Volume 5, Issue 4 (12-2005)                   IJPR 2005, 5(4): 197-212 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

A. Parvazian, A. Okhovat. Neutron, electron and photon transport in ICF tragets in direct and fast ignition. IJPR. 2005; 5 (4) :197-212
URL: http://ijpr.iut.ac.ir/article-1-212-en.html
Abstract:   (24303 Views)

Fusion energy due to inertial confinement has progressed in the last few decades. In order to increase energy efficiency in this method various designs have been presented. The standard scheme for direct ignition and fast ignition fuel targets are considered. Neutrons, electrons and photons transport in targets containing different combinations of Li and Be are calculated in both direct and fast ignition schemes. To compress spherical multilayer targets having fuel in the central part, they are irradiated by laser or heavy ion beams. Neutrons energy deposition in the target is considered using Monte Carlo method code MCNP. A significant amount of neutrons energy is deposited in the target which resulted in growing fusion reactions rates. It is found that Beryllium compared to Lithium is more important. In an introductory consideration of relativistic electron beam transport into central part of a fast ignition target, we have calculated electron energy deposition in highly dense D-T fuel and Beryllium layer of the target. It has been concluded that a fast ignition scheme is preferred to direct ignition because of the absence of hydrodynamic instability.

Full-Text [PDF 462 kb]   (2535 Downloads)    
Type of Study: Research | Subject: General

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | Iranian Journal of Physics Research

Designed & Developed by : Yektaweb