IRANIAN JOURNAL OF

Iranian Journal of Physics Research, Vol. 14, No. 3, 2014

VN B B S |

%
%
%,

()
%,

QED second order corrections on the speed of light at low temperature
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Abstract

We want to study thermal corrections on the speed of light at low temperature considering temperature dependence of photon vacuum
polarization tensor at two-loop level in the standard QED. It is found that the heat bath behaves as a dispersive medium for the propagation
of light and reduces its speed proportional to the second order of temperature. Similarities and differences, in light of already known
calculations which are based on Euler-Heisenberg Lagrangian and/or those using temperature dependent electromagnetic properties of the

medium are discussed.
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1. Introduction

The speed of light, as a fundamental constant of physics
and as a speed independent of the motion of its source
has a deep connection with the physical vacuum
properties. The vacuum in quantum field theory is an
ocean of particles that in an invisible time is created and
then destroyed so that they are not detectable (virtual
photons); it is a stormy sea of quantum fluctuations as
the physical basis for the calculations of renormalization
effects and radiation corrections. There are a number of
theoretically well-known and experimentally confirmed
phenomena as the spontaneous emission, and the
Casimir effect which all originate from the quantum
vacuum [1]. Renormalization process and radiative
corrections are also due to quantum vacuum where, in
QED, affect the physical (renormalized) mass of electron
and its charge [2,3]. Considering the finite temperature
quantum field theory, the propagators are affected by the
presence of the background heat bath. The corresponding
contributions are calculated either in Euclidean or
Minkowski space using imaginary or real time
formalism respectively [4]. In this paper, we use the real
time formulation wherein energy is a continuous variable
in conventional field theory which explicitly separates
the 7=0 and 7 #0 components, and is considerably
simple [5]. The real time propagators at low
temperatures (relative to the electron mass; T <<m,)
can be written as [6]:
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for fermions (here, the Fermi-Dirac statistical factor
np(E)= 1/ (eﬁ E +1) in the fermion propagator at finite
temperature is ignorable [7]. Thus, at 7 << m,, the hot

fermions' contribution in background is suppressed
and the only contribution is made by the hot photons.
In recent decades, several papers have calculated
the thermal effects on the speed of light using
effective (Euler-Heisenberg) Lagrangian [8,10] and/or
standard QED  radiative corrections on the
electromagnetic ~ properties of the  medium.
Unfortunately, both categories deal with some
difficulties and we shall point out in section 4. Here,
working technically in parallel and similar to [9],
considering the possibility of photon-photon scattering
and examining the temperature dependence of the
vacuum polarization tensor based on standard QED
radiative corrections we obtain the corresponding
thermal correction, on the speed of light. It will be seen
that “the finite temperature” (the heat bath) behaves as a
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Figure 1. Two loop vacuum polarization.

dispersive medium for the propagation of light and
reduces its speed proportional to the square form of
temperature.

2. Radiative correction on the
polarization tensor and the photon mass
The vacuum polarization tensor I1,,(p), as a second

vacuum

rank Lorentz tensor, can be constructed in terms of
&uv » PuPy » and scalar function p2 as in the following
[10]:
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In the limit p2 — 0 and up to terms of higher order in
a , this yields
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This is just the propagator of a boson with mass JD (a
“heavy photon). Thus, there is the following relation
between the effective (dynamical) photon mass and the
vacuum polarization tensor:

g#VH,uv(p»T):4D. (6)

2. 1. Two loop vacuum polarization
At one loop level, because of the absence of self-
interaction of photons at the approximation of low
temperature limit we are considering here, the vacuum
polarization tensor (in « order) is zero.

At higher-loop level, the loop integrals involve a
combination of temperature independent (cold) and
temperature dependent (hot) terms which appear due to

the overlapping propagator terms [11]. In order o? , this
contribution basically comes from self mass (in
figure 1.(a) with counter term ~O» ) and vertex type (in

figure 1. (b) with counter term -O" or ‘O‘) of

electron loop corrections inside the vacuum polarization
tensor [3]. The expression for two loop photon self
energy in figure 1 (a) is
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while that vertex type correction to two loop photon self
energy in figure 1 (b) can be written as
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Due to manifest covariance in the theory, physically
measurable couplings can be evaluated through

contraction of vacuum polarization tensor IT,, with the

metric in Minkowski space g#" [11]. The cold loops

can then be integrated using the standard techniques of
Feynman parametrization and dimensional regularization
as discussed in the standard textbooks, whereas, in the
same term, the evaluation of the hot loop after the cold
one gives (see appendix)
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About reson why the rhs in eq. (11) is independent of p,

g I (p,1) =

we should explain that there are a number of terms
depending on p but all are coefficients of (negligible)

higher orders of 7 . Using eq. (6)

252
a’T
D= 12
D (12)
Thus, the photon “mass” is
M photon" = ND = \/— (13)

3. Radiative corrections on the speed of light

To keep gauge invariance of QED, instead of
considering a “mass” for photon, we prefer to correct the
speed of light; this is because it is in a “dispersive”
medium (heat bath), which reduces its speed from 1
(c=1) to V. Thus, using eq. (13), the correction on
photon energy is found as:

ol

AE = 2B (14)
\jl—v2

Indeed, we have considered this qualitative feature that
the heat bath behaves like a dispersive medium for
photon, because of screening effect due to vacuum
polarization (virtual pairs of electron-positron), and thus
reduces its speed. The energy correction due to
scattering from the virtual electron-positron pairs should
be of the order of m,:

AE ~2my, . (15)
Comparing eqs. (14) and (15):
aT
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So, considering the approximation regime 7 << my,, it is
found that:

a’T?
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4. Discussion

In some papers, thermal effects on the speed of light
have been already considered based on Euler-Heisenberg
Lagrangian [8,10]:
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The final results are a reduction in the speed of light
proportional to the fourth order of temperature [12]
2 2 54

oy Mrta” T (20)
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One serious criticism of these calculations is that,
applying the Euler-Lagrange equation to the starting
Lagrangian, one cannot reach the standard wave
equation but deals with a nonlinear equation by which
we cannot introduce the “velocity” (speed) in its
standard form:
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Some other papers [6, 9, 11, 13] have addressed the
standard QED radiative corrections trying to find the
electron charge renormalization, the electric permittivity,
and the magnetic permeability in terms of temperature.
Although there is no direct calculation of the speed of light
in these papers, it can be simply shown that the resulting
speed based on the calculated renormalized electron charge
(and/or electromagnetic properties of the medium (heat
bath)) is greater than 1 (c=1)! Considering no screening of
magnetic fields due to the transverse nature of I1; implied

+V*4=0. 1)

by gauge invariance [14] and the following result from [9]:

252
T
Zy =1+, (22)
6m
it is found

V= ﬂ_nu . (23)

Indeed, it seems the correct way of having a reasonable
method and result is to consider the presence of the thermal
heat bath as a dispersive medium and then have a kinematic
calculation of the reduced speed of light due to its
dynamically generated mass. Of course, as we have already
mentioned, we don’t consider the “mass” of photon as its
rest mass (or any other similar quantity) to prevent the
possibility of destroying gauge invariance of the theory.

Appendix

At low temperature, the hot contribution comes from the
photon background only. Therefore, for example, eq. (7)
for figure 1 (a) is simplified to

pans 5(12>n )
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