IRANIAN JOURNAL OF

Iranian Journal of Physics Research, Vol. 17, No. 4, 2017

I L 5 fF 4 8/

%
%
%

%
%,

Light scattering by cubical particle in the WKB approximation

R Lamsoudi, S E Elbahar, and M Ibn Chaikh

Faculty of Science, Department of Physics, Laboratory of Physics for Condensed Materials,
University of Chouaib Doukkali, Morocco

(Received 07 September 2015

in final form 15 April 2017)

Abstract

In this work, we determined the analytical expressions of the form factor of a cubical particle in the WKB approximation. We
adapted some variables (size parameter, refractive index, the scattering angle) and found the form factor in the approximation of
Rayleigh-Gans-Debye (RGD), Anomalous Diffraction (AD), and determined the efficiency factor of the extinction. Finally, to

illustrate our formalism, we analyzed some numerical examples.
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1. Introduction

Electromagnetic scattering is the effect caused by EM
waves hitting an object. The waves will then be scattered
and the scattered field contains useful information about
that object. Electromagnetic scattering happens in many
situations, for example, sun light scattered by
atmosphere, radio waves scattered by buildings or
planes, and so on [1]. The study of EM wave scattering
is of great interest and importance since it helps
advancement in many different fields ranging from
medical  technology to computer engineering,
geophysics, photonics, and military technology [2].

Solar radiation, penetrating the atmosphere, can
interact with gases in the atmosphere, clouds, aerosols
and soil. They can be absorbed or scattered back to
space. Analysis of light scattering process by
atmospheric particles based on Mie theory does not
allow the clear physical interpretation because aerosols
have various shapes (spherical, stars, rings, hexagonal,
cubic ..) according to their forming conditions
(temperature, humidity, supersaturation, ...) [3]. Mie
theory, published in 1908, obtained a general rigorous
solution, on the basis of electromagnetic theory, for the
optical scattering by a homogeneous sphere with
arbitrary size in a homogeneous medium, whatever the
composition of the sphere and medium [4]. The
extension to other forms of less ideal particles is
revealed to be a difficult problem.

The methods of light scattering process analysis by
the nonspherical particles are generally based on solving
Maxwell’s equations, either numerically or analytically.
Examples of the numerical approach include the
invariant embedding T-matrix approach [5], the digitized
Green's-function method (DFG) [6], and an improved
version of the Extended Boundary Condition Method
(EBCM) [7]. These methods are flexible and general
techniques for calculating the scattering and absorption
characteristics of arbitrarily shaped particles, but they
require a rather large computer data storage.

Solutions to the exact integral expression of
scattering amplitude function are difficult. The function
depends on the local field inside the particle and its
permittivity. The local field is generally unknown.
Therefore, certain approximations like Rayleigh, Born,
Wentzel-Kramers-Brillouin (WKB) etc. are usually
required to overcome the difficulty and avoid laborious
computation [8].

In the WKB approximation, the internal field is equal
to the incident field modulated by a phase delay factor
which corresponds to an additional phase shift of the
wave that propagates inside the particle. Therefore, the
WKB approximation is a refinement of the Rayleigh-
Debye-Gans approximation [9]. Because of the
complexity of the general scattering theory for
nonspherical particles, the possibility of applying the
WKB approximation to modeling the scattering of light
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by cubical objects is worth investigating. This approach
is applied on spheres, cylinders and spheroid [10-12].
This work is devoted to a theoretical study of scattering
of light by cubical particle, in the WKB approximation.
Within the framework of the scattering theory, we
investigate the form factor for this approximation which
represents the modification of the scattered irradiance
due to the finite size of the particle and to its deviation
from sphericity, this factor allows us to determine
amplitude of light scattering. The structure of the article
is as follows: In the second section we derive a general
analytical expression for the form factor expression for a
cubical particle. In section three, RGD and AD are
deduced from our general formula by varying some
particle parameters. In the last section we determine the
extinction coefficient. By wusing this formalism,
numerical calculations are performed to illustrate the
comportment of the form factor.

2. Form factor in WKB approximation

We present a general approach to calculate the form
factor of structured particles. Suppose that the particle
falls flat electromagnetic wave. We are using the integral
representation of the form factor in the WKB
approximation in a scalar form [12]:

F(0,¢) = j ﬂvexp(ik.i(i—6))exp(ikw)dv' , 1)

where 6 and i are the unit vectors along the directions of
scattering and propagation of light, respectively, T is the
radius vector of a point inside the particle, k is the free-
space wave number, 0 is the scattering angle, i.e., the angle

between i and O, ¢is the azimuthally angle, v is the

volume of the scattered, and W is the optical path which is
introduced by the scattering object expanded in the form

W:IZZe[m(z')—l}dZ'zm(Z—Ze) : )

where, Z. is the z-coordinates of the initial position of
penetration of the object.

In the following, we investigate if the above method
can be applied to the absorbing cubical particles, in order
to estimate the intensity distribution of light scattered by
the scattered.

We consider a Cartesian coordinate system,
orthonormal R(X,Y,Z) the origin coincides with the
center of cube, we assume that an electromagnetic wave is

incident in the plane Y OZ on cube a homogeneous with
an edge length o and m refractive index, the cube is
positioned in such a way that two facets are illuminated by
the incident light. They are aligned symmetrically with
respect to the direction of incidence, which is
perpendicular to the edge closest to the light source (the
acute angle between the incident beam and each cube face
is 7/4), and the Z -axis is parallel to the incident ray.

In rectangular coordinates, the form factor can be
written as

F(6,0)= '[”3 expik(—xsinfcos ¢ — ysinfsing)

expikz (m - cosB) exp—ikz,(m-1)d9 ,

)

where x, y and z are the components of the position of
the scattering element inside the object.

F(G,(p) =A(0, (p)I ampl(Ze (y),e)e*ikysinesinq)dy ., 4
L
with L as the length of the particle on the Y-axis,

ampl(ze (y),e) =exp—iKz, (y)(2m—1-cos)

4 )
—exp—iKz, (y)(1-cosb) ,
B 1 sin(d)
A(Q’(P) - ik(m —cos (9)) d ’ ©
and
d= %sin Ocoso . @)

Equation (4) is obtained after integrating over x from
_Ta to %, and over z from ze(y) to -ze(y), where
ze(y) , and -ze(y) are the z-coordinates of the
intersection of incident ray and the body surface.

We decompose the cube into two regions in figures
(1-a) and (1-b). Each region in turn is divided into
longitudinal slices (thickness dy and width Az; figure
(1-b)). The form factor can be written as:

2 ymax;
F(O,q)):A(O,q))z J ampl;

=1 ymin;
(Zej (y) 7e)e—ikysinf)sin(pdy ,

2
F(0.0)= ) F(0.0) . ©)
=1

where ymin; and y max; are the limits of the integral

according to each region. Now, we just search zej(y)

®)

expression in terms of y for each region j=1,2.

For region (1) defined by

—Ja<y<o0, (10)
the z-coordinates of the intersection of a line is parallel
to k and the body surface is

Zeg ===~V - (11

NG

After some algebraic manipulations, we obtain,

F(0.0)= 20
Zi(e— (o (12
o i(e t)—1_ e iam) )
-i(g-t) -i(q-t)
where
ka .
d :7s1n600s¢ , (13)
ka
t =——=sinbsing , (14)
2
g=u+? | (15)

2
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Figure 1. Decomposition of the cubical particle.
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Figure 2. Normalized form factor as a function of scattering angle & for absorbing cubical particle at a m=1.25+0.01.i for three

ka ka
values of @, (a): ——==10;(b): ——==6.

V2 V2
q=-@-5). (16)
p=+2ka(m-1), a7
and

ka
u=—(m-cosf). 18)
5 - cos) (
For region (2) defined by
0<y<+2a. (19)
the z-coordinates is
a
V4 =——+Yy, 20
e2 \/5 y (20

we obtain
B (00) =55

. . 21)

eig R i(g+t) - e i(q+t) 1 (
-i(g+t) -i(q+t)

We can see that, if we change ¢ by ¢ m ie (t <> —t)

we have F (6,(p) =F (O,q)fn)

we can interpret this remark as contribution of region (2)
or form factor at point H (R,H,(p), the same as the
contribution of region (1) at point G(R,Q,go-i—;r). This
interpretation is done because of the symmetry of the
hexagonal particles, where R is the distance from the
observation point to the scattering object along the
direction of the unit vector o .

The form factor calculated is valid for any value of the
phase delay of the wave penetrating through the center of
the homogenous absorbing cubical particle. For
illustration, we show in figure 2. the behavior of the form
factor as a function of the scattering angle €. This figure
shows that the form factor exhibits some lobes with
intensity decreasing with scattering angle, we find that the
backscatter (6 >90) is almost unnoticeable compared to

the diffusion front which makes it around 10* times.

3. Special cases
As the WKB approximation is applicable for a wide
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Figure 3. Normalized form factor in RGD approximation as a
function of scattering angle @ for cubical particle.

range of p, we can consider it the most general
approach  which includes the RGD and AD
approximations. These approximations are applied for
optically soft light scattering particles |m—1| <1 [13-

14]. So, from form factor in WKB which is the general
formula, we can deduce the above approximations.

3. 1. RGD approximation

In the limit of a small refractive index, the WKB
approximation reduces to RGD approximation. For this
approximation, we assume that p < 1. The imaginary

part of the form factor is null. We can write

@’ sind cost —cosu
F(6,9) 4 A (22)
To illustrate our analytical results, we represent the
behavior of the normalized form factor as a function of
the scattering angle € in the case of non absorbing
cubical particle in figure 3. The parameters used in the

calculation are m =1.01 and ka =6, for 3 values of ¢.

NG

3. 2. Anomalous diffraction approximation

Such an approximation is valid if & =kd > 1, where «
is the size parameter, k is the free-space wave number,
d is a geometrical path of a given ray through the

considered nonspherical particle, and |m—l| < 1. This

implies that the rays are not deviated when they cross the
interface particle-medium and that the reflection at this
interface is negligible. We consider in this case
intermediary values of p and an angle 6 < 1.

We have,

P
~=, 23
U (23)
ka

t ~—0sing , (24
NG 4

d =~ kaBcosg . (25)

The expressions of the form factor are reduced to

Normalized form factor

I I
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Figure 4. Normalized form factor as a function of scattering
angle @ for cubical particle, for three values of @ .

F(6,0) y Y
2
(26)
. p—tj

sin .
+el% Zt —ZLm

- t

2

For illustration, we present in figure 4, the normalized
form factor as a function of the scattering angle 6 for
three values of ¢@. We have respected the condition
imposed on the scattering angle, size parameter and
refractive indece of the scattering object with

m=1.1+001i  and <2 — 5.

g

4. Extinction efficiency
The extinction efficiency Qg is defined as the

extinction cross section per unit of projected area of the
particle on the plane perpendicular to the direction of the
incoming beam. The extinction coefficient is expressed
in terms of form factor P with air projected from the
cube [12, 15, 16].

k2 1m(|(m —1)F(0,0)))

Qext = P . (27)
The extinction efficiency of this case can be written as
12nﬁ(m—l)
e -1
Qext =2Re| ————— -1 . (28)
2a
127 T (m - 1)

Figure 5 shows the extinction efficiencies of an cubicle

. . 2 .
particle as a function of X = % , this parameter allows

to compare the wavelength with the largest possible ray
path within the considered particle, the imaginary part of
refractive index is 0.01.
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Figure 5. Evolution of the extinction efficiency as a function

2a

of X:T parameter for three different indices of

refraction.

When the largest path is of the order of the
wavelength, the extinction increases rapidly to a peak of
maximum efficiency. Then, the efficiency decreases and
oscillates around value 2.

When the real part increases, the amplitude of the
maximum peak efficiency increases and shifts to the
small particle. Furthermore, an increase in the number of
oscillations is observed

Figure 6 shows the influence of particle absorption.
The main influence of an increase in the absorption of
the particle m;, on the extinction coefficient is to damp

the oscillations, in particular the amplitude of the
maximum peak efficiency.

When studying in detail the evolution of the
effectiveness of extinction, we note that extinction does
not always increase when the absorption of the particle

m; increases. For example, in the case of small radii

compared to the wavelength, the extinction increases as
m; increases. It is noted, however, that there is a fixed
point, where extinction is independent of the value of the
imaginary part of refractive index.

For real refractive index, the efficiency factor of the
extinction becomes

sin[zn*/fa(m—l)]

Quxt =2| 1- (29)
ext \/Eé
2n~——(m-1)
A
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