Jafari in an article in this issue. The one band Hubbard 
model is defined by considering a lattice of atoms where 
each atom contribute a single orbital for the electrons. The 
electrons can hop between nearest neighbour atoms which 
can be modeled by the following Hamiltonian  
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where †
jc σ ( jc σ ) creates (annihilates) an elctron in a 

single-particle orbital jφ with spin σ localized at site j .
The hopping strength is given by ijt which is usually 
nonzero for the nearest neighbour atoms and zero for the 
others. Those electrons which reside on a single orbital 
with different spins have a large columb repulsion 
energy. Therefore, the one-band Hubbard model on a 
lattice is defined by the following Hamiltonian  

0= ,Hubbard i i
i

H H U n n↑ ↓+ ∑ (5) 

where †=i iin c cσ σσ is the occupation operator at the i-th 
orbital. U is the scale of coulumb repulsion energy. In 
Hubbard model each orbital has four degrees of freedom: 
no occupation, singly occupied (up or down) and double 
occupation. 
 In some cases U is very large, i.e. 1U t� , the 
double occupied states have large energy and reside in 
the upper part of the spectrum. The contribution of these 
configurations to the ground state and low energy 
behaviour of the model is weak. Thus, the Hamiltonian 
can be mapped to the subspace without double 
occupation. This is called the t-J model. The 
Hamiltonian of t-J model is composed of two terms: a 
hopping term for electrons and an exchange interaction 
between the spin of electrons,  
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where ℑ is the projection to subspace without double 
occupation, 2= 4J t U is the exchange coupling, S is 
the electron spin operator and =i in nσσ∑ . If the  
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Figure  1. Square lattice with diagonal bonds. 
 
number of electrons are equal to the number of lattice 
sites (half-filling) the hopping term in the t-J model is 
suppressed and the Hamiltonian is effectively described 
only by the exchange term which represents the 
interaction between the spin of frozen electrons. Apart 
from a constant this is the Heisenberg Hamiltonian  

< , >
= .⋅∑ i j

i j
H J S S

�� ��
(7) 

 If J > 0 the model describes the antiferromagnetic 
interaction and for J < 0 the ferromagnetic one. The 
magnetic property of several materials at low temperature 
can be described by the Heisenberg Hamiltonian. This 
branch of research is called quantum magnetism. This 
includes different extensions of the Heisenberg model. A 
very good reference on this topic is Ref.[14]. 
 
2. 2. Some novel effect 
 Several novel and exotic phenomena have been observed 
in quantum magnetism. Among them is the seminal work 
of Haldane [15] which defines different universality 
classes for antiferromagnetic (J > 0) Heisenberg (AFH) 
Hamiltonian (7) in one-dimensional models (chains). It 
has been conjectured by Haldane that an integer spin AFH 
chain is gapful and its correlation functions decay 
exponentialy versus distance, while the half-integer ones 
are gapless with algebraic decay of correlations. However, 
the bond alternating spin chain is gapful even for small 
value of bond alternation [16]. 
 Another surprising investigation deals with spin 
ladders which have attracted a considerable amount of 
attention [18]. They consist of coupled one-dimensional 
chains and may be regarded as interpolating truly one 
and two-dimensional systems. These models are useful 
to study the properties of the high-Tc superconductor 
materials. Theoretical studies have suggested that there 
are two different universality classes for the uniform-
spin ladders, i.e., the antiferromagnetic spin-1/2 ladders 
are gapful or gapless, depending on whether ln (the 
number of legs) is even or odd [18]. These predictions 
have been confirmed experimentally by compounds like 
SrCu2O3 and Sr2Cu3O5. However, again bond-alternation 

changes this universality. It has been shown that a 
gapless line which depends on the staggered bond-
alternation parameter, divides the gapful phase of a 2-leg 
antiferromagnetic spin-1/2 ladder into two different 
phases [19, 20]. Moreover, there are some other 
configurations, like the columnar bond-alternation that 
introduces new phases for the antiferromagnetic ladders 
[21, 22]. The appearance of the magnetization plateaus 
for both chains [23, 24] and ladders [25, 26] and the 
appearance of the new phases for spin ladders [27], are 
also some of the consequences of the bond-alternations. 
 Before going to the next section, let us briefly discuss 
an example of a recent study in this field. The magnetic 
property of two family of materials, Li2VOXO4 with 
X=Si, Ge and AA'VO(PO4)2 with A, A'=Pb, Zn, Sr, Ba 
can be described by the Heisenberg Hamiltonian on a 
square lattice. The magnetic ions reside on the vertex of 
the lattice and is represented by a spin. The nearest 
neighbour spins and those on the diagonal of each 
plaquette interact with each other, see Fig.1. 
The Hamiltonian for this model is given by  
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 where < i, j > represents the horizontal and vertical 
bonds and << i, j >> is for the diagonal ones. J1 is the 
strength of exchange interaction in horizontal and 
vertical directions and J2 is the corresponding one along 
the diagonal ones. Depending on the ratio of J1/ J2 and its 
sign the ground state of Hamiltonian (8) shows different 
ordering (more details can be found in Ref.[28] and the 
article by P. Thalmeier in this issue). A classical picture 
gives the antiferromagnetic Neel ordered phase for J1 > 0
and J2 < J1/2, ferromagnetic ordering for J1 < 0 and 
J2 < J1/2, and canted-antiferromagnetic phase for  
|J2| > |J1/2|. The ratio of J1/J2 is fixed by the components 
defined in the two family of materials mentioned before. 
 I have just mentioned few number of novel effects in 
quantum magnetism. There are other aspects of this field 
which are part of current research activities like frustrated 
spin systems, disorded models and also quantum 
information properties of spin models. 
 
2. 3. Exchange interaction 
 Magnetism is a quantum property of matter which can 
not be explained by a pure classical model. It is stated in 
the Bohr van Leeuwen theorem that “The magnetic 
susceptibility is zero for a pure classical model”. This 
can be easily proofed by considering a classical partition 
function which is  

( , ) 3 3= ,
H q piiclassic i i

i
Z e d q d p

β−
∏∫ (9) 

where = 1 Bk Tβ , Bk is the Boltzmann constant, T is 
absolute temperature, iq are position coordinate of 
particles and ip are their momentums. The effect of 
magnetic field on this system can be considered  
by simply change  of momentums to  the  following  ones  
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Figure 2. Two electrons at positions r1 and r2. 
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where ′ip are the new momentums, e is the electric 
charge of particles (electrons here), c is the speed of light 
and ( )iA q is the magnetic potential. Replacing the new 
momentums in the partition function describe the system 
in the presence of magnetic field. However, ′ip is a 
dummy variable in the integral and a change of this 
variable to ip leaves the Jacobian equal to one. Hence the 
classical partition function is independent of A which 
gives the zero value for the magnetic susceptibility. 
 Moreover, the dipole-dipole interaction between 
magnetic moments of atoms is very small which gives 
the critical temperature of magnetic transition some 
orders of magnetiude incorrect. 
 To get an impression of the magnetic exchange 
interation consider a simple model which consists of two 
electrons (see Fig. 2) each represented by a state which 
is an atomic orbital. Each orbital can be occupied by 
only one electron. The Hamiltonian of an independent 
electron is 0 ( )ih r with the following energy for each 
mentioned orbitals  
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Now let the electrons being close to each other and 
interact via the Columb repulsion potential. Thus the 
Hamiltonian of the two electrons model is  
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 The state of two electrons system is the Slater 
determinant of the single electron states which also 
considers the spin configuration of each electron  
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where α and β represent the ↑ and ↓ state of spin 

configuration, respectively. In the slater determinant 
states the Hamiltonian is represented in the following 
form  
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The Hamiltonian has two distinct energy energy levels, a 
triple degenerate level  

( ) ,≡ + + −triplet a b ab abe C Jε ε  (17) 
and a singlet  

( ) .≡ + + +singlet a b ab abe C Jε ε  (18) 
 The distinction between the two energy levels is related 
to the spin configurations of the two electrons. Thus, an 
effective Hamiltonian based on the spin of electrons 
( 1 2,S S ) is responsible to represent the energy levels of 
the system.  

1 2
1= ( )(2 ).

2 2 2
+ −

− ⋅ +singlet triplet singlet triplete e e e
H S S

 (19) 
 Apart from an additive constant the effective 
Hamiltonian which represent the interaction between two 
electrons is given by the ferromagetic Heisenberg 
Hamiltonian with the exchange coupling 

= 2 < 0− abJ J ,

1 2= 2 .eff abH constant J S S− ⋅ (20) 
 It can be shown that if the atomic orbitals are not 
orthogonal ( < | > 0≠b aφ φ ) the effective spin 
Hamiltonian is antiferromagnetic, > 0J .

3. Numerical approaches 
It has been discussed in the previous sections that 
correlation effects are important in strongly correlated 
systems. In such cases the single particle picture is not 
able to capture the true behaviour of the model. Most of 
the correlation effects can be discovered by numerical 
approaches on finite clusters. The finite size scaling is 
then implemented to extend the results of finite cluster to 
the thermodynamic limit. Quantum Monte Carlo (QMC) 
and Exact Diagonalization (ED) Lanczos method are the 
most known numerical approaches to study the strongly 
correlated systems. QMC is the implementation of 
Monte-Carlo approach to quantum systems which is 
composed of two steps. In the first step the quantum 
system on D -dimensional lattice is mapped to a 
classical one on a 1+D -dimensional model. This can be 
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done by Trotter expansion [29]. The second step is a MC 
simulation to find the equillibrium state of system. An 
advantage of QMC is the large size of lattice which can 
be implemented in computations. The finite temperature 
properties is usually gained with good accuracy. 
However, the critical slowing down and the sign 
problem in fermionic models are usually the 
disadvantage of QMC close to zero temperature (see also 
the article by J. Zaanen et.al in this issue). The ground 
state properties which are the dominant ones at zero 
temperature mimic the main quanutm effects in strongly 
correlated systems. The ground state of a quatum model 
can be found exactly by ED method. However, the size 
of lattice which can be considered is rather smaller than 
the case of QMC. Finite size scaling is usually necessary 
to be done for getting the thermodynamic information of 
the quantum model. In the next section we will introduce 
the Lanczos method to get the ground state and some 
low lying eigenstates of a quatum lattice model. 
 
3. 1  Lanczos method 
Let us introduce the Lanczos method by a concrete 
example, the spin 1/ 2 Heisenberg model. The general 
Heisenberg model Hamiltonian can be written as,  

( ){ }
,

= ,
N

xy y yx x z z z
ij i j i j ij i j

i j
J Jσ σ σ σ σ σ+ +∑H (21) 

 One can represent the Hamiltonian on N sites in the 
configuration space,  

= ,ij i jH H (22) 

 where i is a configuration of spins, e.g. ↑↓↑ ↓↓↑� .

The spins can be labeled as their binary form; say 0 for ↓
and 1 for ↑ . So the configuration with all spins down, 

↓↓ ↓↓� will be 00 00� or 0 , ↓↓ ↓↑� will be 

00 01� or 1 and the last configuration with all spins 

up, ,↑↑ ↑↑� will be 11 11� or 2 1N − . Hence,  
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Any vector in our Hilbert space is a linear combination 
of these basis vectors,  
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i
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 To store a vector, a one dimensional array is sufficient  
for storing ic in index i . One can employ symmetries 
of the Hamiltonian, such as rotational invariance, 
conservation of total spin or translational invariance for 
reduction of the Hilbert space and therefore calculating 
higher dimension matrices. As a consequence, the binary 
labeling scheme must change to another (optional, but 
not always optimal) labeling system, which can led to 
utilization of more CPU time or memory (due to 
converting the indices to configurations and vice versa). 

One approach is using a hashing function,  
( ) ( )= m 1,h i i od K +

K is a prime number greater than 2N which is 
commonly used in practice. A simpler approach is to sort 
the configurations of the same total spin, and then use 
their sorted index as their label. This method requires 
computing (or storing) the indices, which can be 
inefficient for large values of N . For a discussion on 
good labeling schemes, see [30]. 
 The operation of ασ ( = , ,x y zα ) on a specific 
site j is 

=x
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The operation of xσ and yσ operators can be 
implemented as a simple flip of the associated bit in the 
binary representation of all configurations of the vector. 
Now we can completely work out the operation of H on 
a vector and therefore doing the Lanczos algorithm. 
 It is instructive first to explain the Lanczos method 
[31, 32] as an improvement of the power method. The 
power method is a simple way to calculate the 
eigenvalue of a matrix with the largest absolute value; 
one starts from an arbitrary initial vector 0| 〉v and 
multiplies the matrix H repeatedly until the resulting 
vector converges to the desired eigenvector. More 
precisely, when the eigenvalues and eigenvectors of an 
m -dimensional matrix H are jE and jψ , the 
arbitrary vector 0v can be written as, 

0
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It is apparent that the relative weight of the eigenvector 
corresponding to the eigenvalue with the largest absolute 
value increases exponentially with k among terms 
appearing in the above sum. 
 Acceleration of convergence over the simple power 
method is achieved by subtracting components of 
previous vectors ( 1−kv , 2−kv , … ) from kv so 
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that one can eliminate the effects of the arbitrarily 
chosen initial vector as rapidly as possible. 
 This subtraction of components of previous vectors is 
incidentally equivalent to tridiagonalization. If the 
tridiagonal matrix T is obtained from the original 
matrix H by a transformation matrix V , one has the 

relation 1= −T V HV , or =VT HV . Let the column 
vectors of V be 1 2| , | ,〉 〉v v  , and the diagonal elements 
of T be 1 2, ,α α , and the sub diagonal elements 

1 2, ,β β , Then the relation =VT HV is written as 

1 1 1 1 2| = | |v v vα β〉 〉 + 〉H ,

2 1 1 2 2 2 3| = | | |〉 〉 + 〉 + 〉v v v vβ α βH ,

3 2 2 3 3 3 4| = | | |〉 〉 + 〉 + 〉v v v vβ α βH ,
�

1 2 2 1 1 1| = | | |− − − − − −〉 〉 + 〉 + 〉m m m m m m mv v v vβ α βH

1 1| = | |− −〉 〉 + 〉m m m m mv v vβ αH
If one rewrites previous equations into a form to 

calculate | 〉kv successively, 
( )2 1 1 1 1| = | | /〉 〉 − 〉v v vα βH
( )3 2 1 1 2 2 2| = | | | /〉 〉 − 〉 − 〉v v v vβ α βH

�
In order to have a vanishing ( )1+m th vector in the series 
of | kv 〉 , it is sufficient to choose | 〉kv so that it is 
orthogonal to all previous vectors, since 1+m vectors 
cannot be orthogonal to each other in the m -dimensional 
space. It is useful here to regard latter equations as an 
iterative orthogonalization process by subtracting 
components of previous vectors. Actually, it turns out that 
by choosing 

= | | ,i i iv vα 〈 〉H

1 1= | | | ,− −〉 − 〉 − 〉i i i i i iv v vβ β αH

all | 〉kv are orthogonal to each other. Since this process 
can be regarded as an improvement of the power method, 
it is not necessary to execute all of 1−m steps if one 
wishes to evaluate only several low-lying eigenvalues; one 
may calculate the eigenvalues of the intermediate 
tridiagonal matrix of dimension l ( < m ) by the bisection 
method to see whether or not the low-lying eigenvalues 
have reached sufficiently converged values. It can be done 
by comparing the low-lying eigenvalues for two 
successive m values, for example m and m+10. 
 To get the eigenvectors, one first calculates the 
eigenvectors of the tridiagonal matrix when convergence 
of eigenvalues is confirmed. One then transforms the 
eigenvectors of the tridiagonal matrix into the original 
representation by use of the transformation matrix V .
That is, the eigenvectors in the original representation 
are obtained by summing up the products of the 
components 1 2, , ...i ic c  of the eigenvector i in the 
tridiagonal representation and the column vectors 

1 2| , | , ...v v〉 〉 , of V

=1
= .

m
i

i jj
j

c vψ ∑
However, it is difficult to store the sequence 1 2| , | , ...v v〉 〉
generated until convergence since convergence usually 
results after tens of iterations (and tens of the vectors 
should be stored in memory). A simple way is to store 

1 2, , ...c c  real numbers) in the first run, and repeat the 
Lanczos process to generate 1 2| , | , ...〉 〉v v  and sum up the 
products of the vectors and 1 2, , ...c c .
Using the eigenvectors of the Hamiltonian, calculation 

of correlation functions and the static structure factor are 
quite similar to the calculation of the operation of H on 
a vector. 

( ) 0 00 0= ,≡ r rg rα α α α ασ σ ψ σ σ ψ  

and for a translationally invariant system the structure 
factor is  

( ) ( )2cos . ≡  
 ∑

r

kG k g r
N

α απ

3. 2. Getting an arbitrary excited state by Lanczos 
method 

The Lanczos method applied to a Hamiltonian (H )
converges to the ground state with a very high accuracy. 
However, the excited states which can be obtained from 
the m -dimensional tridiagonal matrix have less accuracy 
than the ground state. Moreover, the eigenvectors of the 
m -dimensional tridiagonal matrix do not have the correct 
sequence of excited states of the Hamiltonian, since the 
Lanczos method converges to the extreme limit of the 
spectrum. The m -eigenvalues are a collection of random 
excited eigenvalues between the extreme limits depending 
on the initial random vector in the Lanczos process. 
 If we are interested to get an excited state close to an 
eigenvalue as accurare as the ground state, one can use 
an auxiliary operator, A . Suppose we want to get the 
eigenvector close to tE in the energy spectrum. The 
auxiliary operator is defined by  

2= ( ) .− tEA H  (25) 
 The ground state of A is the closest eigenvector of H to 
energy tE . Thus, the Lanczos algorithm applied to A
converges to an eigenstate of H which is close to energy 

tE . It is called modified Laczos method [33] which 
changes the sequece of eigenstates as depicted in Fig.3. 
 
3. 3.  Finite temperature Lanczos method 
As a general definition in the canonical ensemble the 
thermal average of a physical quantity A is defined  

=1

=1

| |
= ,

| |

−

−

〈 〉
〈 〉

〈 〉

∑

∑

Ns
H

n
Ns

H

n

n e A n
A

n e n

β

β

(26) 
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t

H A

E

Figure 3. The sequece of spectrum in the modified Lanczos 
method. 
 
where sN is the dimension of Hilbert space, 

1= ( )−Bk Tβ and | 〉n represent the bases of Hilbert 
space. The above equation can be rewritten in the 
following form by expanding the exponential (high 
temperature expansion)  

=1 =0

1 ( )= | | ,
!

∞ −
〈 〉 〈 〉∑∑

N ks
k

n k
A n H A n

Z k
β

=1 =0

( )= | | .
!

∞ −
〈 〉∑∑

N ks
k

n k
Z n H n

k
β (27) 

The Lanczos process enable us to calculate 
| |〈 〉k ln H BH A n exactly by using M -steps such as 
> ,M k l ; A and B are two arbitrary operators [32]. 

For = 1B and = 0l we get  

=0
| | = | | | .〈 〉 〈 〉〈 〉∑

M
k k

i i i
i

n H A n n A nψ ψ ε (28) 

 Thus , 

( ) ( ) ( )

=0
| | = | | | ( ) .〈 〉 〈 〉〈 〉∑

M
n n nk k

i i i
i

n H A n n A nψ ψ ε  (29) 

 Note that the superscript ( )n reminds that the 
eigenvectors ( ( )| 〉n

iψ ) and the corresponding eigenvalues 
( )n
iε are obtained in the Lanczos process which starts with 

the initial vector | 〉n . The above equation (Eq.(29)) is 
replaced in the high temperature expansion (Eq.(27)) 
which gives an exact expression for <k M . However, k
is running from zero to infinity where we extend the result 
obtained in Eq.(29) for >k M . In this respect we get the 
following approximate expression  

( ) ( ) ( )

=1 =0

1 | | | ,−〈 〉 〈 〉〈 〉∑∑
N M ns n ni i i
n i

A e n A n
Z

βε ψ ψ�

( ) ( ) ( )

=1 =0
| | .− 〈 〉〈 〉∑∑

N M ns n ni i i
n i

Z e n nβε ψ ψ� (30) 

The next step of approximation comes from the 
replacement of the whole sum on the full Hilbert space 
by a sum over some random number of states in the 
procedure of calculating the thermal average of a 
physical quantity. This step of approximation is 
inevitably done because the summation on the full 
Hilbert space is a massive time consuming procedure 
and causes the whole idea impossible. In this respect the 
thermal average of the physical quantity A is 
approximated by A� ,

=1

=1

| |
= ,

| |

−

−

〈 〉

〈 〉

∑

∑

R
H

r
R

H

r

r e A r
A

r e r

β

β

� (31)  

where R is the number of random sampling with initial 
states | 〉r .
If [ , ] = 0H A  an estimated argument for the error can be 
obtained by the following relation,  

1= ( ),〈 〉 +A A O
RZ

�

0
=1

= | | ,− −〈 〉∑
NsE H

n
Z e n e nβ β (32) 

where 0E is the ground state energy. 
Summing up, the general formula in finite temperature 
Lanczos method (FTLM) to get the thermal average of a 
physical quantity is  

( ) ( ) ( )

=1 =0

1= | | | ,−〈 〉 〈 〉〈 〉∑∑
R M r r ri i i

r i
A e r A r

Z
βε ψ ψ  

( ) ( ) 2

=1 =0
= | | | .− 〈 〉∑∑

R M r ri i
r i

Z e rβε ψ (33) 

 
3. 3. 1.  Low temperature Lanczos method 
In the previous FTLM approach, the limit of 0→T
does not lead to ground state expectation value which 
should be the case. To solve this problem a similar 
approach but with one more Lanczos procedure for each 
sampling is proposed [3]. 

( ) ( )( )
2

=1 , =0
( ) ( ) ( ) ( )

1=

| | | | ,

−
+

〈 〉 ×

〈 〉〈 〉〈 〉

∑ ∑
R M r r

i j

r i j
r r r r

j j i i

A e
Z

r A r

β ε ε

ψ ψ ψ ψ
 

( ) ( ) 2

=1 =0
= | | | .− 〈 〉∑∑

R M r ri i
r i

Z e rβε ψ (34) 

 In the limit of zero temperature the above equation 
approaches the ground state expectation value.  

0 00 = | | .→ ⇒ 〈 〉 〈 〉T A Aψ ψ  (35) 
 The price of solving this problem is to implement more 
RAM capacity and CPU time. However, the accuracy of 
this mothod is appreciable at low temperatures [35]. 
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Figure  4. The block renormalization group procedure. 
 
4. Quantum renormalization group 
Quantum phase transition has been one of the most 
interesting topics in the area of strongly correlated systems 
in the last decade. It is a phase transition at zero 
temperature where the quantum fluctuations play the 
dominant role [8]. Suppression of the thermal fluctuations 
at zero temperature introduces the ground state as the 
representative of the system. The properties of the ground 
state may be changed drastically shown as a non-analytic 
behaviour of a physical quantity by reaching the quantum 
critical point. This can be done by tuning a parameter in 
the Hamiltonian, for instance the magnetic field or the 
amount of disorder. The study of the ground state and its 
energy is thus of central importance for understanding the 
critical behaviour of such systems. 
 The technique of renormalisation group (RG) has been 
so devised to deal with these multi-scale problems [36, 37, 
38]. In the momentum space RG which is suitable for 
studying the continuous systems, one iteratively integrates 
out small scale fluctuations and renormalizes the 
Hamiltonian. In the real space RG, which is usually 
performed on the lattice systems with discrete variables 
(i.e quantum spin chain), an original Hamiltonian is 
replaced with an effective one for a lower energy 
subspace, iteratively. In this approach the Hamiltonian is 
divided into inter-block ( BBH ) and intra-block parts 
( BH ), see Fig.4. BH is diagonalized exactly and then 

BBH is projected into the low energy subspace of BH
[39]. The accuracy of this method is determined by the 
number of states kept in the BH subspace and the 
approach to consider the effect of neglected subspace. The 
Ising model in a transverse field [40] and the anisotropic 
Heisenberg model [41] have been studied by quantum 
renormalisation group (QRG) approach which gives the 
correct phase diagram. Moreover, the recent study on a 
more general model, XYZ in a transverse field, supports 
the power of this method to study the collective behaviour 
of the spin models [42]. 
 To be concrete let us consider the Ising model in 
Transverse Field (ITF) [39] The Hamiltonian of ITF 
 

ggc
Figure 5. Two extreme limits of ITF model and its ground 
state configuration versus control parameter g .

model on a periodic chain of N sites is  

1
=1

= [ ( ].+− +∑
N

z z x
i ii

i
H J gσ σ σ  (36) 

 Two extreme limits give us the insight of two different 
phases in this model. For = 0g the ground state is a 
ferromagnet in the z direction. However, as → ∞g the 
paramagnetic term is dominant and the ground state 
shows a paramagnet in the x direction, see Fig.5. 
 We have considered the two-site block with the 
following Hamiltonian:  

1, 2, 1, 2,= ( )− + +B z z x x
I I I I Ih J g gσ σ σ σ  (37) 

 The inter-block ( )BBH and intra-block ( BH )
Hamiltonian for the two sites decomposition are  

/2

1, 2, 1, 2,
=1

= ( )
N

B z z x x
I I I I

I
H J g gσ σ σ σ− + +∑

/2

2, 1, 1
=1

= ( )
N

BB z z
I I

I
H J σ σ +− ∑ (38) 

 where ,j I
ασ refers to the α -component of the Pauli 

matrix at site j of the block labeled by l . The matrix 

form of B
Ih in the xσ basis 

( | =| >, | = | , | =| >,↑〉 ↑ ↓〉 − ↓〉 ↑〉 ↓x x yσ σ σ | =| ,↓〉 ↑〉yσ

| = | >, | = |↑〉 ↓ ↓〉 − ↑〉z zi iσ σ ) is  
2 0 0 1
0 0 1 0

=
0 1 0 0
1 0 0 2

B
I

g

h J

g

− 
 
 −
 
 − − 

The exact treatment of this Hamiltonian leads to four 
distinct eigenvalues. The ground state, first, second and 
third excited state energies have the following 
expressions in terms of the coupling constants.  

2
0 02

1| = (| | )   ,   = 4 1
1

〉 ↑↑〉 − ↓↓〉 − +
+

q e J g
q

ψ

1 1
1| = (| | )   ,   =
2

〉 ↑↓〉+ ↓↑〉 −e Jψ

2 1
1| = (| | )   ,   =
2

〉 ↑↓〉− ↓↑〉 e Jψ

4 2

2
4

1| = (| | )   ,   
1

= 4 1

〉 ↑↑〉 + ↓↓〉
+

+

p
p

e J g

ψ
(39) 
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where ,q p are  
2 2= 4 1 2    ,   = ( 4 1 2 ).+ − − + +q g g p g g (40) 

The effective (renormalized) Hamiltonian in first order 
RG approximation is  

0 1= .+eff effeffH H H  (41) 
 One can consider higher order RG treatment. As an 
example, the second order RG treatment of XXZ model 
can be found in Ref.[43,44]. The effective Hamiltonians 
are expressed by the following relations in terms of 
projcetion operator.  

0 0 0 00 1= , = .eff effB BBH P H P H P H P (42) 
The first order projection operator is  

0 0 0 1 1=| | | |〉〈 + 〉〈P ψ ψ ψ ψ . (43) 
 To get the effective Hamiltonian we need to know the 
projection of each operators in the renormalized space  

0 1, 0 2
1= ,

2(1 )

+

+
I z I z

II
qP P
q

σ σ  

0 2, 0 2
1= ,

2(1 )

+

+
I z I z

II
qP P
q

σ σ  

2 2

0 1, 2, 0 2 2
(1 ) (1 )= ,
2(1 ) 2(1 )

+ −
−

+ +
I z z I x

II I
q qP P
q q

σ σ σ

2

0 1, 0 2
1= (1 ),

2(1 )
−

+
+

I x I x
II

qP P
q

σ σ  

2

0 2, 0 2
1= (1 ).

2(1 )
−

+
+

I x I x
II

qP P
q

σ σ  (44) 

 Based on the above equations the projection of block 
Hamiltonian and inter-block Hamiltonian are as the 
following  

2 2

0 0 2 2

2

2

(1 ) (1 )= {[ 1 ]
2(1 ) 2(1 )

1 (1 )},
(1 )

I B I x
I I

x
I

q qP h P J
q q

qg
q

σ

σ

+ −
− − +

+ +

−
+

+

1 1 2
0 0 , 1 0 0 12

1( ) = {( ) } .
2(1 )

I I BB I I z z
II I I

qP P h P P J
q

σ σ+ +
+ +

+
−

+
(45) 

 The effective Hamiltonian for / 2N sites is given by 
the self-similar Hamiltonian  

1
=1

= [ ( ],+′ ′− +∑
N

z z x
i ii

i
H J gσ σ σ  (46) 

 where the renormalized coupling constants are given by 
the following equations, 

2

2
(1 )= ,

2(1 )
+′
+

qJ J
q

2 2

2 2
1 (1 )= 2 .

(1 ) (1 )
− −′ −
+ +

q qg g
q q

(47) 

 The exchange coupling J which is an overall factor 
defines the scale of energy. However, the control 
parameter g determines the ground state property of the 

model. The fixed points, *=′ ≡g g g are two types. 
* = 0g and * = ∞g are stable fixed points and define 

two stable phases ferromaget and paramagnet, 
respectively. The unstable fixed point * 1.27 ≡ cg g� is 
the quantum critical point which divides two different 
ferromagnet and paramagnet behvaiour. The value of 

1.27cg � is different from the exact result = 1exact
cg

which can be obtained by the Jordan-Wigner 
transformation of the ITF model to free fermions. This 
difference is originated from the quantum RG 
approximation which is related to the finite number of 
sites in the block (in our case = 2Bn ), the finte number 
of states kept in the projection operator (two from four in 
our case) and the boundary condition which is adopted for 
the block. However, the quantum RG gives the correct 
qualitative picture of the phase diagram. One can also 
obtain the critical exponents using quantum RG [39]. The 
effect of boundary conditions and an improvement of 
quantum RG, the density matrix renormalization group 
(DMRG) can be found in Ref.[45, 46]. 
 We can combine the idea of renormalization group 
and quantum information theory. It can be shown how 
the entanglement or concurrence evolve as the size of the 
system being large, i.e. the finite size scaling is obtained. 
Moreover, It introduces how the renormalization group 
approach can be implemented to obtain the quantum 
information properties of a many body system. We have 
obtained the concurrence as a measure of entanglement, 
its derivatives and their scaling behavior versus the size 
of system for the one dimensional Ising model in 
transverse field [47] and the anisotropic spin 1/2 
Heisenberg model [48]. We have found that the 
derivative of concurrence between two blocks each 
containing a fraction of the system size diverges at the 
critical point with the exponent which is directly 
associated with the divergence of the correlation length. 
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