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Abstract 

A spherically symmetric matter collapses under its own gravity. For the Milky Way, the time scale of collapse for a 

spherical halo with NFW density is ∼ 26 My which is very small compared to the age of the Milky Way. The effect of a 

pressure, obeying a polytrope equation of state is investigated. It is shown that for p ∝ ρ9/8,  the time scale would be of 

the order of 1 Gy. It is also argued that such a polytrope, if considered to be in equilibrium, could explain the rotation 

curve of the milky way. 
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1. Introduction 

According to the current standard cosmology, the so-

called ΛCDM, the energy- matter content of the universe 

is almost 70% dark energy, almost 25% dark matter, and 

almost 5% baryonic matter [13, p. 55]. The cosmological 

observations showing the existence of non-baryonic dark 

matter include the standard cosmological nucleosynthesis 

[13, p. 185]. Also, detailed studies of the dynamics of 

clusters of galaxies, that is, the large scale structure of the 

universe, indicate that this dark matter must be cold [13, 

p. 186]. The dark matter shows its effects in the rotation 

curves of the spiral galaxies [9], the velocity dispersion of 

the elliptical galaxies [1], the velocity dispersion of the 

clusters of galaxies [5], and other effects such as the 

gravitational lensing [6]. It should be noted that there is 

another paradigm for explaining all these phenomena by 

modifying the Newtonian dynamics [2], but that’s beyond 

the scope of this article. 

Although the majority of researches agree on the 

existence of dark matter, there is no consensus on what 

the dark matter is. In the standard framework of quantum 

fields, dark matter is composed of particles of one or 

several quantum fields. Several models for these fields are 

proposed. Different fields result in different dynamics of 

the dark matter. bulk property of the dark matter which is 

needed to describe the dynamics.  For the spiral galaxies 

such as the Milky Way,  the standard description of the 

dark matter is a halo with spherical density profile ρ(r), 

where r is the distance from the center of the galaxy. 

A spherically symmetric distribution of matter, produces 

a spherically symmetric gravitational field. If there is no 

pressure, the gravity will cause the matter to collapse.  

The time scale of the collapse could be obtained from the 

the density profile, and, as we shall see in a moment, it is 

very short compared to the ages of the galaxies. Therefore, 

a static distribution of the dark matter is possible, only if 

there is sufficient pressure. In this article we would like to 

address this problem.  

2. The Collapse Time Scale of the NFW Dark 

Matter   
 Several profiles for the density of the halo are proposed 

[10]. One of the profiles which is mostly used, and is very 

successful in explaining the plateau of the rotation curves 

of spiral galaxies, is the Navarro-Frenk-White (NFW) 

profile introduced in [8]. (remove dot) 
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For the Milky Way galaxy the parameters are [10]: 
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( )M r , drawn in figure1, is logarithmically divergent as

r → . 

The acceleration of gravity due to this mass is 
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If an object of mass M is at the origin, and a test particle 

starts radial motion from 

distance r, the test particle reaches the origin in a time of 

the order 
3

.
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Now consider a spherical shell of dark matter with radius 

r and thickness dr. Since the halo is spherically symmetric, 

and ignoring the gravitational field of disk of the galaxy, 

this spherical shell experiences the gravitational field of a 

point mass of mass M(r). For the NFW density, it is 

straightforward to see that the time scale of collapse of the 

shell  ,  dr r r+  is 
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(3) 7.24f = , therefore, the time scale of the collapse of 

the spherical shell of radius 3 30 kpcr a= = is 190 My. 

In summary, a pressure-less spherically symmetric mass 

with the NFW density for the Milky Way, would collapse 

in a time scale of order 0.2 Gy. This is small compared to 

the age of the Milky Way, and even the time scale of the 

appreciable changes in the structure of the Milky Way. 

One way out of this dilemma is to postulate a pressure. 

Newton’s equation for a spherically symmetric static fluid 

under its own gravity and pressure is (see [12], p. 308) 
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For the NFW density ρ(r) and M (r), we get 
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This could be integrated, and the result is 
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The functions ρ(x) and p(x) are drawn in figure 2. In figure 

3 we draw the Log-Log diagram of P (ρ). 

Assuming the existence of such a pressure is an ad hoc 

assumption. It would be better if we could start from an 

equation of state and derive the pressure. 

3. Polytrope equation of state 

One simple equations of state is the polytrope equation 
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where n is called the polytrope index. The condition for 

the hydrostatic equilibrium is (see [12, p. 308]): 
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and ( )n x  satisfies the Lane-Emden equation 
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It is known that for 
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1
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that is for 5n  , the solution satisfies 
1( ) 0,n x = for 

some positive 
1x  [12, p. 310].  Therefore, only the 

polytropes with 5n   are considered for modeling the 

stars. 

3. 1. 1n =  Polytrope dark matter 

For 1n = , the Lane-Emden equation has the solution: 
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This equation is the classical solution of a scalar field, 

satisfying the Gross- Pitaevskii-Poisson  equations  in  the  

Thomas-Fermi  approximation  [3]. 

Using (26), let us define 
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From this density, one can find M (r): 
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Figure 1. The function M (r) for the NFW density profile. The 

vertical dashed line indicates the radius r = 5 a from the center. 

for 5r a  the function M (r) is almost linear. 

 

Figure 2. Pressure and density profile of the static NFW halo. 

p(r) = p1 p(x), and ρ(r) = ρ0 ρ(x), where x = r/a. The pressure is 

calculated from the Newtonian equations for the hydrostatic 

equilibrium of the NFW mass under its own gravity. 

 

Figure 3:  ln(p) vs. ln(ρ),    0.0001,0.1x  , for a NFW 

dark matter which is static under its own gravity and pressure. 

The pressure is calculated from the Newtonian equation of 

hydrostatic equilibrium. 

Since this halo is in hydrostatic equilibrium, the model we 

can construct using this density for the halo does not 

suffer from the collapse problem we mentioned. For 

example, let us introduce a very simple model for the 

Milky Way: 

a) A spherical mass, 
bM  representing the central 

black hole and a spherical bulge, 

b) an exponential disk with surface density σ0 and 

radius scale d, a halo with density (27). 

The rotation curve for this simplified model, is drawn in 

figure 4. 

 
1 We introduced w, so that p0 = w p1 

 

Figure 4. Rotation curve of the simple model consisting of a 

spherical central bulge of mass 
10

2.2 10
b

M M=  ; an 

exponential disk with 
2

0.85 pc ,  8 kpc,M d
−

= =   and a 

halo with density (27) with 
0

2 3
0.18 GeV c  cm ,

− −
=  and 

10 kpca = . Velocity,  in 100 km s−1,  vs.  distance from the 

center in kpc. The two horizontal dashed lines indicate the range 
of the observed values. 

4. Polytrope NFW halo 

Suppose at time t = 0, there is a spherically symmetric 

halo with an NFW density profile, and suppose that this 

dark matter obeys a polytrope equation of state with index 

n. Let us find the time scale for the gravitational collapse 

of this halo. 

Consider an element of the fluid between the shells r and 

dr r+ , and in an infinitesimal solid angle dΩ. The mass 

of this element is 
2d ( ) d  d .m r r r=   (29) 
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It is more convenient to write this equation as 
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Using (4), by integration it follows that Writing Newton’s 

equation we get 
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If we assume a polytrope equation of state of the form1 
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Figure 5. ( )ln p  vs ( )ln   for   0.1,3.0][x . The graph is 

close to a line with the slope 9/8. 

 

Figure 6. The potential   (black), due to the mass 

distribution of a NFW density, and the effective 

potential + (blue), where   is the potential 

defined by 1   p −− = −  , if the dark matter 

satisfies the polytrope equation of state, 
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that the effective potential is almost flat for 0.4x 
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Now the equation of motion reads 
2

2
.

d r d d

dt dr dr

 
= − −  (40) 

From the diagram of ln( )p  vs. ln( ) , drawn in figure 5, 

we conclude that n = 8 could be a plausible candidate. For 

8n =  and 0.11w = , the effective potential +  is 

drawn in figure 6.  There is now a barrier near the origin 

which prevents the system to collapse to a point. Also, the 

effective potential is almost flat for 0.5 kpcr  . We can 

now calculate the period of oscillations of a spherical shell 

of thickness dr , initially at r . For the initial radius of 

 5x = , the final (smallest) radius would be 0.554, and 

collapse time is thus: 
5.000

0.554
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where   is given by (eq. 10)2. The period of oscillations 

is twice this value, 2 Gy . The conclusion is that an NFW 

dark matter satisfying  an      8n =  polytrope equation of 

state is not static, but the time scale of the gravitational 

collapse, or period of oscillations, is of the order of 2 Gy , 

which is more plausible 

than 0.2 Gy  corresponding to a pressure-less NFW dark 

matter.  

5. n = 8 Polytrope 

In the previous section we saw that if the halo’s density is 

the NFW, and if it satisfies a polytrope equation of state 

with 8n = , then the mass could not collapse 

completely—it will oscillate, with a characteristic time of 

the order of 2 Gy . Now let us investigate the density 

profile of a polytrope mass, which is in equilibrium under 

its own gravity and pressure. 

It is known that for 5n  , the solution of the Lane-

Emden equation is such that, there is no positive root for 

( )n x .  

Therefore, polytrope models for 5n   are not used to 

model stars, and are rarely investigated. 

To see the behavior of ρ(r) for the 8n =  polytrope, we 

must first obtain ( )8 x , and then use (18).  We used the 

algorithm given in (11) to calculate the series 

2

8

0

( ) ( 1)  ,k k

k

k

x c x


=

= −  (42) 

up to 31k = . Writing a code in Wolfram Mathematica 

11.1, we calculated the coefficients up to 31k = . 
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Figure 7. The function ( )8
x (red) and the density 

8

8
( )x = (blue), calculated by the series (42) up to 31k =

. The conversion of the series is very slow. The graph shown 

here represents ( )8
x  only for 0 1.25x  . 

 

Figure 8. Rotation curve for the simple model composing of a 

spherical central bulge, an exponential disk, and polytrope halo 

with index 8n = . The observed values as given by [10]  are 

also shown. Note that between 5 kpc and 25 kpc the rotation of 

this simple model fits in the observed interval. 

6. A simple model 

To investigate the rotation curve due to a static polytrope 

dark matter with index 8n = , we must use the function 

(42), the convergence of which is very slow. Here we 

present a simple approximate model for the 8n =  

polytrope, valid for  0 1.2x   Using the function 

(42), we calculate ( ) ( )8

8f x x= , and fit the 

polynomial 
2 3 4

2 3 4( ) 1f x c x c x c x= + + +  (43) 

to that. This, we did using Wolfram Mathematica 11.1, 

and we found the following coefficients: 

2 1.61064c = − , (44) 

3 1.22639c = + , (45) 

4 0.261527c = − , (46) 

Now the rotation curve could be calculated easily from 
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Using this, we can construct a simplified model for the 

milky way thus: 

1) A spherical central bulge of mass 
892 10 .bM M=   

2) An exponential disk with density 
/
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3) A polytrope halo with index 8n =  and parameters 
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In figure 8 the rotation curves for this model is drawn. The 

total mass of the Milky Way, inside a sphere of radius 

25 kpc , in this model is 

bulge disk halo

8

11

(25 kpc)
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                    3.5 10 .

M M M M

M

M

= + +

+ + 


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7. About the origin of the pressure 

We are thankful to one of the referees of the manuscript 

that pointed to us that: "In the standard scheme of 

structure formation, the Boltzmann equation is used to 

obtain the dynamics of the phase space of dark matter 

particles. The non-linear effects which are caused by 

growing density contrast introduce a stress tensor in the 

Euler equation. This     stress tensor is a key point to the 

non-linear structure formation. And that is why the 

collision-less non-relativistic dark matter particles start to 

act like a fluid with pressure." 

In this regard, we would like to state some comments. 

In a gas, the origin of pressure is the collisions of particles, 

which results from the interactions between the particles. 

The standard theoretical basis for the derivation of 

pressure is to use Boltzmann equation for the single-

particle distribution function. If the dark matter consists 

of photons or neutrinos, one must use relativistic 

Boltzmann equation, and one has to consider Thomson 

scattering between electrons and photons [4]. 

For a scalar field   coupled minimally to gravity, we 

have 

1
( )

2
p g V

  = −   − , 

where ( )V   is the potential function describing the field, 

and g 
 is the spacetime metric [13]. Such fields have 

soliton solutions leading to anisotropic pressure[7]. 

8. Summary and conclusion 

A spherically symmetric distribution of matter would 

collapse under its own gravity, unless there is sufficient 

pressure to prevent this. We wrote the Newtonian 

equation for the hydrostatic equilibrium of an NFW 

distribution to get the pressure, figure 2. The plot of ln p 

vs. ln ρ, figure 5, indicates that in the interval 
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0 10 kpcr a   a simple relation of the form 

9/8p   holds. Using the algorithm given in [11], we 

obtained the function ( )8 x which is the solution of the 

Lane-Emden equation of index 8n = . Using a 

polynomial approximation  for  ( ) ( )8 f x x= ,  

which  is  valid for 0 1.2x  ,  we  obtained an 

approximate expression for the rotation curve (figure 8). 

The total mass of the Milky Way, within 25 kpc from the 

center, is approximately 1.5 times that of the mass found 

using a NFW model as given by [10]. 

The time scale of the collapse of the NFW DM, initially 

at rest, could be calculated (eqs (9)-(11).   Being 0.2 Gy 

for a shell of radius 30 kpc,  it is very short compared to 

the age of the Milky Way. Assuming a pressure obeying 

the polytrope 8n = , that is 
9/8p  , but relaxing the 

assumption of hydrostatic equilibrium, we found the time 

scale of the oscillations to be 2 Gy (see eq (41). 

It should be noted that a static 1n =  polytrope could also 

describe the rotation curve of the Milky Way, see §3.1, 

figure 4, and [1]. 
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