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Abstract 
 We want to study thermal corrections on the speed of light at low temperature considering temperature dependence of  photon vacuum 

polarization tensor at two-loop level in the standard QED . It is found that the heat bath  behaves as a dispersive medium for the propagation 

of light and reduces its speed proportional to the second order of temperature .  Similarities and differences ,  in light of already known 

calculations which are based on Euler-Heisenberg Lagrangian and/or those using temperature dependent electromagnetic properties of the 

medium are discussed . 
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1. Introduction  
 The speed of light ,  as a fundamental constant of physics 

and as a speed independent of the motion of its source 

has a deep connection with the physical vacuum 

properties .  The vacuum in quantum field theory is an 

ocean of particles that in an invisible time is created and 

then destroyed so that they are not detectable (virtual 

photons); it is a stormy sea of quantum fluctuations as 

the physical basis for the calculations of renormalization 

effects and radiation corrections .  There are a number of 

theoretically well-known and experimentally confirmed 

phenomena as the spontaneous emission ,  and the 

Casimir effect which all originate from the quantum 

vacuum [1].  Renormalization process and radiative 

corrections are also due to quantum vacuum where ,  in 

QED ,  affect the physical (renormalized) mass of electron 

and its charge [2,3].  Considering the finite temperature 

quantum field theory ,  the propagators are affected by the 

presence of the background heat bath.   The corresponding 

contributions are calculated either in Euclidean or 

Minkowski space using imaginary or real time 

formalism respectively [4].  In this paper ,  we use the real 

time formulation wherein energy is a continuous variable 

in conventional field theory which explicitly separates 

the 0T =  and 0T ≠  components, and is considerably 

simple [5].  The real time propagators at low 

temperatures (relative to the electron mass; eT m<< ) 

can be written as [6]: 
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 for fermions (here ,  the Fermi-Dirac statistical factor 

( ) 1 ( 1)
E

Fn E e
β= +  in the fermion propagator at finite 

temperature is ignorable [7] .  Thus ,  at eT m<<  ,  the hot 

fermions' contribution in background is suppressed  

and the only contribution is made by the hot photons .   

In recent decades ,  several papers have calculated  

the thermal effects on the speed of light using  

effective (Euler-Heisenberg) Lagrangian [8,10] and/or 

standard QED radiative corrections on the 

electromagnetic properties of the medium . 

 Unfortunately ,  both categories deal with some 

difficulties and we shall point out in section 4.  Here , 

working technically in parallel and similar to [9], 

 considering the possibility of photon-photon scattering 

and examining the temperature dependence of the 

vacuum polarization tensor based on standard QED 

radiative corrections we obtain the corresponding 

thermal correction, on the speed of light .  It will be seen 

that “the finite temperature ”  (the heat bath) behaves as a  
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Figure 1. Two loop vacuum polarization. 

 

dispersive medium for the propagation of light and 

reduces its speed proportional to the square form of 

temperature . 

 
2. Radiative correction on the vacuum 

polarization tensor and the photon mass 

 The vacuum polarization tensor ( )pµνΠ ,  as a second 

rank Lorentz tensor ,  can be constructed in terms of 

,g p pµν µ ν , and scalar function 
2p  as in the following 

[10]: 
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α ,  this  yields  
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 This is just the propagator of a boson with mass D  (a 

“heavy photon”) .  Thus ,  there is the following relation 

between the effective (dynamical) photon mass and the 

vacuum polarization tensor : 

( , ) 4 .g p T Dµν
µνΠ =   (6) 

 
2. 1. Two loop vacuum polarization 
 At one loop level ,  because of the absence  of self-

interaction of photons at the approximation of low 

temperature limit we are considering here ,  the vacuum 

polarization tensor (in α  order) is zero . 

 
 
At higher-loop level , the loop integrals involve a 

combination of temperature independent (cold)  and 

temperature dependent (hot) terms which appear due to 

the overlapping  propagator terms [11].  In order 2α  ,  this 

contribution basically comes from self mass (in  

figure 1. (a) with counter term  ) and vertex type (in 

figure 1. (b) with counter term  or ) of 

electron loop corrections inside the vacuum  polarization 

tensor [3].  The expression for two loop photon self 

energy in figure 1 (a) is  
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 while that vertex type correction to two loop photon self 

energy in figure 1 (b) can be  written as  
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 Due to manifest covariance in the theory ,  physically 

measurable couplings  can be evaluated through 

contraction of vacuum polarization tensor µνΠ  with the 

metric in Minkowski space gµν [11].  The cold loops 

can then be integrated using the standard techniques of 

Feynman  parametrization and dimensional regularization 

as discussed in the standard textbooks ,  whereas ,  in the 

same term ,  the evaluation of the hot loop after the cold 

one gives (see appendix)  

 (a)  (b) 
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About reson why the rhs in eq. (11) is independent of p  , 

 we should explain that there are a number of terms 

depending on p  but all are coefficients of (negligible) 

higher orders of T  . Using eq. (6) 
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Thus ,  the photon “mass ”  is  

"photon" .
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3. Radiative corrections on the speed of light 
 To keep gauge invariance of QED ,  instead of 

considering a “mass ”  for photon ,  we prefer to correct the 

speed of light ; this is  because it is in a “dispersive ” 

 medium (heat bath), which reduces its speed from 1 

( 1c = ) to v  . Thus, using eq. (13), the correction on 
photon energy is found as : 
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Indeed ,  we have considered this qualitative feature that 

the heat bath behaves like a dispersive medium for 

photon ,  because of screening effect due to vacuum 

polarization (virtual pairs of electron-positron) ,  and thus 

reduces its speed .  The energy correction due to 

scattering from the virtual electron-positron pairs should 

be of the order of em  : 

~ 2 .∆ eE m   (15) 

 Comparing eqs. (14) and (15) : 
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 So ,  considering the approximation regime eT m<<  ,  it is 

found that : 
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4. Discussion 
 In some papers ,  thermal effects on the speed of light 

have been already considered based on Euler-Heisenberg 

Lagrangian [8,10] : 
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The final results are a reduction in the speed of light 

proportional to the fourth order of temperature [12] 
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One serious criticism of these calculations is that , 

 applying the Euler-Lagrange equation to the starting 

Lagrangian ,  one cannot reach the standard wave 

equation but deals with a nonlinear equation by which 

we cannot introduce the “velocity ”  (speed) in its 

standard form : 
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 Some other papers [6, 9, 11, 13]  have addressed the 

standard QED radiative corrections trying to find the 

electron charge renormalization ,  the electric permittivity , 

 and the magnetic permeability in terms of temperature . 

 Although there is no direct calculation of the speed of light 

in these papers ,  it can be simply shown that the resulting 

speed based on the calculated renormalized electron charge 

(and/or electromagnetic properties of the medium (heat 

bath)) is greater than 1 (c=1)! Considering no screening of 

magnetic fields due to the transverse nature of ijΠ  implied 

by gauge invariance [14] and the following result from [9] : 
2 2
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it is found  
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Indeed ,  it seems the correct way of having a reasonable 

method and result is to  consider the presence of the thermal 

heat bath as a dispersive medium and then have a kinematic 

calculation of the reduced speed of light due to its 

dynamically generated mass .  Of course ,  as we have already 

mentioned ,  we don’t consider the “mass”  of photon as its 

rest mass (or any other similar quantity) to prevent the 

possibility of destroying gauge invariance of the theory .  
 

Appendix  
At low temperature , the hot contribution comes from the 

photon background only . Therefore,  for example ,  eq. (7) 

for figure 1 (a) is simplified to 
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Integrating over the cold loop using Feynman 

parametrization and dimensional regularization ,  one gets  
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It should be noted that the 1 3  contribution is cancelled 

by the counter term diagram  . After a lengthy 

calculation of the integrals and regardless of the higher 

powers of T  ,  one finds  
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