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Abstract 
We study the Mott transition in the two dimensional Hubbard model by using the variational cluster approximation. The transition 
potential obtained is roughly Uc ≈ 2 and 6 for square and triangular lattices, respectively. A comparison between results of this 
approximation and other quantum cluster methods is presented. Our zero-temperature calculation at strong coupling show that the 
transition on the triangular and square lattices occur at lower values of U compared with other numerical techniques such as DMFT, 
CDMFT, and DCA. We also study the thermodynamic limit by an extrapolation to infinite size.  
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1. Introduction  
The Mott metal-insulator transition is one of the most 
fascinating subjects in condensed matter physics. The 
independent electron approach explains the metallic and 
insulating phases just by looking at the filling of the 
electronic bands. Taking electron-electron interactions 
into account in a perturbative way just leads to a 
renormalization of energy bands, and cannot by itself 
induce a transition between a metal and an insulator. 
However, many transition-metal compounds are 
insulators, whereas they are predicted to be metallic by 
the band approach. The insulating behavior in strongly 
correlated materials was explained by Mott in his 
pioneering paper [1], as the result of the competition 
between two opposite tendencies: (i) the localization of 
electrons on the lattice due to their Coulombic repulsion 
and (ii) their hopping between neighboring sites. 
Accordingly, these systems are called “Mott insulators”. 
For further background on the Mott transition, readers 
are referred to the review paper by Imada [2]. 
 The physics of the Mott transition in two-
dimensional systems has been studied theoretically 
mainly on simple Hubbard models defined on the square 
and triangular lattices. In such systems, the Mott phase is 
in competition with magnetically ordered phases, that are 
also insulating, although because of a seemingly 
different mechanism, related to the presence of a 
magnetic unit cell and of the associated band gap. Since 

the Mott gap is smaller than the AF gap and the cU of 
the Mott insulating phase is smaller than the critical U
of the AF insulating phase, the Mott gap is often masked 
by this ordering gap. However, understanding the nature 
of the Mott gap is important since it usually accompanies 
other critical phases such as superconducting and spin 
liquid states. Moreover, the value of the critical 
interaction strength cU at zero temperature is an 
important characteristic of the transition. 
 Examples of quasi-two-dimensional systems that are 
studied using the Hubbard model are high temperature 
cuprate superconductors and layered organic 
superconductors, which all have rich ground state phase 
diagrams. In cuprates, a transition from a Néel 
antiferromagnetic insulator to a superconducting phase is 
induced upon doping [3]. A very similar phase diagram has 
been obtained by applying pressure to organic compounds 
at half-filling, such as κ -(BEDT-TTF)2Cu2(CN)8 and 
EtMe3Sb[Pd(dmit)2]2 [4, 5, 6, 7, 8]. 
 The Mott transition on the 2D Hubbard model has 
been studied using several analytical and numerical 
methods: a dynamical Mean field theory (DMFT) [9, 
10], a dynamical cluster approximation (DCA) [11], a 
variational cluster approximation (VCA) [12, 13], and a 
cellular dynamical mean field theory (CDMFT) [15, 28]. 
This paper is organized as follows. In the next section a 
short introduction to the 2D Hubbard model will be 
given, followed by a brief discussion about the 
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variational cluster approximation, the method used in 
this paper. We then review cluster extensions of 
dynamical mean field theory. The next section describes 
our numerical results, which are compared with those of 
other methods. 
 
2. Model and formalism 
We consider the single-band Hubbard model, with 
nearest neighbor hopping t , as the minimum model 
required to study the Mott-Hubbard transition:  

†
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σ
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 where †
ic σ is the creation operator for electrons of spin 

σ , in σ = †
iic c σσ is the density of electrons, ijt is the the 

hopping amplitude between sites i and j , and U is the 
on-site Coulomb repulsion. The Mott transition is driven 
by the competition between the hopping amplitudes and 
U . The kinetic part of the model, based on electrons 
hopping on a lattice within a tight-binding scheme, tends 
to delocalize the electrons, which favors a metallic state. 
On the other hand, the potential part based on the on-site 
Coulomb repulsive term tends to localize the electrons in 
order to avoid double occupancies, and so favors an 
insulating state at half filling. 
 Despite its simplicity, the two-dimensional Hubbard 
model contains the most relevant terms to understand the 
role of electron correlations and is extremely difficult to 
investigate. Except for the one-dimensional case with 
nearest-neighbor hopping, an exact solution is not 
available. In recent years a number of numerical 
methods have been applied to the Mott transition in the 
Hubbard model. Among those, quantum cluster methods 
are based on the exact solution of the model on a finite 
cluster of sites, and use a procedure to take into account 
the effect, on the cluster, of the infinite lattice. These 
approaches use numerical methods such as exact 
diagonalizations (ED) or quantum Monte-Carlo (QMC) 
to solve the model on the finite cluster (the so-called 
impurity model). Spatial correlations within the cluster 
are treated accurately, while long range physics is 
described at the mean field level. In those methods, the 
irreducible self-energy of the cluster is used as an 
approximation for the lattice self-energy, from which an 
approximate lattice Green function is calculated. In this 
paper we will describe the results obtained from the 
Variational Cluster Approximation (VCA). 
 VCA is an extension of Cluster Perturbation Theory 
(CPT) that allows for broken symmetry states. CPT [16, 
17] is a cluster extension of the strong-coupling 
expansion of the Hubbard model. The first step in the 
CPT is to divide the original lattice into finite clusters. 
The cluster Green function is calculated exactly whereas 
the hopping between adjacent clusters is taken into 
account perturbatively at the lowest order. An 
approximate single-electron Green function at arbitrary 
values of the wave vector in the Brillouin zone can then 

be calculated. It becomes exact in the limit of infinite 
cluster size, or in the strong or weak coupling limit. 
 VCA allows broken-symmetry phases by adding 
Weiss field to the cluster Hamiltonian, while at the same 
time subtracting them at lowest order in strong-coupling 
perturbation theory. The precise value of the Weiss field 
is set by minimizing the resulting grand potential [18]. 
This procedure, apparently heuristic, can be formally 
justified by Potthoff's self-energy-functional theory 
(SFT) [19, 20]. For a system with Hamiltonian 

0 1= ( ) ( )H H t H U+ the grand potential is finally 
written as function of physical parameters:  

1 1
0( ) = Tr ln( ) Tr ln( ) ,' 't G G− −′Ω Ω + −Σ −  (2) 

where 1
0 = ( )G tω µ −+ − is the free Green function of 

the original model in the thermodynamic limit at 
frequency ω . 'Ω , Σ , and 'G are the grand potential, 
the self-energy, and the Green function of the cluster 
reference system which depend on the one-particle 
parameters 't (including Weiss fields) [20]. The 
stationary points of the function (2) - obtained by 
numerically solving ∂Ω/∂t′ = 0 - provides a good 
approximation to the exact solution for the system. In 
practice, only the Weiss field parameters and the cluster 
chemical potential are used as variational parameters 
within the set t′.

VCA was used successfully to study ordered phase in 
2D systems. For instance it has recently been used to 
investigate the competition between Néel antiferro-
magnetism (AF) and d-wave superconductivity (d-SC) in 
cuprates [21, 22] and in layered organic compounds [23, 
24]. It was also used to study the range of magnetic 
spiral ordering (MSO) in the triangular-lattice Hubbard 
model [12]. 
 Other quantum cluster methods (DCA and CDMFT) 
are extensions of Dynamical Mean Field Theory 
(DMFT). DMFT provides a description of the Mott 
transition in the Hubbard model that is exact in infinite 
dimension [25]. It maps the lattice problem to a single 
correlated site (the so-called impurity) embedded in a 
surrounding host whose parameters must be determined 
self-consistently. Thus DMFT neglects spatial 
correlations. To describe non-local order parameters, it is 
crucial to add lattice effects to DMFT. In DCA, the 
DMFT single site is replaced by a finite cluster treated in 
momentum space: The first Brillouin zone is 
decomposed into cN equal cells. In two dimensions, this 
is equivalent to tiling the original N -site lattice by 

/ cN N clusters of size =cN L L× embedded in a self-
consistent effective medium. This approximation 
assumes that the lattice self-energy is weakly momentum 
dependent, and becomes exact for an infinite cluster size. 
The cluster problem in DCA is usually solved by 
quantum Monte-Carlo (QMC) simulations. 
 Like DCA, CDMFT maps a lattice problem onto a 
finite size cluster, this time with open boundary 
conditions. However, CDMFT can be described in the 
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Figure 1. (color online) The density of states, calculated for 3 
finite values of η (the imaginary part of the frequency), on a 6-site 
isotropic triangular cluster at = 8U . A pointwise extrapolation of 
these curves is used to obtain the curve at η = 0.  
 
framework of Potthoff's self-energy functional 
approximation (SFA), like VCA. The solution to the 
cluster problem are customarily obtained by QMC (at 
finite temperature) or exact diagonalization (at zero 
temperature). In the zero-temperature case, the “host”  is 
represented by a bath of non correlated sites that 
exchanges electrons with the cluster. The bath 
parameters (site energies and hybridization to the 
cluster) are determined self-consistently. 
 
3. Numerical results 
The Mott transition can be studied by looking at the 
density of states (DOS), which is the momentum-
integrated spectral function:  

k
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∑
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where k is the wave vector, ω frequency, and ( , )A ωk
is the single-particle spectral function (imaginary part of 
the single particle Green function). Close to the 
transition, the DOS shows the Mott gap more clearly 
than the spectral function, although the latter is more 
useful to study the pseudogap phenomenon or gaps 
caused by broken symmetries[23].  
 Before presenting our results for density of states, a 
few points should be mentioned about the numerical 
technique we use. In our calculations by VCA we adjust 
the chemical potential to keep the total occupation at 
half-filling. Note that in calculating the density of states, 
there is no distinction between VCA and CPT. The 
calculations are all done at zero temperature. To obtain 
the DOS using the Green function through Eq. 3 we 
initially calculate the corresponding densities for a few 
values of the imaginary part of the frequency (η ). Then 
results are simply extrapolated pointwise to 0η →
(Fig. 1). In this way one avoids the problems associated 
with the presence of sharp peaks close to = 0η , which 
make the momentum integrals longer because of 
adaptive re-meshing. The DOS at = 0η (shown in the 
bottom curve of Fig. 1 is obtained by extrapolating from 
the three values = 0.1η , 0.01, and 0.005 . It can be 

 

Figure 2. (color online) The evolution of the density of states 
as a function of interaction /U t , for a 6-site triangular cluster. 

seen that the main (overall broad) features can be seen 
even at large η , however the precise value of the Mott 
gap can be obtained from this extrapolation. 
 To find the critical interaction cU , one can look at 
the evolution of the DOS as a function of U . Fig. 2 
illustrates this evolution for the 6-site cluster. This is one 
of clusters that have been used to study the magnetic 
spiral order[12]. Note that in the triangular system, the 
Van Hove singularity is no longer found at the center of 
the band, as can be seen on the lowest curve of Fig. 2. 
From this figure, we see that the Mott gap (for the 6-site 
cluster) appears between = 5U and = 6U .

The results obtained for clusters of size = 3L and 
= 15L - the largest triangular cluster that can be studied 

with the present computer facilities - show a comparable 
phase transition[12]. However, the gap corresponding to 
these finite cluster size can disappear in the 
thermodynamic limit, due to size effects and boundary 
conditions. An infinite-size extrapolation of the results 
can show the existence of the gap. A scaling parameter 
Q is defined, which is proportional to the number of 
links in a cluster and has an inverse relation with the 
total number of links of the original lattice within the 
unit-cell of the super-lattice of clusters. Q varies from 0 
to 1 by increasing the cluster size from single-site to 
infinite lattice [26]. The evolution of the gap size ∆ as a 
function of cluster size (i.e., of the cluster scaling 
parameter Q ) is shown on the right panel of Fig 3, and 
indicates that the Mott gap, although decreasing with 
cluster size, does not vanish in the thermodynamic limit 
( 1Q → ) for the values of U shown. The left panel of 
Fig 3 shows the evolution of this gap as a function of U .
For all three clusters, the gap vanishes at around 6U ≈ .
This value obtained from VCA is smaller than the results 
of other methods: the ED on lattice of 12-sites it is 

= 12cU t [27], in DMFT+ED = 15cU t [9], in 
DMFT+QMC the value is = 12cU t (finite temperature 
close to zero) [10]; and CDMFT+ED gives = 10.5cU t
[15]. 
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Figure 3. (color online) Left: Single particle gap as a function 
of U for the three clusters used. The metal-insulator transition 
occurs at 6U ≈ . Right: Single particle gap as a function of 
cluster scaling parameter Q for several values of U .

Figure 4. (color online) Density of states calculated from the 
lattice Green function obtained for a 12-site cluster tiling the 
square lattice, for 3 values of /U t . Solid curves represent the 
normal state and dotted line represents the AF ordered system. 

Next we obtain the DOS for the square system by the 
same procedure explained above for the triangular case. 
Fig. 4 shows the DOS calculated by VCA for three values 
of U for a 12-sites square cluster. In contrast to the 
triangular case, the Van Hove peak exists at zero 
frequency and the distribution is symmetrical about 

= 0ω . Solid and dotted curves represent the normal and 
(AF) ordered phase, respectively. One can sees that the 
Mott transition happens around / 2U t ≈ . Indeed in the 
same figure we see that the AF gap always masks the 
Mott gap since it is bigger and consequently the AF 
transition happens at smaller /U t . Presumably this 
happens in realistic systems. The Mott transition in the 
square lattice obtained from VCA has also been discussed 
in Ref. [13]. In CDMFT the transition happens at 6cU t≈
[28]. This is a further indication that the Mott transition 
always happens at a weaker interaction cU in VCA 
compared with other methods. 
 Now we look at the spectral function ( , )A ωk for the 
triangular system. Fig. 5 shows the spectral function for 
a 15-site cluster for two different values of the 
interaction /U t , above and below the Mott transition. 

Figure 5. (color online) Single particle spectral weight, as a 
function of energy / tω (energy distribution curves) obtained 
from a 15-site triangular cluster, at / = 5U t  (top) and / = 7U t  
(middle). The vertical line at = 0ω represents the Fermi level. 
bottom: The first Brillouin zone of the triangular lattice, 
showing the path used for calculating the spectral function. 

On the top panel of the figure / = 5U t . and the 
spectrum looks similar to the non-interacting dispersion. 
There is no gap and the spectral function represents a 
metallic phase. At / = 7U t  (lower panel) the spectral 
function looses weight at Fermi level and displays a 
Mott gap across all wave vectors. This shows that the 
Mott transition happens between / = 5U t  and / = 7U t .

4. Conclusion 
We have studied the density of states on triangular and 
square lattices by using the variational cluster 
approximation on the 2D Hubbard model. The U -
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dependence of the extrapolated size of the Mott gap for 
different clusters was used to obtain the critical value of 
the interaction at the Mott transition. The VCA estimates 
the critical interaction for the Mott transition for a 
triangular lattice roughly to be 6cU t≈ , while in the 
case of a square lattice this value is around 2cU t≈ . In 
both cases VCA results are smaller compared with DCA 
and CDMFT calculations, which shows that VCA 
relatively tends to exaggerate the transition. 
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