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Abstract 
Solar acoustic oscillations are actually the same 5 minute oscillations that appear in the photosphere. These oscillations appear to be 
unable to penetrate into the solar corona due to the acoustic cut off of stratified atmosphere and the sharp temperature gradient in the 
transition region. The 5 minute acoustic oscillations may resonantly convert into Alfven waves in the 1   region of the solar 

atmosphere. By perturbing the equilibrium state of the magnetised plasma, we showed that the acoustic and Alfven waves can 
interact through the nonlinear terms of the ideal MHD equations. We found that Alfven waves with twice the period of acoustic 
waves may propagate to upper layers when the speeds of sound and Alfven waves are equal, s Ac v . This condition is obtained 

when, A s
1

2
   . 
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1. Introduction  
The heating mechanisms of the solar upper atmospheric 
layers (the chromosphere and corona) are one of the 
most important fields of research in solar physics. 
Helioseismology can demonstrate the behavior of solar 
phenomena by using the observed oscillations [1, 2]. A 
general method for heating of the solar upper atmosphere 
is the damping of magnetohydrodynamics (MHD) 
waves. When MHD waves interact with plasma 
inhomogeneities (e.g. density, velocity and magnetic 
field), a number of physical events are generated such as 
wave dispersion, phase mixing [3, 4], mode coupling [5, 
6] and resonant absorption [7, 8, 9].  

Safari et al. (2006) [10] studied the resonance 
absorption of MHD waves in magnetized flux tubes with 
a radial density inhomogeneity. The ohmic and viscous 
dissipations were assumed in a thin boundary layer. 
They obtained an analytical dispersion relation and 
solved it numerically. They have shown that as 
longitudinal wave number increases, the maximum 
amplitude of the body eigenmodes shifts away from the 
resonant layer and causes a decrease in damping rates.   
It is usually considered that solar 5-min acoustic 
oscillations in photosphere cannot make a way into the 
upper layers because of the cutoff of stratified 

atmosphere and of the sharp temperature gradient in the 
transition layer. However, 5-min oscillations are 
observed in the solar corona by SOHO and TRACE 
space satellites [11]. De Pontieu et al. (2005) [12] have 
studied about the penetration of photospheric waves into 
the corona by the inclined magnetic fields. Bogdan et al. 
(2003) [13] have investigated the importance of ~ 1β  

region in the solar atmosphere by two dimensional 
numerical simulations. They showed that the mode 
coupling of MHD waves takes place at this region. 
Muglach et al. (2005) [14] have presented from 
observations that transformation of the compressible 
wave energy to incompressible waves are possible at this 

~ 1β  region.  

Shergelashvili et al. (2005) [15] have investigated 
about “swing absorption” of fast magnetosonic waves in 
inhomogeneous media. They showed that the fast 
magnetosonic waves propagating across an applied non-
uniform magnetic field can parametrically amplify the 
Alfven waves propagating along the field through the 
periodical variation of the Alfven speed. The resonant 
Alfven waves have half the frequency and the 
perpendicular velocity polarization of the fast waves. 
The wavelengths of the resonant waves have different 
values across the magnetic field, due to the 
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inhomogeneity in the Alfven speed. Kuridze et al. (2005) 
[16] have studied resonant conversion of standing 
acoustic oscillations into Alfven waves in the ~ 1β  

region of the solar atmosphere. They found that an 
acoustic oscillation is non-linearly coupled to the Alfven 
wave with double the wavelength and period when 

s Ac v . The region of the solar atmosphere where this 

equality takes place are called a swing layer.  
From observational view, Ganjali et al. (2018) [17] 

have analyzed the transvers oscillations of the coronal 
loop observed from SDO/AIA. They concluded that the 
damping of transvers oscillations of the coronal loop in 
is the strong damping regime in which the resonance 
absorption would be a well suitable candidate for the 
loop damping mechanism. 

In this paper, we study the resonant conversion of the 
acoustic oscillations to Alfven waves in a typical 
magnetic flux tube by numerical simulation. Sections 2, 
3 and 4 give the basic equations and theoretical model. 
We consider the ideal MHD equations without 
dissipation terms, but for coupling modes we apply non-
linear terms of MHD equations. In section 5, numerical 
results are presented, and the conclusion is followed in 
section 6. 
 
2. Theoretical modeling 
We consider a solar flux tube in 2D x-z plane in the 
presence of steady flow and shear field. The mode 
conversion of photospheric acoustic oscillations into 
Alfven waves is studied at the solar chromosphere. For 
simplicity the stratification is neglected. By considering 
fluid motions in a magnetized region (with any 
dissipation process), the ideal MHD equations in the 
plasma dynamics are as follows: 
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where V is the plasma velocity, B is the magnetic field, 
μ0 is the vacuum permeability, ρ  is the plasma density 

and RT
P





is the pressure for perfect gas. μ is the mean 

molecular weight.  
The equilibrium state 
The velocity and magnetic fields are defined as follows: 

0
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 and 0 b
ˆB exp(k (x 1))k 


 are the equilibrium 

velocity and magnetic fields of the plasma. The density 
and pressure are also assumed to have x dependence, 
they are expressed as 0(x)  and 0p (x) , respectively. The 

equilibrium density profile is considered as: 
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The magnetic field and pressure satisfy the transverse 
pressure balance condition: 
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where 0 0 0 0p (x) p (T , (x))  . We are also considered plasma 

β as 
0
2
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Perturbation equations  
In order to make continuous displacements of the flux 
tube, a perturbation in the velocity and magnetic field is 
considered at the lower boundary of the tube. Vectors v

  
and b


 in equation (3) are the perturbed velocity and 

magnetic field which are defined as 
y zv (0, v , v )

  and 

yb (0,b ,0)
 , respectively. The wave propagation is 

considered along z-axis. Only sound and Alfven waves 
appear, the velocity component of Alfven wave is 
polarized along y-axis and the velocity component of 
sound wave is polarized along z-axis. We study the 
weakly non-linear regime. In other words, the 
amplitudes of the waves are considered to be large 
enough to produce variations of the environment 
parameters (can be seen by propagating Alfven modes), 
but too small to affect the Alfven waves themselves. 
From analytical work [16], when wave numbers satisfy 
the condition S Ak 2k , the waves can interact via the 

non-linear terms remained in the equations.  
Here, we first introduce the perturbed MHD equations 
by considering of some non-linear terms, and then by 
numerical solving of the equations we expect to see the 
condition as mentioned above. In order to see the 
variations of the perturbed velocity and magnetic field, 
the ideal dimensionless MHD equations with the 
considered assumptions are as follows: 
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where density, velocity, magnetic field, time and space 
coordinates are normalized to  , A0V , 0B ,  , and a (the 

typical flux tube radius), respectively. Eqs. (7-9) should 
be solved numerically under following perturbations and 
boundary conditions:  

y v Av (x, z, t 0) A sin(k (z 1))sin(kx)  
 (10) 

z v sv (x,z, t 0) A cos(k (z 1))sin(kx)    (11) 

y b Ab (x, z, t 0) A sin(k (z 1))cos(kx)  
 (12) 

s(x, z, t 0) A cos(k (z 1))sin(kx)   
 (13) 

where v bA , A , A  are the small amplitudes of the 

perturbed velocity, magnetic field and density 
respectively. The Ak  and Sk  are the Alfven and 

acoustic wave numbers. The pressure profile is the same 
as density one. The boundary conditions are defined as: 

y y

y y

v (x 0,z, t) v (x 4, z, t) 0,
v (x, z 0, t) v (x, z 20, t) 0,

    
     



IJPR Vol. 21, No. 3 Study of interaction between acoustic-Alfven waves … 95 
 

 
Fig 1. The profile of the equilibrium density plotted with respect to dimensionless x. 
 

 
Fig 2. The profile of the equilibrium magnetic field plotted with respect to dimensionless x.  
 

y y

y y

b (x 0, z, t) b (x 4, z, t) 0,
b (x, z 0, t) b (x, z 20, t) 0.

   
     

With the use of equation (4) we obtain the mass density 
profile which show the variation of the initial plasma 
density in the flux tube (Fig 1).  

Figure 2 shows the variation of equilibrium magnetic 
field in the flux tube by using equation 

0 b
ˆB exp(k (x 1))k 


. 

 
3. Numerical results  
To solve the coupled Eqs. (7-9) numerically, the finite 
difference and the Fourth-Order Runge-Kutta methods 
are used to take the space and time derivatives, 
respectively. The implemented numerical scheme relies 
on the forward finite difference method to take the first 
spatial derivatives with a truncation error of (x ), which 
is spatial resolution in the x direction. The order of 
approximation for the second spatial derivate in the finite 

difference method is  2( )O x . On the other hand, the 

forth-order Runge-Kutta method takes the time 
derivatives into account.  

We set the number of mesh-grid points as 256×256. In 
addition, the time step is chosen as 0.01, and the system 
length in the x and z dimensions (simulation box sizes) 
are set to be (0, 4) and (0, 20). The parameters in a flux 
tube (for example in a spicule) are as follows: 
a= 250 km (typical spicule radius), L= 5000 km (Spicule 
length), d= 0.5 Mm (the width of initial pulse), ne= 
11.5×1016 m-3, B0= 1.2×10-3 Tesla, T0= 14000 K, R= 
8300 m2/sK (universal gas constant), VA0= 50 km/s, μ= 
0.6, ρ0= 1.9×10-10 kg/m3, p0= 3.7×10-2 N/m2, μ0= 4π×10-7 
Tesla m/A, x0= 1000 km, z0= 125 km, Av= 5 km/s, ka= 
π/16, and ks= π/8 (dimensionless wavenumber 
normalized to a), α= 2, β=1 and τ= 4 s. 

Figure 3 illustrates the 3D plots of the z-component 
of the perturbed velocity with respect to x, z for t= 25τ s 
and t= 125τ s. In these plots, the increment of the 
velocity amplitude is seen with respect both x- and z-
axes. The initial pulse amplitude is 5 km/s and is located 
in x=500 km and z=125 km. It shows that the initially 
localized pulse, which is launched in the lower 
chromosphere, propagates upward.  
Similar to figure 3, in figure 4 the same plot of the 
perturbed z-component velocity with respect to x,
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Figure 3. The 3D plots of the z component of the perturbed velocity with respect to x, z in t=25τ s and t=125τ s for ka=π/16. 
 

 
Figure 4. The 3D plot of the perturbed density with respect to x, z in t=25τ s and t=125τ s for ka=π/16. 
 

  
Figure 5. The 3D plots of the transversal component of the perturbed velocity with respect to x, z in t=25τ s and t=125τ s for 
ka=π/16. 
 
z at t= 25τ s is presented. Obviously a similar pattern of 
upward propagation of the initially localized pulse is 
repeated here.  

Figures 5 and 6 illustrate the 3D plots of the y-
component of the perturbed velocity and magnetic field 
with respect to x, z for t= 25τ s and t= 125τ s. The initial 
pulse is located in x=1000 km and z=500 km. In these 
figures, the behavior of the y-component of the velocity 
and magnetic field are seen to be the same.  

Figure 7 shows the variations of the perturbed 
density and the z-component of velocity with time 
(dimensionless). In these plots, the propagation of the 
acoustic oscillations are seen with time. The period of 
these oscillations is seen about 20 τ s , and an increment 
of the amplitude takes place around 190t τ s . 
According to equation (8), we showed that the z-
component of the velocity is coupled with the y-
component of the magnetic field through the non-linear  
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Figure 6. The 3D plots of the z component of the perturbed magnetic field with respect to x, z in t=25τ s and t=125τ s for ka=π/16.  
 

 
Figure 7. Temporal variations of the perturbed density and velocity (dimensionless).  
 

  
Figure 8. Temporal variations of the perturbed velocity and magnetic field (dimensionless).  
 
terms. The acoustic and Alfven waves would interact 
through these nonlinear terms when S Ak 2k .  

Figure 8 demonstrates the temporal variations of the 
y-component of the perturbed velocity and magnetic 
field (dimensionless). According to the equation (9), the 
Alfven wave propagates in direction of the y axis with 
period 40 2.6 A τ τ s  min . This period is in good 

agreement with the life time of a typical spicule (5-15 
min) in the solar chromosphere [18].  

By comparing of two obtained periods above, Alfven 
waves propagate with twice the period of acoustic 
oscillations. Analytical solution of the wave equations 
showed that the resonant solution will occur 
when S

A A Av k
2


    ( A  is the frequency of Alfven 

waves) [16]. We also obtained from numerical 
computations that the resonance takes place when 

S
A

k
k

2
  (in other words, S

A 2


  ) satisfying s Ac v .  
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4. Conclusion 
The interaction between the MHD waves may take place 
either because of inhomogeneity or nonlinearity. The 
nonlinearity interrelation between waves is well grow as 
resonant triplets [8]. Other methods of wave damping are 
including phase mixing and resonant absorption which 
are related to the inhomogeneity of the plasma. In this 
work, we have considered the ideal MHD equations with 
non-linear interaction between two waves in a medium 
with a steady background flow and non-uniform 
magnetic field. The acoustic oscillations (5-min 
oscillations) can be resonantly converted into Alfven 
waves in the thin magnetic tubes. This mode conversion 

takes place in a region of the solar atmosphere where 

s Ac v  or ~1  (this region is called swing layer [16]). In 

our numerical simulation, we have considered the 
perturbations in the density, velocity and magnetic field 
of the plasma as a function of wave number. We were 
looking for a condition on these wave numbers to obtain 
the resonance layer. In plots of figure 7, an increase of 
the amplitude of the oscillation is observed in 190t τ s  

(this is in good agreement with the life time of a typical 
chromospheric spicule) for 

A S
1

k ~ k
2

. The enhanced 

Alfven waves may then propagate through the upper 
atmosphere and transfer their energy into corona. 
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