Volume 17, Issue 5 ((Iranian Journal of Physics Research,winter 2018)                   IJPR 2018, 17(5): 635-645 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

tajik M, Yousefnia H. Monte Carlo simulation of response function of organic scintillators to gamma rays and neutrons using FLUKA, MCNPX and SCINFUL code. IJPR. 2018; 17 (5) :635-645
URL: http://ijpr.iut.ac.ir/article-1-1568-en.html
Assistant Professor Damghan University , tajik@du.ac.ir
Abstract:   (1169 Views)

In organic scintillators, the energy distribution of gamma rays and neutrons is indirectly measured by the pulse height distribution of light output produced through gamma ray and neutron reactions in the detectors. Accurate estimate of the interaction of gamma and neutrons in the detector and produce charged secondary particles and subsequent scintillation light produced in the calculation of the response function is the most important. Although,, the complexity of the light generation on these scintillators makes modeling their response function difficult with standard Monte Carlo method. The paper reports generate the response function of an NE102 plastic scintillator when exposed to gamma rays and response function of a BC501A liquid scintillator to mono-energetic and Am-Be neutrons using the EVENTBIN card of the FLUKA code and the PTRAC card of the MCNPX code. The comparison between simulated and experimental response functions show that both FLUKA and MCNPX codes generated distributions are in good agreement with corresponding experimental results.

Full-Text [PDF 74 kb]   (352 Downloads)    
Type of Study: Research | Subject: General

1. G F Knoll, "Radiation Detection and Measurment", John Wiley & Sons (2000).
2. J K Dickens, SCINFUL: A Monte Carlo based computer program to determine a scintillator full energy response to neutron, Report ORNL -6463, Oak Ridge (1988).
3. R E Textor, V V Verbinski, O5S: a Monte Carlo code for calculating the pulse-height distributions due to mono- energetic neutrons on organic scintillators, Oak Ridge National Laboratory, ORNL -4160 (1968).
4. A Borio di Tigliole, A Cesana, R Dolfini, A Ferrari, G L Raselli, P Sala, and M Terrani, Nucl. Instrum. Meth., A 469 (2001) 347.
5. K Schweda and D Schmidt, Nucl. Instrum. Meth., A 476 (2002) 155.
6. M Gohil et al., Nucl. Instrum. Meth., A 664 (2012) 304.
7. S Naeem et al., Nucl. Instrum. Meth., A 714 (2013) 98.
8. ZHANG Su-Ya-La-Tu et al., Chinese Physics C 37 (2013) 12.
9. V V Verbinski et al., Nucl. Instr. Meth., 65 (1968) 8 [DOI:10.1016/0029-554X(68)90003-7]
10. R A Cecil, B D Anderson, and R Madey, Nucl. Instr. and Meth. 161 (1979).
11. International Standards Organization. Reference neutron radiations-Part 1: Characteristics and methods of production. Geneva, Switzerland: International Organization for Standardization; ISO-8529-1 (2001).
12. J W Marsh, D J Thomas, and M Burke, Nucl. Instr. Meth., A 366 (1995) 340. [DOI:10.1016/0168-9002(95)00613-3]
13. G Battistoni et al., The FLUKA code: Description and benchmarking, AIP Conference Proceeding. 896 (2007) 31. [DOI:10.1063/1.2720455]
14. J S Hendricks et al., MCNPX 2.6.0 Extensions, Los Alamos National Laboratory, Report LA-UR, 08-2216, (2008).
15. M Tajik, N Ghal–Eh, G R Etaati, and H Afarideh., Nucl. Instr. Meth., A 704 (2013) 104. [DOI:10.1016/j.nima.2012.12.001]
16. H H Knox and T G Miller., Nucl. Instrum. Meth., 101 (1972) 519. [DOI:10.1016/0029-554X(72)90040-7]
17. A A Naqvi et al., Nucl. Instr. and Meth., A 345 (1994) 514. [DOI:10.1016/0168-9002(94)90509-6]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2018 All Rights Reserved | Iranian Journal of Physics Research

Designed & Developed by : Yektaweb